方程的根与函数的零点(复习总结课)
高中数学第三章函数的应用章末复习课(三)学案(含解析)新人教版必修1

三章函数的应用章末复习课网络构建核心归纳1.函数的零点与方程的根的关系函数f(x)的零点就是方程f(x)=0的解,函数f(x)的零点的个数与方程f(x)=0的解的个数相等,也可以说方程f(x)=0的解就是函数f(x)的图象与x轴交点的横坐标,即函数f(x)的函数值等于0时自变量x的取值.因此方程的解的问题可以转化为函数问题来解决.讨论方程的解所在的大致区间可以转化为讨论函数的零点所在的大致区间,讨论方程的解的个数可以转化为讨论函数的零点的个数.2.函数零点存在性定理(1)该定理的条件是:①函数f(x)在区间[a,b]上的图象是连续不断的;②f(a)·f(b)<0,即f(a)和f(b)的符号相反.这两个条件缺一不可.(2)该定理的结论是“至少存在一个零点”,仅仅能确定函数零点是存在的,但是不能确定函数零点的个数.3.函数应用(1)要解决函数应用问题,首先要增强应用函数的意识.一般来说,解决函数应用问题可分三步:第一步,理解题意,弄清关系;第二步,抓住关键,建立模型;第三步,数学解决、检验模型.其中第二步尤为关键.(2)在解题中要充分运用数形结合、转化与化归、函数与方程等数学思想及策略,寻求解题途径.(3)根据已知条件建立函数解析式是函数应用的一个重要方面.一般分为两类:一类是借助于生活经验、函数知识等建立函数模型,以二次函数模型为主,一般是求二次函数的最值.另一类是根据几何、物理概念建立函数模型.要点一 函数的零点与方程的根 函数的零点与方程的根的关系及应用1.函数的零点与方程的根的关系:方程f (x )=0有实数根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点.2.确定函数零点的个数有两个基本方法:利用图象研究与x 轴的交点个数或转化成两个函数图象的交点个数进行判断.【例1】 (1)函数f (x )=⎩⎪⎨⎪⎧x 2-2,x ≤0,2x -6+ln x ,x >0的零点个数是________;(2)若函数f (x )=|2x-2|-b 有两个零点,则实数b 的取值范围是________.解析 (1)①当x ≤0时,由f (x )=0,即x 2-2=0,解得x =2或x =- 2.因为x ≤0,所以x =- 2.②法一 (函数单调性法)当x >0时,f (x )=2x -6+ln x .而f (1)=2×1-6+ln 1=-4<0,f (3)=2×3-6+ln 3=ln 3>0,所以f (1)·f (3)<0,又函数f (x )的图象是连续的,故由零点存在性定理,可得函数f (x )在(1,3)内至少有一个零点.而函数y =2x -6在(0,+∞)上单调递增,y =ln x 在(0,+∞)上单调递增,所以函数f (x )=2x -6+ln x 在(0,+∞)上单调递增.故函数f (x )=2x -6+ln x 在(0,+∞)内有且只有1个零点.综上,函数f (x )共有2个零点.法二 (数形结合法)当x >0时,由f (x )=0,得2x -6+ln x =0, 即ln x =6-2x .如图,分别作出函数y =ln x 和y =6-2x 的图象.显然,由图可知,两函数图象只有一个交点,且在y 轴的右侧,故当x >0时,f (x )=0只有一个解.综上,函数f (x )共有2个零点.(2)由f(x)=0得|2x-2|=b,在同一坐标系中作出函数y=|2x-2|和y=b的图象,如图所示,由图可知,若f(x)有两个零点,则b的取值范围是(0,2).答案(1)2 (2)(0,2)【训练1】已知关于x的方程a·4x+b·2x+c=0(a≠0),常数a,b同号,b,c异号,则下列结论中正确的是( )A.此方程无实根B.此方程有两个互异的负实根C.此方程有两个异号实根D.此方程仅有一个实根解析由常数a,b同号,b,c异号,可得a,c异号,令2x=t,则方程变为at2+bt+c=0,t>0,由于此方程的判别式Δ=b2-4ac>0,故此方程有2个不等实数根,且两根之积为c<0,故关于t的方程只有一个实数根,故关于x的方程只有一个实数根.a答案 D要点二二分法求方程的近似解(或函数的零点)1.二分法求方程的近似解的步骤(1)构造函数,转化为求函数的零点.(2)明确精确度和函数的零点所在的区间(最好区间左右端点相差1).(3)利用二分法求函数的零点.(4)归纳结论.2.使用二分法的注意事项(1)二分法的实质是通过“取中点”,不断缩小零点所在区间的范围,所以要选好计算的初始区间,保证所选区间既符合条件,又使区间长度尽量小.(2)计算时注意依据给定的精确度,及时检验计算所得的区间是否满足精确度的要求.(3)二分法在具体使用时有一定的局限性,首先二分法只能一次求得一个零点,其次f(x)在(a,b)内有不变号零点时,不能用二分法求得.【例2】设函数f(x)=x3+3x-5,其图象在(-∞,+∞)上是连续不断的.先求值:f(0)=________,f(1)=________,f(2)=________,f(3)=________.所以f(x)在区间________内存在一个零点x0,填下表,结论x0解f(0)=-5,f(1)=-1,f(2)=9,f(3)=31,所以初始区间为(1,2).因为所以x0≈1.125(不唯一).【训练2】若函数f(x)=x3+x2-2x-2的一个正数零点附近的函数值用二分法逐次计算,参考数据如下:f(1)=-2,f(1.5)=0.625;f(1.25)=-0.984,f(1.375)=-0.260;f(1.438)=0.165.那么方程x3+x2-2x-2=0的一个近似根可以为(精确度为0.1)( )A.1.2B.1.35C.1.43D.1.5解析∵f(1.438)=0.165>0,f(1.375)=-0.260<0,∴函数f(x)在(1.375,1.438)内存在零点,又1.438-1.375<0.1,结合选项知1.43为方程f(x)=0的一个近似根.答案 C要点三函数的实际应用1.建立恰当的函数模型解决实际问题的步骤(1)对实际问题进行抽象概括,确定变量之间的主被动关系,并用x,y分别表示.(2)建立函数模型,将变量y表示为x的函数,此时要注意函数的定义域.(3)求解函数模型,并还原为实际问题的解.2.建模的三个原则(1)简化原则:建立模型,要对原型进行一定的简化,抓主要因素、主变量,尽量建立较低阶、较简便的模型.(2)可推演原则:建立的模型一定要有意义,既能对其进行理论分析,又能计算和推理,且能推演出正确结果.(3)反映性原则:建立的模型必须真实地反映原型的特征和关系,即应与原型具有“相似性”,所得模型的解应具有说明现实问题的功能,能回到具体研究对象中去解决问题. 【例3】 某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x (百台),其总成本为G (x )(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本).销售收入R (x )(万元)满足R (x )=⎩⎪⎨⎪⎧-0.4x 2+4.2x (0≤x ≤5),11(x >5). 假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题: (1)写出利润函数y =f (x )的解析式(利润=销售收入-总成本); (2)要使工厂有盈利,求产量x 的取值范围; (3)工厂生产多少台产品时,可使盈利最多? 解 (1)由题意得G (x )=2.8+x . ∴f (x )=R (x )-G (x )=⎩⎪⎨⎪⎧-0.4x 2+3.2x -2.8(0≤x ≤5),8.2-x (x >5). (2)①当0≤x ≤5时,由-0.4x 2+3.2x -2.8>0得x 2-8x +7<0,解得1<x <7,∴1<x ≤5. ②当x >5时,由8.2-x >0,得x <8.2, 所以5<x <8.2.综上,当1<x <8.2时,有y >0,即当产量x 大于100台,小于820台时,能使工厂有盈利. (3)当0≤x ≤5时,函数f (x )=-0.4(x -4)2+3.6, 当x =4时,f (x )有最大值为3.6; 当x >5时,∵函数f (x )单调递减, ∴f (x )<f (5)=3.2(万元).综上,当工厂生产4百台产品时,可使盈利最多,为3.6万元.【训练3】 《中华人民共和国个人所得税法》规定,个人所得税起征点为3 500元(即3 500元以下不必纳税,超过3 500元的部分为当月应纳税所得额),应缴纳的税款按下表分段累计计算:(1) (2)刘丽十二月份缴纳个人所得税款300元,那么她当月工资总额是多少?解 (1)依题意可得: ①当0<x ≤3 500时,y =0. ②当3 500<x ≤5 000时,y =(x -3 500)·3%=0.03x -105.③当5 000<x <8 000时,y =45+(x -5 000)·10%=0.1x -455.综上可得y =⎩⎪⎨⎪⎧0,0<x ≤3 500,0.03x -105,3 500<x ≤5 000,0.1x -455,5 000<x <8 000.(2)因为需交税300元, 故有5 000<x <8 000,所以300=0.1x -455,所以x =7 550. 答:刘丽十二月份工资总额为7 550元.基础过关1.函数f (x )=2x +ln 1x -1的零点所在的大致区间是( )A.(1,2)B.(2,3)C.(3,4)D.(1,2)与(2,3)解析 易知f (x )在(1,+∞)上单调递减,f (2)=1>0,f (3)=23+ln 12=23-ln 2<0,所以f (x )在(2,3)内只有一个零点.答案 B2.实数a ,b ,c 是图象连续不断的函数y =f (x )定义域中的三个数,且满足a <b <c ,f (a )·f (b )<0,f (c )·f (b )<0,则函数y =f (x )在区间(a ,c )上的零点个数为( )A.2B.奇数C.偶数D.至少是2解析 由零点存在性定理,f (a )f (b )<0,f (c )f (b )<0,则y =f (x )在区间(a ,b )上至少有一个零点,在(b ,c )上至少有一个零点,而f (b )≠0,所以y =f (x )在区间(a ,c )上的零点个数为至少2个.