反比例函数的图像与性质教学设计

合集下载

反比例函数的图象和性质(教学设计)

反比例函数的图象和性质(教学设计)

数学教学设计§18.4反比例函数的图象和性质§18.4反比例函数的图象和性质一、教学目标(一)知识教学点1、理解反比例函数的图象是双曲线,利用描点法画出反比例函数的图象,说出它的性质;2、利用反比例函数的图象解决有关问题.3、运用数形结合的能力。

(二)能力训练点1.通过引导学生画反比例函数图象,作图能力.2.通过观察反比例函数图象得到反比例函数的性质,培养观察、分析、归纳三、重点·难点1.教学重点:反比例函数图象探索反比例函数的性质.2.教学难点:反比例函数性质(一)创设情境上节的练习中,我们画出了问题1中函数vs t 的图象,发现它并不是直线.那么它是怎么样的曲线呢?这节课,我们就来讨论一般的反比例函数x k y =(k 是常数,k ≠0)的图象,探究它有什么性质.(二)、探究归纳1、画出函数xy 6=的图象. 分析 画出函数图象一般分为列表、描点、连线三个步骤,在反比例函数中自变量x ≠0.解 1).列表:这个函数中自变量x 的取值范围是不等于零的一切实数,列出x 与y 的对应值:2).描点:用表里各组对应值作为点的坐标,在直角坐标系中描出各点的坐标点(-6,-1)、(-3,-2)、(-2,-3)等.3).连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支.这两个分支合起来,就是反比例函数的图象,通常称为双曲线提问: 这两条曲线会与x 轴、y 轴相交吗?为什么?教师小结:这两条曲线都不会与x 轴、y 轴相交。

首先从关系式xy 6=中我们可以看出,式中的变量x 与y 的取值都不可能为0,所以两条曲线都不会与x 轴、y 轴相交。

学生试一试:画出反比例函数xy 6-=的图象(学生动手画反比函数图象,进一步掌握画函数图象的步骤).学生讨论、交流以下问题,并将讨论、交流的结果回答问题.1).函数的图象在哪两个象限?与函数xy 6=的图象有什么不同? 2).反比例函数xk y =(k ≠0)的图象在哪两个象限内?由什么确定? 3).联系一次函数的性质,你能否总结出反比例函数中随着自变量x的增加,函数y 将怎样变化?有什么规律?2、性质归纳:反比例函数有如下性质:1)当k >0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y 随x 的增加而减少;2)当k <0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y 随x 的增加而增加.注 1).双曲线的两个分支与x 轴和y 轴没有交点;2).双曲线的两个分支关于原点成中心对称.3、实践应用:1) 若反比例函数y=(m+1)/x 的图象在第二、四象限,求m 的范围. 解: 由题意,得m+1<0 解得m<-1例2)正比例函数kx y =和反比例函数xk y =在同一坐标系内的图象为( )ABC4、课堂总结:本节课学习了画反比例函数的图象和探讨了反比例函数的性质.1)反比例函数的图象是双曲线2)反比例函数有如下性质:(1)当k >0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y 随x 的增加而减少;(2)当k <0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y 随x 的增加而增加.§18.4反比例函数的图象和性质反比例函数xk y =(k ≠0)的图象是双曲线 1)双曲线的两个分支与x 轴和y 轴没有交点;2)双曲线的两个分支关于原点成中心对称.反比例函数有如下性质:(1)当k >0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y 随x 的增加而减少;(2)当k <0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y 随x 的增加而增加.。

反比例函数的图象与性质教案

反比例函数的图象与性质教案

反比例函数的图象与性质教案•相关推荐反比例函数的图象与性质教案范文(通用8篇)作为一名教师,时常会需要准备好教案,教案是教学蓝图,可以有效提高教学效率。

那么大家知道正规的教案是怎么写的吗?下面是小编精心整理的反比例函数的图象与性质教案范文,欢迎阅读与收藏。

反比例函数的图象与性质教案篇1教学目标知识与技能:1、进一步熟悉作函数图象的主要步骤,会作反比例函数的图象。

2、体会函数的三种表示方法的相互转换,对函数进行认识上的整合。

3、培养学生从函数图象中获取信息的能力,初步探索反比例函数的性质。

过程与方法:通过学生自己动手列表,描点,连线,提高学生的作图能力;通过观察图象,概括反比例函数图象的有关性质,训练学生的概括总结能力、情感、态度与价值观:让学生积极参与到数学学习活动中去,增强他们对数学学习的好奇心和求知欲。

教学重难点1) 重点:画反比例函数图象并认识图象的特点。

2)难点:画反比例函数图象。

教学关键:教师画图中要规范,为学生树立一个可以学习的模板。

教学方法:激发诱导,探索交流,讲练结合三位一体的教学方式。

教学手段:教师画图,学生模仿。

教具:三角板,小黑板。

学法:学生动手、动眼,、动耳、采用自主,合作、探究的学习方法。

教学过程一:课前检测:1、什么叫做反比例函数;(一般地,如果两个变量x、y之间的关系可以表示成y= (k为常数,k0)的形式,那么称y是x的反比例函数。

)2、反比例函数的定义中需要注意什么?(1)k为常数,k0(2)从y= 中可知x作为分母,所以x不能为零。

二:激发兴趣导入新课问题1:对于一次函数 y = kx + b ( k 0 )的图象与性质,我们是如何研究的?y=kx+b y=kxK0 一、二、三一、三b0 一、三、四K0 一、二、四二、四b0 二、三、四问题2:对于反比例函数 y=k/x ( k是常数,k 0 ),我们能否象一次函数那样进行研究呢?可以问题3:画图象的步骤有哪些呢?(1)列表(2)描点(3)连线(教学片断:师:上一节课我们研究了反比例函数,今天我们继续研究反比例函数,下面哪位同学说一下自己对反比例函数的了解。

初中数学《反比例函数的图象和性质》教学设计

初中数学《反比例函数的图象和性质》教学设计

初中数学《反比例函数的图象和性质》教学设计一. 教材分析《反比例函数的图象和性质》是初中数学的重要内容,主要让学生了解反比例函数的图象和性质,理解反比例函数在实际生活中的应用。

通过学习,学生能够掌握反比例函数的定义,了解反比例函数的图象特点,理解反比例函数的性质,并能运用反比例函数解决实际问题。

二. 学情分析学生在学习《反比例函数的图象和性质》之前,已经学习了函数的概念,比例函数和一次函数的图象和性质。

但学生在学习过程中可能对反比例函数的概念和性质理解不深,对反比例函数的图象特点把握不准。

因此,在教学过程中,教师要注重引导学生理解反比例函数的概念,通过实际例子让学生感受反比例函数的图象和性质。

三. 教学目标1.了解反比例函数的定义,理解反比例函数的图象和性质。

2.能够运用反比例函数解决实际问题。

3.培养学生的数学思维能力和解决问题的能力。

四. 教学重难点1.反比例函数的定义2.反比例函数的图象和性质3.反比例函数在实际生活中的应用五. 教学方法采用问题驱动法、案例教学法、小组合作学习法等,引导学生通过自主学习、合作探讨,理解反比例函数的图象和性质,提高学生的数学思维能力和解决问题的能力。

六. 教学准备1.PPT课件2.教学案例和实际问题3.反比例函数的图象和性质的相关资料七. 教学过程1.导入(5分钟)通过一个实际问题引入反比例函数的概念,如“一辆汽车以60km/h的速度行驶,行驶1小时,行驶的路程是多少?”让学生思考并回答问题,引导学生认识到反比例函数在实际生活中的应用。