选D. 答案 D3.已知函数f (x )=⎩⎪⎨⎪⎧e x+a ,x ≤0,2x -1,x >0(a ∈R ),若函数f (x )在R 上有两个零点,则a 的取值范围是( ) A.(-∞,-1)B.(-∞,0)C.(-1,0)D.[-1,0)解析 易知当x >0时,2x -1=0有一个根,所以需使函数y =e x+a (x ≤0)有一个零点,即方程e x +a =0(x ≤0)有一个根,即a =-e x .由x ≤0,得-e x∈[-1,0),故a ∈[-1,0). 答案 D4.用二分法求方程x 2=2的正实根的近似解(精确度0.001)时,如果选取初始区间是[1.4,1.5],则要达到精确度要求至少需要计算________次.解析 设至少需要计算n 次,则n 满足0.12n <0.001,即2n >100,由于27=128,故要达到精确度要求至少需要计算7次. 答案 75.方程|x 2-2x |=a 2+1(a >0)的解的个数是________.解析 在同一个坐标系中作出函数y =|x 2-2x |和y =a 2+1的图象,如图所示,易知a 2+1>1,由图知方程有2个解.答案 26.方程x 2-1x=0在(-∞,0)内是否存在实数解?并说明理由.解 不存在.理由如下:因为当x <0时,-1x >0,所以x 2-1x>0恒成立,故不存在x ∈(-∞,0),使x 2-1x=0.7.某地的出租车价格规定:起步价为a 元,可行3公里,3公里以上按每公里b 元计算,可再行7公里;超过10公里按每公里c 元计算(这里a ,b ,c 规定为正的常数,且c >b ),假设不考虑堵车和红绿灯等所引起的费用,也不考虑实际收取费用去掉不足一元的零头等实际情况,即每一次乘车的车费由行车里程唯一确定.(1)若取a =14,b =2.4,c =3.6,小明乘出租车从学校到家,共8公里,请问他应付出租车费多少元?(2)求车费y (元)与行车里程x (公里)之间的函数解析式y =f (x ).解 (1)由题意可知,起步价(3公里以内)是14元,则这8公里内的前3公里的收费是14元,超过3公里而10公里以内每公里按2.4元计价,则8-3=5(公里)的收费是5×2.4=12(元),总共收费14+12=26(元),故他应付出租车费26元.(2)3公里以内,即起步价是a 元,即0<x ≤3时,y =a (元);大于3公里而不超过10公里时,即3<x ≤10时,收费y =a +(x -3)b =bx +a -3b (元);大于10公里时,即x >10时,收费y =a +7×b +(x -10)c =cx +a +7b -10c (元).所以y =⎩⎪⎨⎪⎧a ,0<x ≤3,bx +a -3b ,3<x ≤10,cx +a +7b -10c ,x >10.能力提升8.已知函数f (x )的图象如图所示,则它的一个可能的解析式为( )A.y =2xB.y =4-4x +1C.y =log 3(x +1)D.y =3x解析 由于图象过点(1,2),可排除C ,D ;由图象与直线y =4无限接近,但到达不了,即y <4,而y =2x 可无限大,排除A ,选B.答案 B9.若函数f (x )是定义在R 上的偶函数,在区间(-∞,0]上是减函数,且一个零点是2,则使得f (x )<0的x 的取值范围是( ) A.(-∞,-2] B.(-∞,-2]∪(2,+∞) C.(2,+∞)D.(-2,2)解析 ∵函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数,∴函数f (x )在[0,+∞)上为增函数,且f (-2)=f (2)=0,作出函数f (x )的示意图,如图,则不等式f (x )<0的解为-2<x <2,故选D.答案 D10.已知函数f (x )=x 2+ax +a -1的两个零点一个大于2,一个小于2,则实数a 的取值范围是________.解析 ∵f (x )的两个零点一个大于2,一个小于2, ∴f (2)<0,∴22+2a +a -1<0,解得a <-1. 答案 (-∞,-1)11.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为________m.解析 设内接矩形另一边长为y ,则由相似三角形性质可得x 40=40-y40,解得y =40-x ,所以面积S =x (40-x )=-x 2+40x =-(x -20)2+400(0<x <40),当x =20时,S max =400. 答案 2012.某租赁公司拥有汽车100辆,当每辆车的月租金为3 000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需要维护费150元,未租出的车辆每月需要维护费50元.(1)当每辆车的月租金定为3 600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少? 解 (1)租金增加了600元,所以未租出的车有12辆,一共租出了88辆.(2)设每辆车的月租金为x 元(x ≥3 000),租赁公司的月收益为y 元,则y =x ⎝ ⎛⎭⎪⎫100-x -3 00050-x -3 00050×50-⎝⎛⎭⎪⎫100-x -3 00050×150=-x 250+162x -21 000=-150(x -4 050)2+307 050.当x =4 050时,y max =307 050.所以每辆车的月租金定为4 050元时,租赁公司的月收益最大,为307 050元.13.(选做题)设a ∈R ,试讨论关于x 的方程lg(x -1)+lg(3-x )=lg(a -x )的实根的个数.解 原方程等价于⎩⎪⎨⎪⎧x -1>0,3-x >0,a -x >0,(x -1)(3-x )=a -x ,⇒⎩⎪⎨⎪⎧x -1>0,3-x >0,(x -1)(3-x )=a -x ,整理得-x 2+5x -3=a (1<x <3).在同一平面直角坐标系中分别作出函数y =a , 及y =-x 2+5x -3,x ∈(1,3)的图象,如图所示.(1)当a >134或a ≤1时,两个函数的图象无交点,故原方程无实数根;(2)当a =134或1<a ≤3时,两个函数的图象有一个交点,故原方程有一个实数根;(3)当3<a <134时,两个函数的图象有两个交点,故原方程有两个实数根.章末检测(三)(时间:120分钟满分:150分)一、选择题(本大题共12个小题,每小题5分,共60分)1.已知下列四个函数图象,其中能用“二分法”求出函数零点的是( )解析由二分法的定义可知选A.答案 A2.已知函数f(x)在区间[a,b]上单调,且f(a)·f(b)<0,则函数f(x)的图象与x轴在区间[a,b]内( )A.至多有一个交点B.必有唯一个交点C.至少有一个交点D.没有交点解析∵f(a)·f(b)<0,∴f(a)与f(b)异号,即:f(a)>0,f(b)<0或者f(a)<0,f(b)>0,显然,在[a,b]内,必有一点c,使得f(c)=0.又f(x)在区间[a,b]上单调,所以,这样的点只有一个,故选B.答案 B3.若方程f(x)-2=0在(-∞,0)内有解,则y=f(x)的图象是( )解析A:与直线y=2的交点是(0,2),不符合题意,故不正确;B:与直线y=2无交点,不符合题意,故不正确;C:与直线y=2只在区间(0,+∞)上有交点,不符合题意,故不正确;D :与直线y =2在(-∞,0)上有交点,故正确.故选D. 答案 D4.甲、乙两人在一次赛跑中,从同一地点出发,路程s 与时间t 的函数关系如图所示,则下列说法正确的是( )A.甲比乙先出发B.乙比甲跑的路程多C.甲、乙两人的速度相同D.甲比乙先到达终点解析 由题图可知,甲到达终点用时短,故选D. 答案 D5.据统计某地区1月、2月、3月的用工人数分别为0.2万,0.4万和0.76万,则该地区这三个月的用工人数y 万人关于月数x 的函数关系近似的是( ) A.y =0.2x B.y =110(x 2+2x )C.y =2x10D.y =0.2+log 16x解析 当x =1时,否定B ;当x =2时,否定D ;当x =3时,否定A ,故选C. 答案 C6.若函数f (x )=log 3x +x -3的一个零点附近的函数值用二分法逐次计算的参考数据如下:那么方程x -3+3A.2.1 B.2.2 C.2.3D.2.4解析 由参考数据可知f (2.25)·f (2.312 5)<0,且|2.312 5-2.25|=0.062 5<0.1,所以当精确度为0.1时,可以将2.3作为函数f (x )=log 3x +x -3零点的近似值,也即方程x -3+log 3x =0的根的近似值. 答案 C7.函数f (x )=(x -1)ln (-x )x -3的零点个数为( )C.3D.4解析 ∵函数f (x )=(x -1)ln (-x )x -3的零点个数,即为f (x )=0的根的个数,∴f (x )=(x -1)ln (-x )x -3=0,即(x -1)ln(-x )=0,∴x -1=0或ln(-x )=0,∴x =1或x =-1.∵⎩⎪⎨⎪⎧-x >0,x -3≠0,解得x <0,∴函数f (x )的定义域为{x |x <0},∴x =-1,即方程f (x )=0只有一个根,∴函数f (x )=(x -1)ln (-x )x -3的零点个数为1.故选A.答案 A8.函数f (x )=3x+12x -2的零点所在的一个区间是( )A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)解析 由已知可知,函数f (x )=3x+12x -2单调递增且连续,∵f (-2)=-269<0,f (-1)=-136<0,f (0)=-1<0,f (1)=32>0,∴f (0)·f (1)<0,由函数零点存在性定理可知,函数f (x )=3x +12x -2的一个零点所在的区间是(0,1),故选C.答案 C9.已知0<a <1,则方程a |x |=|log a x |的实根个数为( ) A.2 B.3C.4D.与a 的值有关解析 设y 1=a |x |,y 2=|log a x |,分别作出它们的图象如图所示.由图可知,有两个交点,故方程a |x |=|log a x |有两个根.故选A.答案 A10.某商店计划投入资金20万元经销甲或乙两种商品,已知经销甲商品与乙商品所获得的利润分别为P (万元)和Q (万元),且它们与投入资金x (万元)的关系是:P =x 4,Q =a2x(a >0);若不管资金如何投放,经销这两种商品或其中的一种商品所获得的纯利润总不少于5万元,则a 的最小值应为( )C.± 5D.- 5解析 设投放x (0≤x ≤20)万元经销甲商品,则投放(20-x )万元经销乙商品,总利润y =P +Q =x 4+a 2·20-x ,令y ≥5,则x 4+a2·20-x ≥5,∴a 20-x ≥10-x 2,即a ≥1220-x 对0≤x ≤20恒成立,而f (x )=1220-x 的最大值为5,且x =20时,a 20-x ≥10-x2也成立,∴a min = 5.答案 A11.已知函数f (x )=|lg x |-⎝ ⎛⎭⎪⎫12x有两个零点x 1,x 2,则有( ) A.x 1x 2<0 B.x 1x 2=1 C.x 1x 2>1D.0<x 1x 2<1解析 f (x )=|lg x |-⎝ ⎛⎭⎪⎫12x有两个零点x 1,x 2,即y =|lg x |与y =2-x有两个交点,由题意x >0,分别画y =2-x 和y =|lg x |的图象,发现在(0,1)和(1,+∞)上分别有一个交点,不妨设x 1∈(0,1),x 2∈(1,+∞),那么在(0,1)上有2-x 1=-lg x 1,即-2-x 1=lg x 1.①在(1,+∞)上有2-x 2=lg x 2.②①②相加有2-x 2-2-x 1=lg x 1x 2,∵x 2>x 1,∴2-x 2<2-x 1, 即2-x 2-2-x 1<0,∴lg x 1x 2<0, ∴0<x 1x 2<1,故选D. 答案 D12.某学校制定奖励条例,对在教育教学中取得优异成绩的教职工实行奖励,其中有一个奖励项目是针对学生高考成绩的高低对任课教师进行奖励的.奖励公式为f (n )=k (n )(n -10),n >10(其中n 是任课教师所在班级学生参加高考该任课教师所任学科的平均成绩与该科省平均分之差,f (n )的单位为元),而k (n )=⎩⎪⎨⎪⎧0,n ≤10,100,10<n ≤15,200,15<n ≤20,300,20<n ≤25,400,n >25.现有甲、乙两位数学任课教师,甲所教的学生高考数学平均分超出省平均分18分,而乙所教的学生高考数学平均分超出省平均分21分.则乙所得奖励比甲所得奖励多( )A.600元B.900元C.1 600元D.1 700元解析∵k(18)=200(元),∴f(18)=200×(18-10)=1 600(元).又∵k(21)=300(元),∴f(21)=300×(21-10)=3 300(元),∴f(21)-f(18)=3 300-1 600=1 700(元).故选D.答案 D二、填空题(本大题共4个小题,每小题5分,共20分)13.如果函数f(x)=x2+mx+m+3的一个零点为0,则另一个零点是________.解析函数f(x)=x2+mx+m+3的一个零点为0,则f(0)=0,∴m+3=0,∴m=-3,则f(x)=x2-3x,于是另一个零点是3.答案 314.若方程|x2-4x|-a=0有四个不相等的实根,则实数a的取值范围是________.解析由|x2-4x|-a=0得a=|x2-4x|,作出函数y=|x2-4x|的图象,则由图象可知,要使方程|x2-4x|-a=0有四个不相等的实根,则0<a<4,故答案为(0,4).答案(0,4)15.将进货单价为8元的商品按10元一个销售,每天可卖出100个.若每个涨价1元,则日销售量减少10个.为获得最大利润,则此商品销售价应定为每个________元.解析设每个涨价x元,则实际销售价为(10+x)元,销售的个数为100-10x.则利润为y =(10+x)(100-10x)-8(100-10x)=-10(x-4)2+360(0≤x<10,x∈N).因此,当x=4,即售价定为每个14元时,利润最大.答案1416.给出下列四个命题:①函数y=f(x),x∈R的图象与直线x=a可能有两个不同的交点;②函数y=log2x2与函数y=2log2x是相等函数;③对于指数函数y=2x与幂函数y=x2,总存在x0,当x>x0时,有2x>x2成立;④对于函数y=f(x),x∈[a,b],若有f(a)·f(b)<0,则f(x)在(a,b)内有零点.其中正确的序号是________.解析 对于①,函数表示每个输入值对应唯一输出值的一种对应关系,根据定义进行判定即可判断①错;对于②,函数y =log 2x 2与函数y =2log 2x 的定义域不相同,故不是相等函数,故②错;对于③,当x 0取大于等于4的值都可使当x >x 0时,有2x >x 2成立,故③正确;对于④,函数y =f (x )的图象在区间[a ,b ]上不连续时,既使有f (a )·f (b )<0,f (x )在(a ,b )内也不一定有零点.故④错. 答案 ③三、解答题(本大题共6个小题,共70分)17.(10分)判断下列函数是否存在零点,如果存在,请求出. (1)f (x )=-8x 2+7x +1; (2)f (x )=x 2+x +2; (3)f (x )=x 3+1.解 (1)因为f (x )=-8x 2+7x +1=-(8x +1)(x -1), 令f (x )=0,可解得x =-18,或x =1,所以函数f (x )的零点为-18和1.(2)因为f (x )=x 2+x +2,令x 2+x +2=0,Δ=12-4×1×2=-7<0,所以方程x 2+x +2=0无实数解.所以f (x )=x 2+x +2不存在零点. (3)因为f (x )=x 3+1=(x +1)(x 2-x +1), 令(x +1)(x 2-x +1)=0,解得x =-1. 所以函数f (x )的零点为-1.18.(12分)定义在R 上的偶函数y =f (x )在(-∞,0]上递增,函数f (x )的一个零点为-12,求满足f (log 14x )≥0的x 的取值集合.解 ∵-12是函数的一个零点,∴f ⎝ ⎛⎭⎪⎫-12=0.∵y =f (x )是偶函数且在(-∞,0]上递增,∴当log 14x ≤0,即x ≥1时,log 14x ≥-12,解得x ≤2,即1≤x ≤2.由对称性可知,当log14x >0,即0<x <1时,log 14x ≤12,解得12≤x <1.综上所述,x 的取值范围是⎣⎢⎡⎦⎥⎤12,2.19.(12分)已知函数f (x )=x -1+12x 2-2,试利用基本初等函数的图象,判断f (x )有几个零点,并利用零点存在性定理确定各零点所在的区间(各区间长度不超过1).解 令y 1=x -1,y 2=-12x 2+2,在同一直角坐标系中分别画出它们的图象(如图所示),其中抛物线的顶点坐标为(0,2),与x 轴的交点分别为(-2,0),(2,0),y 1与y 2的图象有3个交点,从而函数f (x )有3个零点.由f (x )的解析式知x ≠0,f (x )的图象在(-∞,0)和(0,+∞)上分别是连续不断的曲线,且f (-3)=136>0,f (-2)=-12<0,f ⎝ ⎛⎭⎪⎫12=18>0,f (1)=-12<0,f (2)=12>0,即f (-3)·f (-2)<0,f ⎝ ⎛⎭⎪⎫12·f (1)<0,f (1)·f (2)<0,∴3个零点分别在区间(-3,-2),⎝ ⎛⎭⎪⎫12,1,(1,2)内.20.(12分)燕子每年秋天都要从北方飞向南方过冬,研究燕子的科学家发现,两岁燕子的飞行速度可以表示为函数v =5log 2Q10,单位是m/s ,其中Q 表示燕子的耗氧量.(1)求燕子静止时的耗氧量是多少个单位;(2)当一只燕子的耗氧量是80个单位时,它的飞行速度是多少?解 (1)由题知,当燕子静止时,它的速度v =0,代入题给公式可得:0=5log 2Q10,解得Q=10,即燕子静止时的耗氧量是10个单位.(2)将耗氧量Q =80代入题给公式得:v =5log 28010=5log 28=15(m/s),即当一只燕子的耗氧量是80个单位时,它的飞行速度为15 m/s.21.(12分)如图,直角梯形OABC 位于直线x =t (t ≥0)右侧的图象的面积为f (t ).(1)试求函数f (t )的解析式; (2)画出函数y =f (t )的图象. 解 (1)当0≤t ≤2时,f (t )=S 梯形OABC -S △ODE =(3+5)×22-12t ·t =8-12t 2,当2<t ≤5时,f (t )=S 矩形DEBC =DE ·DC =2(5-t )=10-2t , 所以f (t )=⎩⎪⎨⎪⎧8-12t 2,0≤t ≤2,10-2t ,2<t ≤5.(2)函数f (t )的图象如图所示.22.(12分)某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出厂单价就降低0.02元,根据市场调查,销售商一次订购量不会超过600件. (1)设一次订购x 件,服装的实际出厂单价为p 元,写出函数p =f (x )的表达式; (2)当销售商一次订购多少件服装时,该厂获得的利润最大?其最大利润是多少? 解 (1)当0<x ≤100时,p =60; 当100<x ≤600时,p =60-(x -100)×0.02=62-0.02x .∴p =⎩⎪⎨⎪⎧60, 0<x ≤100,62-0.02x , 100<x ≤600.(2)设利润为y 元,则当0<x ≤100时,y =60x -40x =20x ; 当100<x ≤600时,y =(62-0.02x )x -40x =22x -0.02x 2.∴y =⎩⎪⎨⎪⎧20x , 0<x ≤100,22x -0.02x 2, 100<x ≤600. 当0<x ≤100时,y =20x 是单调增函数,当x =100时,y 最大,此时y =20×100=2 000;当100<x ≤600时,y =22x -0.02x 2=-0.02(x -550)2+6 050,∴当x =550时,y 最大,此时y =6 050. 显然6 050>2 000.