2.呈现(15分钟)利用PPT课件,展示反比例函数的图象和性质,让学生直观地感受反比例函数的特点。

同时,教师讲解反比例函数的定义,解释反比例函数的图象和性质。

3.操练(15分钟)让学生通过自主学习,理解并掌握反比例函数的定义,然后进行一些相关的练习题,让学生在实际操作中加深对反比例函数的理解。

4.巩固(10分钟)通过一些实际问题,让学生运用反比例函数解决问题,巩固学生对反比例函数的理解。

《反比例函数的图象和性质》教学设计

《反比例函数的图象和性质》教学设计

《反比例函数的图象和性质》教学设计反比例函数的图象和性质一、背景分析1.对教材的分析本节课讲述内容为北师大版教材九年级下册第五章《反比例函数》的第二节,也这一章的重点。

本节课是在理解反比例函数的意义和概念的基础上,进一步熟悉其图象和性质的过程。

本节课前一课时是在具体情境中领会反比例函数的意义和概念。

函数的性质蕴涵于概念之中,对反比例函数性质的探索是对其内在规定性的的认识,也是对函数的概念的深化。

同时,本节课也是下一节课《反比例函数的应用》的基础,有了本节课的知识储备,便于学生利用函数的观点来处理问题和解释问题。

传统教材在内容和编写意图的比较:传统教材里反比例函数的内容仅有一节,新教材里反比例函数的内容增加至一章。

本节课中的作函数图象的要求在新旧教材中并不一样,旧教材对画图只是一带而过,而新教材中让学生反复作反比例函数的图象,为下一步性质的探索打下良好的基础。

因为在学生进行函数的列表、描点作图是活动中,就已经开始了对反比例函数性质的探索,而且通过对函数的三种表示方式的整和,逐步形成对函数概念的整体性认识。

在旧教材中对反比例函数性质只是简单观察以后,由老师讲解得到,但是在新教材中注重从操作、观察、概括和交流这些数学活动中得到性质结论,从而逐步提高从函数图象中获取信息的能力。

这也充分体现了重视获取知识过程体验的新课标的精神。

(1)教学目标:进一步熟悉作函数图象的主要步骤,会作反比例函数的图象;体会函数三种方式的相互转换,对函数进行认识上的整和;逐步提高从函数图象中获取知识的能力,探索并掌握反比例函数的主要性质。

(2)重点:会作反比例函数的图象;探索并掌握反比例函数的主要性质。

(3)难点:探索并掌握反比例函数的主要性质。

2、对学情的分析九年级学生在前面学习了一次函数之后,对函数有了一定的认识,虽然他们在小学已经接触了反比例,但都处于浅显的、肤浅的知识表面,这对于他们理解反比例函数的图象与性质没有多大的帮助,但由于本节课采用Z+Z智能教育平台进行教学,比较形象,便于学生接受。

26.1.2反比例函数的图像与性质(教案)

26.1.2反比例函数的图像与性质(教案)
2.教学难点
-理解反比例函数图像与性质之间的关系,特别是\( x \)接近0时,\( y \)值的变化;
-将反比例函数图像与实际情境联系起来,进行数学建模;
-解决涉及反比例函数的实际问题时,如何提取关键信息,建立数学模型。
举例:在分析反比例函数图像时,难点在于让学生理解当\( x \)接近0时,\( y \)值会无限增大,图像呈现出渐进线。此时,教师可通过动态演示或实际案例(如速度与时间的关系),帮助学生形象理解这一难点。
此外,课堂总结时,我询问了学生们的疑问,他们提出了一些很好的问题,这表明他们在课堂上确实有所思考。我感到欣慰的同时,也意识到自己在解答问题时需要更加耐心和细致,确保每个学生都能跟上课堂节奏。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解反比例函数的基本概念。反比例函数是形如\( y = \frac{k}{x} \)(\( k \neq 0 \))的函数。它在描述一些变量关系时非常重要,如在经济学、物理学等领域有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。以速度与时间的关系为例,当速度固定时,行驶的距离与时间成反比,从而引入反比例函数的概念。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了反比例函数的基本概念、图像性质和实际应用。通过实践活动和小组讨论,我们加深了对反比例函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
三、教例函数的定义及其表达形式,强调\( k \neq 0 \)的条件;
-反比例函数图像的特点,包括图像在坐标轴上的分布、对称性等;

人教版数学九年级下册26.1.2反比例函数的图像与性质教学设计

人教版数学九年级下册26.1.2反比例函数的图像与性质教学设计
5.鼓励学生进行自我反思,总结在学习反比例函数过程中遇到的困难和问题,以及解决方法。要求学生以日记的形式记录,以提高他们的自我监控和自我评价能力。
6.预习下一节课的内容,为课堂学习做好准备。
2.利用多媒体辅助教学,形象直观地展示反比例函数的图像特点,帮助学生理解和记忆。同时,结合实际案例,让学生感受反比例函数在实际生活中的应用,提高学生的学习兴趣。
3.教学过程中,注重分层教学,针对不同学生的学习需求,设计不同难度的例题和练习题。对于基础薄弱的学生,重点辅导他们掌握反比例函数的基本概念和性质;对于学有余力的学生,则引导他们运用反比例函数知识解决更复杂的问题。
3.掌握反比例函数的性质,如:当k>0时,图像位于第一、第三象限;当k<0时,图像位于第二、第四象限;图像在x轴和y轴的渐近线分别为y=0和x=0;在每一个象限内,y随x的增大而减小(或增大)等。
4.能够运用反比例函数的性质解决一些实际问题,如:根据实际情境确定反比例函数的参数k,解决与反比例函数相关的问题。
人教版数学九年级下册26.1.2反比例函数的图像与性质教学设计
一、教学目标
(一)知识与技能
1.理解反比例函数的概念,知道反比例函数的一般形式为y = k/x(k≠0),并能够根据给定的信息判断函数是否为反比例函数。
2.学会绘制反比例函数的图像,了解图像在坐标平面内的分布特点,如:图像是双曲线,有两个分支,分别位于第一、第三象限或第二、第四象限。
三、教学重难点和教学设想
(一)教学重难点
1.重点:反比例函数的概念、图像和性质的理解与应用。
2.难点:
(1)反比例函数图像的绘制及其在坐标平面内的分布特点。
(2)反比例函数性质的理解,尤其是参数k的符号对图像的影响。

反比例函数的图象和性质教案(完美版)

反比例函数的图象和性质教案(完美版)