∴当一次订购550件时,利润最大,最大利润为6 050元.模块检测(时间:120分钟 满分:150分)一、选择题(本大题共12个小题,每小题5分,共60分)1.已知全集U ={0,1,2,3,4},集合A ={1,2,3},B ={2,4},则(∁U A )∪B 为( ) A.{1,2,4} B.{2,3,4} C.{0,2,4}D.{0,2,3,4}解析 ∵全集U ={0,1,2,3,4},集合A ={1,2,3},∴∁U A ={0,4},又B ={2,4},则(∁U A )∪B ={0,2,4}.故选C. 答案 C2.可作为函数y =f (x )的图象的是( )解析 由函数的定义可知:每当给出x 的一个值,则f (x )有唯一确定的实数值与之对应,只有D 符合.故正确答案为D. 答案 D3.同时满足以下三个条件的函数是( )①图象过点(0,1);②在区间(0,+∞)上单调递减;③是偶函数 A.f (x )=-(x +1)2+2B.f (x )=3|x |C.f (x )=⎝ ⎛⎭⎪⎫12|x |D.f (x )=x -2解析 A.若f (x )=-(x +1)2+2,则函数图象关于x =-1对称,不是偶函数,不满足条件③.B.若f (x )=3|x |,则f (x )在区间(0,+∞)上单调递增,不满足条件②.C.若f (x )=⎝ ⎛⎭⎪⎫12|x |,则三个条件都满足.D.若f (x )=x -2,则f (0)无意义,不满足条件①.故选C. 答案 C4.设f (x )=⎩⎪⎨⎪⎧2e x -1,x <2,log 3(2x-1),x ≥2,则f (f (2))等于( ) A.0 B.1 C.2D.3 解析 f (2)=log 3(22-1)=1,f (1)=2e1-1=2,即f (f (2))=2. 答案 C5.函数f (x )=2x -1+log 2x 的零点所在区间是( )A ⎝ ⎛⎭⎪⎫18,14 B.⎝ ⎛⎭⎪⎫14,12 C.⎝ ⎛⎭⎪⎫12,1 D.(1,2)解析 ∵函数f (x )=2x -1+log 2x ,∴f ⎝ ⎛⎭⎪⎫12=-1,f (1)=1,∴f ⎝ ⎛⎭⎪⎫12·f (1)<0,故连续函数f (x )的零点所在区间是⎝ ⎛⎭⎪⎫12,1,故选C.答案 C6.幂函数y =f (x )的图象经过点⎝ ⎛⎭⎪⎫-2,-18,则满足f (x )=27的x 的值是( ) A.13 B.-13C.3D.-3解析 设幂函数为y =x α,因为图象过点⎝ ⎛⎭⎪⎫-2,-18,所以有-18=(-2)α,解得:α=-3,所以幂函数解析式为y =x -3,由f (x )=27,得:x -3=27,所以x =13.答案 A7.函数f (x )=2-x +ln(3x +2)+12x-1的定义域为( ) A.⎝ ⎛⎭⎪⎫-23,0∪(0,2] B.⎝ ⎛⎦⎥⎤23,2 C.⎝ ⎛⎭⎪⎫-23,1∪(1,2] D.⎝ ⎛⎦⎥⎤-23,2 解析 由⎩⎪⎨⎪⎧2-x ≥0,3x +2>0,2x -1≠0,解得-23<x ≤2且x ≠0,故f (x )的定义域为⎝ ⎛⎭⎪⎫-23,0∪(0,2].答案 A8.设a =0.50.5,b =0.30.5,c =log 0.30.2,则a ,b ,c 的大小关系是( ) A.c <a <b B.b <a <c C.c <b <aD.a <b <c解析 因为y =x 0.5在(0,+∞)上是增函数,且0.5>0.3,所以0.50.5>0.30.5,即a >b ,c =log 0.30.2>log 0.30.3=1,而1=0.50>0.50.5,所以b <a <c .故选B.答案 B9.若函数f (x )=(k -1)a x-a -x(a >0,且a ≠1)在R 上既是奇函数,又是减函数,则g (x )=log a (x +k )的图象是( )解析 由f (x )=(k -1)a x-a -x(a >0,且a ≠1)在R 上既是奇函数,又是减函数,所以k =2,0<a <1,再由对数的图象可知A 正确. 答案 A10.定义在R 上的函数f (x )满足f (-x )=f (x ),f (x -2)=f (x +2)且x ∈(-1,0)时,f (x )=2x+15,则f (log 220)等于( )A.1B.45C.-1D.-45解析 由f (x -2)=f (x +2)⇒f (x )=f (x +4), 因为4<log 220<5,所以0<log 220-4<1,-1<4-log 220<0, 所以f (log 220)=f (log 220-4)=f (4-log 220) =f ⎝ ⎛⎭⎪⎫log 245=2log 245+15=1.故选A. 答案 A11.若f (x )是奇函数,且在(0,+∞)上是增函数,又f (-3)=0,则(x -1)f (x )<0的解集是( )A.(-3,0)∪(1,+∞)B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-3,0)∪(1,3)解析 ∵f (x )是R 上的奇函数,且在(0,+∞)内是增函数,∴在(-∞,0)内f (x )也是增函数,又∵f (-3)=0,∴f (3)=0,∴当x ∈(-∞,-3)∪(0,3)时,f (x )<0;当x ∈(-3,0)∪(3,+∞)时,f (x )>0;∵(x -1)·f (x )<0,∴⎩⎪⎨⎪⎧x -1<0,f (x )>0或⎩⎪⎨⎪⎧x -1>0,f (x )<0,可解得-3<x <0或1<x <3,∴不等式的解集是(-3,0)∪(1,3),故选D. 答案 D12.已知当x ∈[0,1]时,函数y =(mx -1)2的图象与y =x +m 的图象有且只有一个交点,则正实数m 的取值范围是( ) A.(0,1]∪[23,+∞) B.(0,1]∪[3,+∞) C.(0,2]∪[23,+∞)D.(0,2]∪[3,+∞)解析 y =(mx -1)2=m 2⎝ ⎛⎭⎪⎫x -1m 2,相当于y =x 2向右平移1m 个单位,再将函数值放大m 2倍得到的;y =x +m 相当于y =x 向上平移m 个单位.①若0<m ≤1,两函数的图象如图1所示,可知两函数图象在x ∈[0,1]上有且只有1个交点,恒成立;②若m >1,两函数的大致图象如图2所示,为使两函数在x ∈[0,1]上有且只有1个交点,需要(m -1)2≥1+m ,得m ≥3.综上,m ∈(0,1]∪[3,+∞). 答案 B二、填空题(本大题共4个小题,每小题5分,共20分) 13.当a >0且a ≠1时,函数f (x )=ax -2-3必过定点________.解析 因为a 0=1,故f (2)=a 0-3=-2,所以函数f (x )=a x -2-3必过定点(2,-2).答案 (2,-2)14.用二分法求函数y =f (x )在区间(2,4)上的近似解,验证f (2)f (4)<0,给定精确度ε=0.01,取区间(2,4)的中点x 1=2+42=3,计算得f (2)·f (x 1)<0,则此时零点x 0∈________(填区间).解析 ∵f (2)·f (4)<0,f (2)·f (3)<0, ∴f (3)·f (4)>0,故x 0∈(2,3). 答案 (2,3)15.设U ={1,2,3,4,5,6,7,8,9},(∁U A )∩B ={3,7},(∁U B )∩A ={2,8},(∁U A )∩(∁U B )={1,5,6},则集合A =________,B =________.解析 (∁U A )∩(∁U B )=∁U (A ∪B )={1,5,6}, 所以A ∪B ={2,3,4,7,8,9},又(∁U A )∩B ={3,7},(∁U B )∩A ={2,8},所以A ∩B ={4,9},所以A ={2,4,8,9},B ={3,4,7,9}.答案 {2,4,8,9} {3,4,7,9}16.已知函数f (x )=⎩⎪⎨⎪⎧1+4x ,(x ≥4),log 2x ,(0<x <4),若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是________.解析 关于x 的方程f (x )=k 有两个不同的实根,等价于函数f (x )与函数y =k 的图象有两个不同的交点,作出函数的图象如图.由图可知实数k 的取值范围是(1,2). 答案 (1,2)三、解答题(本大题共6个小题,共70分) 17.(10分)计算下列各式的值: (1)1.5-13×⎝ ⎛⎭⎪⎫-760+80.25×42-;(2)(log 3312)2+log 0.2514+9log 55-log 31.解 (1)原式=⎝ ⎛⎭⎪⎫2313×1+23×14×214-⎝ ⎛⎭⎪⎫2313=2.(2)原式=⎝ ⎛⎭⎪⎫122+1+9×12-0=14+1+92=234.18.(12分)已知函数f (x )是R 上的奇函数,当x ∈(0,+∞)时,f (x )=2x+x ,求f (x )的解析式.解 由题意,当x =0时,f (x )=0.∵x >0时,f (x )=2x+x ,∴当x <0时,-x >0,f (-x )=2-x-x ,又∵函数y =f (x )是定义在R 上的奇函数, ∴x <0时,f (x )=-f (-x )=-2-x+x , 综上所述,f (x )=⎩⎪⎨⎪⎧-2-x+x ,x <0,0,x =0,2x +x ,x >0.19.(12分)已知集合A ={x |3≤3x≤27},B ={x |log 2x >1}. (1)分别求A ∩B ,(∁R B )∪A ;(2)已知集合C ={x |1<x <a },若C ⊆A ,求实数a 的取值范围. 解 (1)A ={x |3≤3x≤27}={x |1≤x ≤3},B ={x |log 2x >1}={x |x >2}. A ∩B ={x |2<x ≤3},(∁R B )∪A ={x |x ≤2}∪{x |1≤x ≤3}={x |x ≤3}. (2)①当a ≤1时,C =∅,此时C ⊆A ; ②当a >1时,C ⊆A ,则1<a ≤3; 综合①②,可得a 的取值范围是(-∞,3].20.(12分)已知函数f (x )=log a (2x +1),g (x )=log a (1-2x )(a >0且a ≠1). (1)求函数F (x )=f (x )-g (x )的定义域;(2)判断F (x )=f (x )-g (x )的奇偶性,并说明理由; (3)确定x 为何值时,有f (x )-g (x )>0.