在线分享文档:麦群超反比例函数的图象和性质【知识与技能】1. 会用描点法画反比例函数的图象;2. 理解反比例函数的性质.【过程与方法】 经历实验操作、探索思考、观察分析的过程中,培养学生探究、归纳及概括的能力.【情感态度】在通过画图探究反比例函数图象及其性质过程中,发展学生的合作交流意识,增强求知欲望.【教学重点】画反比例函数图象,理解反比例函数的简单性质【教学难点】 理解反比例函数性质,能用性质解决简单的问题.一、情境导入,初步认识问题 我们知道,一次函数y = 6x 的图象是一条直线,那么反比例函数y =6x 的图象是什么形状呢?你能用“描点”的方法画出函数的图象?【教学说明】教师提出问题,学生思考、交流,尝试着解决问题,教师巡视,关注学生的画图,及时纠正个别同学在画图中的不足和失误之处,帮助学生尽可能得到其合适的图象.二、思考探究,获取新知问题1 在同一坐标系中画出反比例函数y =6x 和y =12x的图象; 【教学说明】将全班同学分成两大组,分别完成问题y =6x 、y =12x的画图,在学生探索画反比例函数的图象过程中,教师应给予恰当点拨:如学生列表时,由于自变量x ≠0,故在x <0和x >0时,应各取三个以上的数据,以便使描点画图更精确些;在连线上,x <0和x >0 的两个分支应根据变化趋势用平滑曲线连接,但它们是不能相交的;列表中数据,描点时点的位置等不能出错,以保证图象更能反映出反比例函数的性质.在线分享文档让每个人平等地提升自我:麦群超 问题2 反比例函数y =-6x 和y =-12x的图象有什么共同特点?它们之间有什么关系?反比例函数y = 6x 和y =-6x的图象呢?同学间相互交流. 【教学说明】让两组同学分别交流,找出图象的特征,教师可分别参与讨论,帮助学生获取正确认知. 【归纳结论】由图象可发现:(1)它们都是由两条曲线组成,并且随|x|的不断增大(或减 小),曲线越来越接近x 轴(或y 轴),但这两条曲线永不相交;(2) y = 6x 和y =-6x 及y =12x 和y =-12x 的图象分别关于x 轴对称,也关于y 轴对称. 思考 观察函数y = 6x 和y =-6x 以及y =12x 和y =-12x 的图象. (1)你能发现它们的共同特征以及不同点吗?(2)每个函数的图象分别位于哪几个象限? (3)在每个象限内y 随x 的变化如何变化? 【归纳结论】反比例函数y =k x 的图象及其性质: (1)反比例函数y=k x (k 为常数,且k 0)的图象是双曲线; (2)当k >0时,双曲线的两个分支分别位于第一、三象限,在每个象限内,y 随x 值的增大而减小;(3)当k <0时,双曲线的两个分支分别位于第二、四象限,在每个象限内y 随x 值的增大而增大.三、典例精析,掌握新知例 如图,一次函数y = kx 十b 的图象与反比例函数y =m x 的图象相交于A 、B 两点.(1)根据图象,分别写出A 、B 的坐标;(2)求出两函数的解析式;(3)根据图象回答:当x 为何值时,一次函数的函数值大于反比例函数的函数值. 【分析】(1)观察图象,可直接写出A 、B 两点的坐标;(2)利用A 、B 两点的坐标,用待定系数法建立方程组求解,可确定两函数的解析式;(3 )通过两函数的交点A 、B 的坐标得出答案.解:(1)观察图象可知A ( -6,-2),B (4,3)在线分享文档地提升自我By :麦群超(2)由点B 在反比例函数y =m x 的图象上,所以把B (4,3)代入y =m x 得3 =4m ,故m =12,所以y=12x.由点A 、B 在一次函数y =kx 十b 的图象上,所以把A 、B 两点坐标代入y = kx 十b 得14326+2,1k b k k b b ⎧+==⎧⎪⎨⎨-=-⎩⎪=⎩解得 . 所以一次函数解析式为y = 12x+1.(3)由图象可知,当一6<x <0或x >4时,一次函数的函数值大于反比例函数的函数值.【教学说明】本例有一定难度,教师可将题目展开,分步讲解,辅导学生克服对大题的恐惧.本题考查了从图象获取信息,应用待定系数法确定反比例函数与一次函数的关系式,以及利用图象比较函数值的大小等知识点. 四、运用新知,深化理解 1 .若反比例函数 y =21m x -的图象的一个分支在第三象限,则m 的取值范围是 . 2.如图是某一函数的一部分,则这个函数的表达式可能是( )A.y=5xB.y=-x+3C.y=-6xD.y=4x 【教学说明】学生独立完成,然后相互交流,谈谈自己的看法,教师应参与学生的讨论, 加深学生对反比例函数的图象及其性质的认识和理解,从而更好地掌握本节知识.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分. 【答案】1.m >122. C 五、师生互动,课堂小结 本节课学习了哪些知识?在知识应用过程中需要注意什么?你有哪些收获?1.布置作业:从教材“习题”中选取.在线分享文档让每个人平等2.完成创优作业中本课时的“课时作业”部分.“反比例函数的图象和性质”是反比例函数的教学重点,学生需要在理解的基础上熟练运用.在学习反比例函数图象和性质时k >0时,双曲线的两个分支在一、三象限;k <0时,双曲线的两个分支在二、四象限),学生可由画法观察图象得知.而增减性由解析式y =k x (k 0)可得到,学生也容易理解.但从图象观察增减性较难,借助计算机的动态演示就容易多了,所以本课教学最好用多媒体,因为运用多媒体比较函数图象,可以使学生更直观、更清楚地看清函数的变化,从而使学生加深对函数性质的理解.通过本课的教学,教师可深刻地体会到运用信息技术可加强数学课堂教学中的灵活性、直观性. 虽然制作起来比较麻烦,但能使课堂教学达到预想不到的效果,使课堂教学效率也明显提高.。