解 (1)要使函数有意义,则有⎩⎪⎨⎪⎧2x +1>0,1-2x >0,∴-12<x <12.∴函数F (x )的定义域为⎩⎨⎧⎭⎬⎫x |-12<x <12.(2)由(1)知F (x )的定义域关于原点对称, 又F (-x )=f (-x )-g (-x )=log a (-2x +1)- log a (1+2x )=-F (x ), ∴F (x )为奇函数.(3)∵f (x )-g (x )>0,∴log a (2x +1)-log a (1-2x )>0, 即log a (2x +1)>log a (1-2x ).①当0<a <1时,0<2x +1<1-2x ,∴-12<x <0.②当a >1时,2x +1>1-2x >0,∴0<x <12.21.(12分)甲、乙两人连续6年对某县农村鳗鱼养殖业的规模(总产量)进行调查,提供了两个方面的信息,分别得到甲、乙两图:甲调查表明:每个鱼池平均产量直线上升,从第1年1万条鳗鱼上升到第6年2万条. 乙调查表明:全县鱼池总个数直线下降,由第1年30个减少到第6年10个. 请你根据提供的信息说明:(1)第2年全县鱼池的个数及全县出产的鳗鱼总数;(2)到第6年这个县的鳗鱼养殖业的规模比第1年扩大还是缩小了?说明理由; (3)哪一年的规模(即总产量)最大?说明理由.解 由题意可知,图甲图象经过(1,1)和(6,2)两点,从而求得其解析式为y甲=0.2x +0.8,图乙图象经过(1,30)和(6,10)两点.从而求得其解析式为y 乙=-4x +34.(1)当x =2时,y 甲=0.2×2+0.8=1.2,y 乙=-4×2+34=26,y 甲×y 乙=1.2×26=31.2. 所以第2年鱼池有26个,全县出产的鳗鱼总数为31.2万条.(2)第1年出产鳗鱼1×30=30(万条),第6年出产鳗鱼2×10=20(万条),可见第6年这个县的鳗鱼养殖业规模比第1年缩小了. (3)设当第m 年时的规模,即总出产量为n , 那么n =y 甲·y 乙=(0.2m +0.8)(-4m +34) =-0.8m 2+3.6m +27.2=-0.8(m 2-4.5m -34)=-0.8(m -2.25)2+31.25,因此,当m =2时,n 最大值为31.2, 即当第2年时,鳗鱼养殖业的规模最大,最大产量为31.2万条. 22.(12分)已知函数f (x )=a ·2x -2+a2x+1(a ∈R ).(1)试判断f (x )的单调性,并证明你的结论; (2)若f (x )为定义域上的奇函数, ①求函数f (x )的值域;②求满足f (ax )<f (2a -x 2)的x 的取值范围.解 (1)函数f (x )的定义域为(-∞,+∞),关于原点对称,且f (x )=a -22x +1.任取x 1,x 2∈(-∞,+∞),且x 1<x 2,则f (x 2)-f (x 1)=a -22x 2+1-a +22x 1+1=2(2x2-2x1)(2x 2+1)(2x1+1). ∵y =2x在R 上单调递增,且x 1<x 2, ∴0<2x1<2x2,2x2-2x1>0,2x1+1>0,2x2+1>0, ∴f (x 2)-f (x 1)>0,即f (x 2)>f (x 1), ∴f (x )是(-∞,+∞)上的单调增函数.(2)∵f (x )是定义域上的奇函数,∴f (-x )=-f (x ),即a -22-x +1+⎝ ⎛⎭⎪⎫a -22x +1=0对任意实数x 恒成立,化简得2a -⎝ ⎛⎭⎪⎫2·2x2x +1+22x +1=0,。
函数的零点与方程的根.ppt

例 6 ( 上 海 02 高 考 )、 已 知 函 数
f
(x)
ax
x2 x 1
a
1。
(1)求 f(x)单调区间。
(2)若 a=3,求证方程 f(x)=0 有且仅有一个正根。
解:(1)定义证明.(2)因在 (1,) 为增函数,
故在 (0,) 为增,又 f(0)= -1<0,f(1)=2.5,所 以在(0,1)有且只有一个正根.下用二分法 约为 0.28(列表,区间,中点,中点函数值)
求函数F( x) f ( x) g( x)的零点可转化为 求函数y f ( x)与y g( x)图像交点的横坐标
一、一元二次函数与一元二次方程 内容复习
知识归纳:1、一元二次函数、不等式、方程的关系
0
0
0
二次函数
y ax2 bx c
( a 0 )的 图象
一元二次方程
ax2 bx c 0
a 0的根
有两相异实根 有两相等实根
x1, x2 (x1 x2 )
x1
x2
b 2a
ax2 bx c 0
(a 0)的解集
x x x1或x x2
x
x
b 2a
无实根 R
ax2 bx c 0
例7 已知函数 f(x)=-x2+2ex+m
-1,g(x)=x+ex2(x>0). (1)若g(x)=m有零点,求m的取值范
围; (2)确定m的取值范围,使得g(x)-f(x)
=0有两个相异实根.
y f (x) 有零点(即横坐标)。
若函数f(x)的图像在x=x0处与x轴相切,则零点 x0为不变号零点若函数f(x)的图像在x=x0处与x 轴相交,则零点x0为变号零点
方程的根与函数的零点(精选7篇)

方程的根与函数的零点(精选7篇)方程的根与函数的零点篇1第一课时: 3.1.1教学要求:结合二次函数的图象,推断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系;把握零点存在的判定条件.教学重点:体会函数的零点与方程根之间的联系,把握零点存在的判定条件.教学难点:恰当的使用信息工具,探讨函数零点个数.教学过程:一、复习预备:思索:一元二次方程 +bx+c=o(a 0)的根与二次函数y=ax +bx+c的图象之间有什么关系?.二、讲授新课:1、探讨函数零点与方程的根的关系:① 探讨:方程x -2x-3=o 的根是什么?函数y= x -2x-3的图象与x轴的交点?方程x -2x+1=0的根是什么?函数y= x -2x+1的图象与x轴的交点?方程x -2x+3=0的根是什么?函数y= x -2x+3的图象与x轴有几个交点?② 依据以上探讨,让同学自己归纳并发觉得出结论:→推广到y=f(x)呢?一元二次方程 +bx+c=o(a 0)的根就是相应二次函数y=ax +bx+c的图象与x轴交点横坐标.③ 定义零点:对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.④ 争论:y=f(x)的零点、方程f(x)=0的实数根、函数y=f(x) 的图象与x 轴交点的横坐标的关系?结论:方程f(x)=0有实数根函数y=f(x) 的图象与x轴有交点函数y=f(x)有零点⑤ 练习:求下列函数的零点;→ 小结:二次函数零点状况2、教学零点存在性定理及应用:① 探究:作出的图象,让同学们求出f(2),f(1)和f(0)的值, 观看f(2)和f(0)的符号②观看下面函数的图象,在区间上______(有/无)零点; _____0(<或>). 在区间上______(有/无)零点; _____0(<或>). 在区间上______(有/无)零点; _____0(<或>).③定理:假如函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a).f(b)0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c (a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.④ 应用:求函数f(x)=lnx+2x-6的零点的个数. (试争论一些函数值→分别用代数法、几何法)⑤小结:函数零点的求法代数法:求方程的实数根;几何法:对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.⑥ 练习:求函数的零点所在区间.3、小结:零点概念;零点、与x轴交点、方程的根的关系;零点存在性定理三、巩固练习:1. p97, 1,题 2,题(老师计算机演示,同学回答)2. 求函数的零点所在区间,并画出它的大致图象.3. 求下列函数的零点:;;;.4.已知:(1)为何值时,函数的图象与轴有两个零点;(2)假如函数至少有一个零点在原点右侧,求的值.5. 作业:p102, 2题;p125 1题其次课时: 3.1.2用二分法求方程的近似解教学要求:依据详细函数图象,能够借助计算器用二分法求相应方程的近似解. 通过用二分法求方程的近似解,使同学体会函数零点与方程根之间的联系,初步形成用函数观点处理问题的意识.教学重点:用二分法求方程的近似解.教学重点:恰当的使用信息工具.教学过程:一、复习预备:1. 提问:什么叫零点?零点的等价性?零点存在性定理?零点概念:对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.方程f(x)=0有实数根函数y=f(x) 的图象与x轴有交点函数y=f(x)有零点假如函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a).f(b)0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c (a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.2. 探究:一元二次方程求根公式?三次方程?四次方程?材料:高次多项式方程公式解的探究史料:在十六世纪,已找到了三次和四次函数的求根公式,但对于高于4次的函数,类似的努力却始终没有胜利,到了十九世纪,依据阿贝尔(abel)和伽罗瓦(galois)的讨论,人们熟悉到高于4次的代数方程不存在求根公式,亦即,不存在用四则运算及根号表示的一般的公式解.同时,即使对于3次和4次的代数方程,其公式解的表示也相当简单,一般来讲并不相宜作详细计算.因此对于高次多项式函数及其它的一些函数,有必要寻求其零点的近似解的方法,这是一个在计算数学中非常重要的课题二、讲授新课:1. 