反比例函数的图象与性质教案教学设计

反比例函数的图象与性质教案教学设计

一、教案基本信息反比例函数的图象与性质教案教学设计课时安排:2课时教学对象:高中数学一年级学生教学目标:1. 让学生理解反比例函数的定义和表达式;2. 让学生掌握反比例函数的图象特征;3. 让学生了解反比例函数的性质;4. 培养学生运用数学知识解决实际问题的能力。

教学重点:1. 反比例函数的定义和表达式;2. 反比例函数的图象特征;3. 反比例函数的性质。

教学难点:1. 反比例函数图象的理解;2. 反比例函数性质的推导。

二、教学准备教学工具:黑板、粉笔、多媒体教学设备教学素材:反比例函数图象和性质的PPT课件、例题、练习题三、教学过程第一课时1. 导入新课教师通过展示实际问题,引导学生回顾正比例函数的图象和性质,为新课的学习做好铺垫。

2. 反比例函数的定义与表达式(1)教师引导学生观察实际问题,引出反比例函数的概念;(2)教师给出反比例函数的表达式;(3)学生跟随教师一起总结反比例函数的定义和表达式。

3. 反比例函数的图象特征(1)教师利用PPT课件展示反比例函数的图象;(2)教师引导学生观察反比例函数的图象特征,总结规律;(3)学生跟随教师一起归纳反比例函数的图象特征。

4. 反比例函数的性质(1)教师引导学生从图象特征出发,推导反比例函数的性质;(2)教师给出反比例函数的性质表述;(3)学生跟随教师一起总结反比例函数的性质。

第二课时5. 应用拓展(1)教师出示应用题,引导学生运用反比例函数的知识解决问题;(2)学生独立解答问题,教师进行指导;(3)教师总结解题方法,强调反比例函数在实际问题中的应用。

6. 课堂小结教师带领学生回顾本节课所学内容,总结反比例函数的定义、表达式、图象特征和性质。

7. 布置作业教师出示课后练习题,要求学生巩固反比例函数的知识。

四、教学反思教师在课后对教学效果进行反思,针对学生的掌握情况调整教学策略,为后续课程的教学做好准备。

五、教学评价通过课堂表现、作业完成情况和课后练习的成绩,对学生在本次课程中的学习效果进行评价。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【教学目标】
知识技能目标:会用描点法画出反比例函数的图像.能结合函数图象进行探索、理解并掌握反比例函数的性质。

过程方法目标:经历画图、观察、猜想、思考等数学活动,向学生渗透数形结合的思想方法,运用类比的方法让学生初步认识具体的反比例函数
图象的特征.
情感态度目标:让学生体会事物是有规律地变化着的观点.
【教学重点】
反比例函数的图象的形状特征。

【教学难点】
难点:探索并掌握反比例函数的主要性质。


【教学方法与教学手段】
类比法、动手操作、组内交流、合作、讨论。

【教学过程】
一、回顾旧知,引入新课
1、问题:长方形的一边长为4,面积y和另一边长x之间有什么关系?
2、此函数的图象是什么样子的?如何画出它的图象呢?
3、正比例函数的性质填写下表:
4、正比例函数的图像和性质是怎么得到的?是如何研究的?(经过哪几个步骤)
二、递进设疑,导入新课
问题:如果长方形的面积为4,一边长x和另一边长y之间又有什么关系呢?
1、反比例函数的表达式 ___________________________
2、解析式中自变量x的取值能为0吗?为什么______________________、
3、画函数图象的方法是什么?
4、函数做图的步骤是___________、_______________、____________。