教学二分法的思想及步骤:① 出示例:有12个小球,质量匀称,只有一个是比别的球重的,你用天平称几次可以找出这个球的,要求次数越少越好. (让同学们自由发言,找出最好的方法)解:第一次,两端各放六个球,低的那一端肯定有重球其次次,两端各放三个球,低的那一端肯定有重球第三次,两端各放一个球,假如平衡,剩下的就是重球,否则,低的就是重球.其实这就是一种二分法的思想,那什么叫二分法呢?② 探究:的零点所在区间?如何找出这个零点?→ 师生用二分法探究③ 定义二分法的概念:对于在区间[a,b]上连续不断且f(a).f(b)0的函数y=f(x),通过不断的把函数的零点所在的区间一分为二,使区间的两个端点逐步靠近零点,进而得到零点近似值的方法叫二分法(bisection)④ 探究:给定精度ε,用二分法求函数的零点近似值的步骤如下:a.确定区间,验证,给定精度ε;b. 求区间的中点;c. 计算:若,则就是函数的零点;若,则令(此时零点);若,则令(此时零点);d. 推断是否达到精度ε;即若,则得到零点零点值a(或b);否则重复步骤2~4.2. 教学例题:① 出示例:借助计算器或计算机用二分法求方程2 +3x=7的近似解. (师生共练)② 练习:求函数的一个正数零点(精确到)3. 小结:二分法的概念, 二分法的步骤;注意二分法思想三、巩固练习:1. p100, 1,题 2,题; 2. 求方程的解的个数及其大致所在区间.3. 用二分法求的近似值;4. 求方程的实数解个数:;5. 作业:p102 3,4题,阅读p105框图方程的根与函数的零点篇2一、教学内容解析本节课的主要内容有函数零点的的概念、函数零点存在性判定定理。
方程的根与函数的零点教案

方程的根和函数的零点(说课稿)、教材分析:函数是中学数学的核心概念,核心的原因之一就在于函数与其他知识具有广泛的联系性,而函数的零点就是其中一个链结点,它从不同的角度,将数与形,函数与方程有机的联系在一起。
本节课是在学生学习了基本初等函数及其相关性质,具备初步的数形结合的能力基础之上,得用函数图象和性质来判断方程的根的存在性及根的个数,从而掌握函数在某个区间上存在零点的判定方法,为下节“用二分法求方程的近似解”和后续学习奠定基础。
因此本节内容具有承前启后的作用,地位至关重要。
1. 知识与技能:理解方程的根和函数的零点的关系,函数零点的定义,学会判断零点存在的条件。
2. 过程与方法:通过学习,培养学生自主探究和独立思考的能力。
培养学生函数和方程结合思想的能力。
3. 思想方法:培养学生数形结合的意识与思想。
『重点。
难点。
关键点』:1. 重点:理解方程的根和函数零点之间的联系,判断函数零点的存在及其个数的方法。
2. 难点:理解探究发现函数零点的存在性。
理解函数的零点就是方程的根及利用函数的图像和性质判别零点的个数。
3. 关键点:帮助学生寻找方程和函数图象之间的联系。
『教学方法和手段』:教学方法:探究式教学(“启发—探究—讨论”的教学模式)教学手段:教学软件PPT 和几何画板辅助教学。
『教学进程构思及说明』:置前作业:1、求下列方程的根并画出对应的函数的图像。
2(1)230x x --= 2(2)210x x -+= 2(3)230x x -+=通过观察,你能得到上面三个一元二次方程的根与其相应的二次函数的图象有什么关系吗?(表格见资料)课前完成,观察上面三个一元二次方程的根与其相应的二次函数的图象有什么关系吗?激发学生探究问题的兴趣。
(反馈课前作业,抽学生回答。
)分析:1. 方程0322=--x x 的 根为3,121=-=x x ,函数322--=x x y 与x 轴的交点坐标为(-1,0),(3,0),观察猜想方程0322=--x x 的两实根对应与函数与x 轴的交点坐标的横坐标。
高中数学常见题型解法归纳 函数的零点个数问题的求解方法

高中数学常见题型解法归纳 函数的零点个数问题的求解方法【知识要点】一、方程的根与函数的零点(1)定义:对于函数()y f x =(x D ∈),把使f(x)=0成立的实数x 叫做函数()y f x =(x D ∈)的零点.函数的零点不是一个点的坐标,而是一个数,类似的有截距和极值点等.(2)函数零点的意义:函数()y f x =的零点就是方程f(x)=0的实数根,亦即函数()y f x =的图像与x 轴的交点的横坐标,即:方程f(x)=0有实数根⇔函数()y f x =的图像与x 轴有交点⇔函数()y f x =有零点.(3)零点存在性定理:如果函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(<⋅b f a f ,那么函数()y f x =在区间(,)a b 内至少有一个零点,即存在(,c a b ∈)使得()0f c =,这个c 也就是方程的根.函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(<⋅b f a f 是函数()y f x =在区间(,)a b 内至少有一个零点的一个充分不必要条件.零点存在性定理只能判断是否存在零点,但是零点的个数则不能通过零点存在性定理确定,一般通过数形结合解决. 二、二分法(1)二分法及步骤对于在区间[,]a b 上连续不断,且满足0)()(<⋅b f a f 的函数()y f x =,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到函数零点近似值的方法叫做二分法. (2)给定精确度ε,用二分法求函数的零点近似值的步骤如下: 第一步:确定区间[,]a b ,验证0)()(<⋅b f a f ,给定精确度ε. 第二步:求区间(,)a b 的中点1x .第三步:计算1()f x :①若1()f x =0,则1x 就是函数的零点;②若1()()0f a f x <,则令1b x = (此时零点01(,)x a x ∈)③若1()()0f x f b <,则令1a x =(此时零点01(,)x x b ∈)第四步:判断是否达到精确度ε即若a b ε-<,则得到零点值a 或b ,否则重复第二至第四步.三、一元二次方程2()0(0)f x ax bx c a =++=≠的根的分布讨论一元二次方程2()0(0)f x ax bx c a =++=≠的根的分布一般从以下个方面考虑列不等式组: (1)a 的符号; (2)对称轴2bx a=-的位置; (3)判别式的符号; (4)根分布的区间端点的函数值的符号.四、精确度为0.1指的是零点所在区间的长度小于0.1,其中的任意一个值都可以取;精确到0.1指的是零点保留小数点后一位数字,要看小数点后两位,四舍五入. 五、方法总结函数零点问题的处理常用的方法有:(1) 方程法;(2)图像法;(3)方程+图像法. 【方法点评】方法一 方程法使用情景 方程可以直接解出来. 解题步骤 先解方程,再求解.【例1 】已知函数2()32(1)(2)f x x a x a a 区间(1,1)-内有零点,求实数a 的取值范围.【点评】(1)本题如果用其它方法比较复杂,用这种方法就比较简洁.关键是能发现方程能直接解出来.(2)对于含有参数的函数要尝试因式分解,如果不好因式分解,再考虑其它方法.【反馈检测1】函数2()(1)cos f x x x =-在区间[0,4]上的零点个数是( ) A .4 B .5 C .6 D . 7方法二 图像法使用情景 一些简单的初等函数或单调性容易求出,比较容易画出函数的图像.解题步骤先求函数的单调性,再画图分析.【例2】(2017全国高考新课标I 理科数学)已知函数2()(2)xx f x ae a e x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.(2) ①若0,a ≤由(1)知()f x 至多有一个零点.②若0a >,由(1)知当ln x a =-时,()f x 取得最小值,1(ln )1ln f a a a-=-+. (i )当1a =时,(ln )f a -=0,故()f x 只有一个零点. (ii )当(1,)a ∈+∞时,由于11ln a a-+>0,即(ln )0f a ->,故()f x 没有零点. (iii )当0,1a ∈()时,11ln 0a a-+<,即(ln )0f a -<. 422(2)(2)2220,f ae a e e ----=+-+>-+>故()f x 在(,ln )a -∞-只有一个零点.00000000003ln(1),()(2)203ln(1)ln ,()n n n n n n f n e ae a n e n n aa f x a>-=+-->->->->-∞设正整数满足则由于因此在(-lna,+)有一个零点.综上所述,a 的取值范围为(0,1).【点评】(1)本题第2问根据函数的零点个数求参数的范围,用的就是图像法. 由于第1问已经求出了函数的单调性,所以第2问可以直接利用第1问的单调性作图分析. (2) 当0,1a ∈()时,要先判断(,ln )a -∞的零点的个数,此时考查了函数的零点定理,(ln )0f a -<,还必须在该区间找一个函数值为正的值,它就是422(2)(2)2220,f aea e e ----=+-+>-+>要说明(2)0f ->,这里利用了放缩法,丢掉了42ae ae --+.(3) 当0,1a ∈()时,要判断(ln ,)a -+∞上的零点个数,也是在考查函数的零点定理,还要在该区间找一个函数值为正的值,它就是03ln(1)n a>-,再放缩证明0()f n >0. (4)由此题可以看出零点定理在高考中的重要性.【例3】已知3x =是函数()()2ln 110f x a x x x =++-的一个极值点. (Ⅰ)求a ;(Ⅱ)求函数()f x 的单调区间;(Ⅲ)若直线y b =与函数()y f x =的图象有3个交点,求b 的取值范围.(Ⅲ)由(Ⅱ)知,()f x 在()1,1-内单调增加,在()1,3内单调减少,在()3,+∞上单调增加,且当1x =或3x =时,()'0f x =所以()f x 的极大值为()116ln 29f =-,极小值为()332ln 221f =- 因此()()21616101616ln 291f f =-⨯>-=()()213211213f e f --<-+=-<所以在()f x 的三个单调区间()()()1,1,1,3,3,-+∞直线y b =有()y f x =的图象各有一个交点,当且仅当()()31f b f <<,因此,b 的取值范围为()32ln 221,16ln 29--【点评】本题第(3)问,由于函数()f x 中没有参数,所以可以直接画图数形结合分析解答.【反馈检测2】已知函数2()1x e f x ax=+,其中a 为实数,常数 2.718e =.(1) 若1 3x=是函数()f x的一个极值点,求a的值;(2) 当4a=-时,求函数()f x的单调区间;(3) 当a取正实数时,若存在实数m,使得关于x的方程()f x m=有三个实数根,求a的取值范围.方法三方程+图像法使用情景函数比较复杂,不容易求函数的单调性.解题步骤先令()0f x=,重新构造方程()()g x h x=,再画函数(),()y g x y h x==的图像分析解答.【例4】函数()lg cosf x x x=-的零点有()A.4 个 B.3 个 C.2个 D.1个【点评】调性不是很方便,所以先令()lg cos0f x x x=-=,可化为lg cosx x=,再在同一直角坐标系下画出lgy x=和cosy x=的图像分析解答.(2)方程+图像是零点问题中最难的一种,大家注意理解掌握和灵活应用.【反馈检测3】设函数()()()221ln,1,02f x x m xg x x m x m=-=-+>.(1)求函数()f x的单调区间;(2)当1m≥时,讨论函数()f x与()g x图象的交点个数.422510152025oy=cosxy=lgxyx参考答案【反馈检测1答案】C【反馈检测2答案】(1)95a =;(2)()f x 的单调增区间是51(1)2-,15(,12+; ()f x 的单调减区间是1(,)2-∞-,15(,12-,5(1)++∞;(3)a 的取值范围是(1,)+∞. 【反馈检测2详细解析】(1)222(21)()(1)xax ax e f x ax -+'=+ 因为13x =是函数()f x 的一个极值点,所以1()03f '=,即12910,935a a a -+==. 而当95a =时,229591521(2)()()59533ax ax x x x x -+=-+=--,可验证:13x =是函数()f x 的一个极值点.因此95a =.(2) 当4a =-时,222(481)()(14)xx x e f x x -++'=-令()0f x '=得24810x x -++=,解得51x =,而12x ≠±.所以当x 变化时,()f x '、()f x 的变化是x1(,)2-∞-15(,1)22-- 512-51(1,)22-15(,1)22+ 512+5(1,)2++∞ ()f x '--++-()f x极小值极大值因此()f x 的单调增区间是51(1,)22-,15(,1)22+;()f x 的单调减区间是1(,)2-∞-,15(,1)2--,5(1,)++∞; 【反馈检测3答案】(1)单调递增区间是),m +∞, 单调递减区间是(m ;(2)1.【反馈检测3详细解析】(1)函数()f x 的定义域为()()(0,,'x m x m f x x+∞=.当0x m <<()'0f x <,函数()f x 单调递减,当x m >时,()'0f x >函数()f x 单调递增,综上,函数()f x 的单调递增区间是),m +∞, 单调递减区间是(m .(2)令()()()()211ln ,02F x f x g x x m x m x x =-=-++->,问题等价于求函数()F x 的零点个数,()()()1'x x m F x x--=-,当1m =时,()'0F x ≤,函数()F x 为减函数,F x有唯一零点,即两函数图象总有一个交点.综上,函数()。
必修一高中数学人教版A版必修一第三单元3.1.1方程的根与函数的零点

课堂互动
课堂反馈
§3.1 函数与方程
3.1.1 方程的根与函数的零点
学习目标 1.理解函数零点的定义,会求某些函数的零点(重 点).2.掌握函数零点的判定方法(重、难点).3.了解函数的零点与 方程的根的联系(重点).
课前预习
课堂互动
课堂反馈
预习教材 P86-P88,完成下面问题: 知识点 1 函数的零点
课前预习
课堂互动
课堂反馈
课堂小结
1.在函数零点存在性定理中,要注意三点:(1)函数是连续 的;(2)定理不可逆;(3)至少存在一个零点.
2.方程f(x)=g(x)的根是函数f(x)与g(x)的图象交点的横坐标, 也是函数y=f(x)-g(x)的图象与x轴交点的横坐标.
3.函数与方程有着密切的联系,有些方程问题可以转化为函 数问题求解,同样,函数问题有时可以转化为方程问题, 这正是函数与方程思想的基础.
答案 C
课前预习
课堂互动
课堂反馈
题型三 判断函数零点所在的区间
【例3】 (1)二次函数f(x)=ax2+bx+c的部分对应值如下表:
x -3 -2 -1 0 1 2 3 4 y 6 m -4 -6 -6 -4 n 6
不求a,b,c的值,判断方程ax2+bx+c=0的两根所在区间
是( )
A.(-3,-1)和(2,4) B.(-3,-1)和(-1,1)
是 0,-12. 答案 0,-12
课前预习
课堂互动
课堂反馈
题型二 确定函数零点的个数
【例 2】 判断下列函数零点的个数. (1)f(x)=x2-34x+58; (2)f(x)=ln x+x2-3. 解 (1)由 f(x)=0,即 x2-34x+58=0,得 Δ=-342-4×58= -3116<0, 所以方程 x2-34x+58=0 没有实数根,即 f(x)零点的个数为 0.
方程的根与函数的零点

一、教材结构与内容简析 二、教学目标 三、教学重点、难点 四、教法分析 五、教学过程 六、教学反思
一、教材结构与内容简析
方程的根与函数的零点是全日制普通高中《数学》 (必修1)第一册(人民教育出版社),第三章第一 节第一课时的内容。
本节是在学习了前两章函数的性质的基础上,结合 函数的图象和性质来判断方程的根的存在性及根的个 数,从而了解函数的零点与方程的根的关系以及掌握 函数在某个区间上存在零点的判定方法;为下节“二 分法求方程的近似解”和后续学习的算法提供了基 础.
判别式△ = b2-4ac
△>0
方程ax2 +bx+c=0 两个不相等
(a≠0)的根
的实数根x1 、x2
y
函数y= ax2 +bx +c(a≠0)的图象
x1 0
x x2
△=0 有两个相等的 实数根x1 = x2
y
x 0 x1
△<0 没有实数根
y
0
x
函数的图象 与 x 轴的交点
(x1,0) , (x2,0)
(x1,0)
没有交点
结论 1.方程根的个数就是函数图象与x轴交点的个数.。
2.方程的实数根就是函数图象与x轴交点的横坐标。
(二)启发引导,形成概念
1.函数零点的概念:
对于函数 y f (x),(xD,) 把使 f (x) 0 成立的实数 x 叫做函
数 的零点。
2.等价关系:方程 有实数根 交点 函数 有零点. 注:零点不是点。
函数 的图象与 轴有
故求一个函数的零点的方法有两种: 1.求与之对应的的方程的实根; 2.作函数图像,看函数与x轴的交点。
(三)初步运用,示例练习
《方程的根与函数的零点》 说课稿

《方程的根与函数的零点》说课稿尊敬的各位评委老师:大家好!今天我说课的题目是《方程的根与函数的零点》。
接下来,我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计这几个方面来展开我的说课。
一、教材分析1、教材的地位和作用“方程的根与函数的零点”是高中数学必修 1 第三章“函数的应用”第一节的内容。
在此之前,学生已经学习了函数的概念、性质以及基本初等函数,这为过渡到本节内容的学习起到了铺垫的作用。
同时,本节内容又是函数与方程思想的重要体现,为后续学习二分法求方程的近似解以及导数在研究函数中的应用奠定了基础。
2、教材内容本节课主要包括函数零点的概念、函数零点与方程根的关系、零点存在性定理这三个部分。
通过对具体函数图象的观察和分析,引导学生发现函数零点与方程根之间的联系,进而理解零点存在性定理,并能运用定理解决相关问题。
二、学情分析1、知识基础学生已经掌握了函数的基本概念和性质,能够熟练画出一些常见函数的图象,具备了一定的数形结合思想和逻辑推理能力。
2、学习能力高中生的思维较为活跃,具有较强的好奇心和求知欲,但在抽象思维和逻辑推理方面还需要进一步的培养和提高。
3、学习困难函数零点的概念较为抽象,学生在理解上可能会存在一定的困难;零点存在性定理的条件较为严格,学生在运用定理时容易忽略条件而导致错误。
三、教学目标1、知识与技能目标(1)理解函数零点的概念,掌握函数零点与方程根的关系。
(2)理解零点存在性定理,并能运用定理判断函数零点的存在性。
(3)能够结合函数图象,利用零点存在性定理确定函数零点所在的区间。
2、过程与方法目标(1)通过对具体函数图象的观察、分析和归纳,培养学生的观察能力、抽象概括能力和逻辑推理能力。
(2)通过运用零点存在性定理解决问题,提高学生的数学应用意识和解题能力。
3、情感态度与价值观目标(1)让学生在探究函数零点的过程中,体验数学的严谨性和科学性,感受数学的魅力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)f(x)在 (a,b)内有零点 f(a, )f(b必 )0有
y
Oa
bx
零点存在性定理的条件 是充分条件,但不必要
((45 ))若 f(a )f(b )0 ,则在 (a ,b )内 区f函 间 (x)有 数 零点
二、回归课本 感受经典
请同学们在练习本上写出解题步骤。完成后代表展示。
1、直接求函数的零点
x2-Δ2x=+01=0
方程方ax程2 +的bx+根c=0 两x个1=不-1相,等x2=的3 有两x个1=相x2等=1的
(a>0函)的根 数
实数y=根x2yx-21 x、-3x2
实数y=根x2x-12=x+x12 y
x2-Δ2x<+03=0 无实数根 没有实数根 y=x2-2x+3
y
函数y=ax2等+bx价+c关系:2 方程f(x)=0有4 实数根 4
我 左 边 的 女 朋友 | 你 是我 右边的 男朋友 我爱你 你爱我 | 就是
数
零点
存在性
根
个数
两种思想:函数方程思想;数形结合思想.