【设计意图】利用学生已有的知识,激发学生的求知欲
三、探索活动
1,画出反比例函数x
y 6=与x y 6-=的图像 教学活动1:(1)引导学生运用画正比例函数图象的方法,分小组讨论尝试,采用列表、描点、连线的方法画出函数x
y 6=与x y 6-=的图象。

(利用类比的方法,消除学生对函数的惧怕心理) (2) 老师边巡视,边指导,和学生一起找出错误的地方,分析原因。

(3) 老师在黑板上演示画反比例函数图象的步骤,展示正确的函数图象。

2,组内交流讨论画反比例函数图象容易出错的地方有哪些?(生评说总结,师补充)
(1) 列表时x 不能为0,但有的学生会取0,取点不恰当,导致函数图象
的不完整,不对称,为了便于计算和描点,应左右均匀,对称取值,
且常取一些整数值。

(2) 连线时点与点之间可能会有端点,连成折线,而应从左向右用光滑的
线条连接,应选取较多的自变量x 的值和对应的函数值y 。

(3) 图象与x 轴y 轴不能相交,因为自变量x 不能为0.
教学活动2:引导学生采用多种方式进行自主探索活动,并合作交流
(1)可以用画反比例函数x
y 6=的图象的方式与步骤进行自主探索其图象; (2)可以通过探索函数x y 6=与x y 6-=之间的关系,画出x
y 6-=的图象. (3)若把函数x
y 6=图象绕原点旋转180°,结果你发现了什么现象? (4)反比例函数x
k y =(k ≠0)的图象在哪两个象限内?由什么确定? 教学活动3:思考:函数x y 6=
和x y 6-= 的图像有什么相同点和不同点? 归纳 反比例函数y=6x 和y=-6x
的图象的共同特征: 反比例函数y=6x 和y=-6x
的图象的位置特点和性质: (1)反比例函数y=6x 图像分别位于_________象限;反比例函数y=-6x
的图象分别位于_________象限
(2)在每一个象限内,y 随x 的变化而如何变化?
猜想 反比例函数y=k
x (k ≠0)的图象在哪些象限由什么因素决定?•在每一个象限内,y 随x 的变化情况如何?它可能与坐标轴相交吗?
做一做 在平面直角坐标系中画出反比例函数y=3x 和y=-3x
的图象.看是否具有上述特征? 对比归纳,完成下面表格 四、课堂演练
(1)下列图象中( )是反比例函数的图象。

(2)在平面直角坐标系中,如果双曲线x
k y =(k ≠0)经过点(2,-1),则k=___________
(3)下列函数中,其图象位于第二、四象限的有_______;在其图象所在象限内,y 的值随x 值的减小而增大的有__________.
(4)若反比例函数x y 6=的图象过点A (m ,-2)则m 的值为______ (5)已知矩形的面积为8,那么它的长y 与宽x 之间的图象大致可表示为( ) (6)反比例函数x
y 2-=,当x =-2时,y = ;当x <-2时;y 的取值范围是 ;当x >-2时;y 的取值范围是
五、归纳小结,反思提高。

(1) 画反比例函数图象需要注意的地方有哪些?
函数 图象 形状
图象位置 函数增减性 图象位于
________象限 在每个象限内,y 值 随x 值的增大而_______
图象位于
________象限 在每个象限内,y 值 随x 值的增大而_______
x y x y x y x y 8001)4(43)3(21)2(23)1(-=-==-=π
(2) 反比例函数的图象是关于原点成中心对称的双曲线,k 值确定图象所
在象限。

六、布置作业P46,3,4
七、板书设计 §9.2反比例函数的图象和性质(1)
1,反比例函数x
y 6 的图象。

2,画图象需要注意的地方。

(1) 应左右均匀,对称取值,且常取一些整数值。

(2) 从左向右用光滑的线条连接,取点多一些。

(3) 图象与x 轴、y 轴不能相交
3,对比正、反比例函数。

相关文档
最新文档