三种题型:求函数零点、确定零点个数、 求零点所在区间.
作业:
1.若二次函数f(x)=ax2+x+3有唯一零点,求a 的值。
2、函数 fxexx2的零点所在的一个区间是( )
2 (2010·福建)函数 f(x)=x-2+2+2xln-x3,,xx>≤0 0,
的零点个数为
( B)
A.3
B.2
C.1
D.0
解析 当 x≤0 时,由 f(x)=x2+2x-3=0,得 x1=1(舍去), x2=-3;当 x>0 时,由 f(x)=-2+ln x=0, 得 x=e2,所以函数 f(x)的零点个数为 2.
是( B )
A(1,2) B(2,3) C (3,4) D (4,5)
解法2:
y
将函数f(x)= lnx+2x-6的零点所在
6
的区间转化为函数 y= lnx与y=-2x +6的
图象交点的所在的区间.
y= lnx
O 1234
x
y= - 2x +6
三、迁移应用 巩固提升
1、函数y=2x-4的图象与x轴的交点坐标及其零点分别
(a>0)的图象x1 , x2
函函x1数-数-O42 yy==ff((xxx2))x的有图零象O点2 与x1 x轴x有交点-O12
123 x
函数的图象与x轴 两个交点
的交点
(x1,0), (x2,0)
一个交点 (x1,0)
没有交点
函数的零点
x1 ,x2
x1
无
(三)函数零点的判定(零点存在性定理)填空,口答
1, - 5
(代数法)求函数零点的步骤:
(1)令f(x)=0; (2)解方程f(x)=0 ; (3)写出零点.
二、确定零点的所在区间
异号定零位
例2、(1)已知函数f(x)的图象是连续不断的,且 有如下对应值表:
x
1
2
3
4
5
f(x) 136.34 15.4 -3.92 10.8 -42.4
函数在哪几个区间有零点?为什么? f(2)f(3)0
x
-1 0
1
2
3
ex 0.37 1 2.72 7.39 20.09
x+2 1 2 3
4
5
课堂小结
一个关系:函数零点与方程根的关系:
函数
方程
_只 出 售 浪 漫 。 | _不 预约 爱情。 _游不出 回忆。 | _学不 会放手 。_初 恋难忘 。 | _初 次 心 痛 。 一 句坚定 的誓言 。 | 一 句完美 的谎言 。多谢 失恋。 | 他不适合你。等待你 转 身 。 | 等 待 你出 现。______゛ 是 莪不 够好 | ______゛ 是 你不 够好**你 生活 在花花 世 界 / | **我 生 活 在 痴心季 节/侑硪 疼惜你 | 侑你 疼惜硪 主动久 了我会 累* | 吃 醋久了 会 反 胃 *男 子 专属疼 你 | 女 子专属 爱你壹 辈子不 放手 | 壹 辈子 不分手 男ren。你会带 走 谁 | 女 ren。 你 会 跟谁走 婷止叻 ⑩间. | 易 ?の 嗳.我满 面泪痕 的在风 雨中 | 你 满面 微 笑 在 晴 空 下疼该 疼的人 | 爱该 爱的人 体贴范 er°无 与伦比 | 温柔范 er°无 可取代 给 你 的 宠 爱 有增无 减 | 给 你的柔 情只多 不少似 有似无 旳温柔 ,俄保留 | 若隐 若现旳 温 存 ,俄 感 受 丶此男 子爱惜 你 | 此 女子爱 惜你不 二心° 先森﹌ | 不二 情°小 姐﹌花 儿 为 什 么 这 样红▼ | 草儿 为什么 这么绿 ▼妞、 哥愿意 保护你 | 哥、我 愿意你 保护| ▍再 多 的 情 话 只是 瞬间 | | ▍再 美的 誓言只 是敷衍 女人° 我爱你 | 男人 °我爱 你你是
如果函数y=f(x)在区间[a,b]上的图象是连续不断的
一条曲线,并且有_f_(a_)_·_f(_b_)_<_0_,那么函数y=f(x)在区
间_(_a_,__b_) ___内有零点,即存在c∈(a,b),使得
_f(_c_)=__0__,这个c__也就是f(x)=0的根. 思考:
1.在上面的条件下,(a,b)内的零点是否只有1个?
是 (2,0) 、2
。
2、二次函数f (x)= ax 2 +bx + c(a≠0),ac<0,则函数的零点有
( B )个
A. 1
B. 2
C. 0
D. 不确定
3、已知函数f (x)的图象是连续不断的,有如下对应值表:
x 1 23456 7 f(x) 23 9 –7 11 –5 –12 –26
那么函数在区间(1, 6)上的零点至少有( C )个
A.2,1 B. 1,0 C. 0,1 D. 1,2
(写出判断过程)
变式引申
×
1.若函数f(x)=x2+ax+b的零点是2和-4,求a,b的值.
2.若二次函数f(x)=x2+mx+3有唯一零点,则m的 值和零点分别是多少?
3.若函数y=ax2-x-1只有一个零点,求a的值。
6.若函数 f(x)=ax-x-a(a>0,且 a≠1)有两个零点, 则实数 a 的取值范围是___a_>_1___.
函数与方程
——方程的根与函数的零点
复习目标 1、掌握函数零点的概念,(1个概念)
2、结合二次函数图象,了解函数的零点与相 应方程根的关系,(1个关系)
3、掌握函数的存在性定理,能判断一个函数 零点所在区间, (1个定理)
4、会用图象的交点解决一个函数零点所在区 间及个数问题.(2种思想方法:数形结合、转化)
基础知识 自主学习
填写内容: 《导学教程》33页左边的第一、二两部分,
填写要求: 1、填写、理解并熟记, 2、先独立填写,看能回忆多少,如果有疑问, 可阅读必修一课本87-88页内容, 3、填完后同桌核对答案, 4、时间约5分钟。
要点解析
对于函数y=f(x),我们把使f(x)=0的实数x叫做函数
(2,3)、(3,4)、(4,5)
(2)函数 f(x)ln x2x6的零点所在的大致区间 是(B )
A(1,2) B(2,3) C(3,4) D(4,5)
二、确定零点的所在区间
异号定零位
(2)函数 f(x)ln x2x6的零点所在的大致区间
是( B )
A(1,2) B (2,3) C (3,4) D (4,5)
A. 5个
B. 4个
C. 3个
D. 2个
4.函数 f(x )lo 2x g 2x 1的零点必落在区间(c )
A. 1 , 1
8 4
B. 1 , 1 4 2
C. 1 ,1 2
D.(1,2)
5.根据下面表格中的数据,可以判定方程 ex-x-2=0
的一个根所在的区间为___(_1_,_2_)___.
解法1:估算f(x)在各整数处的取值的正负:
x 1 2 3 45 f(x)
f( 1 ) ln 1 2 6 0 2 6 0
f(2 ) ln 2 4 6 ln 2 2 0
f(3 ) ln 3 6 6 ln 3 0
f(2)f(3)0
三、确定零点的区间与个数
பைடு நூலகம்
画图定零数
[例2]函数 f(x)ln x2x6的零点的区间
求根定零点
例1( 1)、函数f (x)=x(x2-16)的零点为( D )
A. (0,0), (4,0)
B. 0, 4
C. (– 4 ,0), (0,0),(4,0) D. – 4 , 0, 4
(2)、求下列函数的零点:
(1)f(x)= - x2+3x (2)f(x)=lg(x2+4x-4)
0, 3
解析 设函数 y=ax(a>0,且 a≠1)和函数 y=x+a,则函数 f(x)=ax-x-a(a>0,且 a≠1)有两个零点,就是函数 y=ax(a>0, 且 a≠1)与函数 y=x+a 有两个交点,由 图象可知当 0<a<1 时两函数只有一个交点,不符合;如 图所示,当 a>1 时,因为函数 y=ax(a>1)的图象过点 (0,1),而直线 y=x+a 所过的点一定在点(0,1)的上方, 所以一定有两个交点,所以实数 a 的取值范围是 a>1.
(y=f一(x))的零函点数.的零点的定义什么?自由回答
注意: 1、零点指的是一个实数
零点是一个点吗?
2、求函数零点就是求方程 f (x) 的0实数根。