方程的根与函数的零点题型及解析

合集下载

《方程的根与函数的零点》知识点

《方程的根与函数的零点》知识点

方程的根与函数的零点学习目标:1.理解函数零点的定义,了解函数零点与方程根的等价关系,理解函数零点存在性定理,能够判断函数零点个数和所在区间;2.初步体会化归与转化、数形结合、函数与方程这三大数学思想在解决数学问题时的意义与价值.学习重点:方程的根与函数的零点的等价关系,函数零点存在性定理.学习难点:探究函数零点存在的条件.一、感知概念方程:2230x x --=;2210x x -+=2230x x -+=问题1:以上一元二次方程的根与相应的二次函数的图象之间有怎样的关系?问题2:你的结论对一般的一元二次方程20(0)ax bx c a ++=≠及相应的二次函数2(0)y ax bx c a =++≠是否也成立?结论:方程的根函数图象与x 轴交点二、深化概念.1.函数零点:对于函数y =f (x ),把使_______________________叫做函数y =f (x )的零点.注意:练习1:函数f (x )=x (x 2-16)的零点为()A .(0,0),(4,0)B .0,4C .(–4,0),(0,0),(4,0)D .–4,0,4练习2:求下列函数的零点:(1)223y x x =--;(2)221.y x x =-+问题3:函数的零点、方程的根、函数的图象与x 轴的交点有什么关系?三、定理探究小组活动:思考1:函数()223f x x x =--在区间21[,]-和24[,]内各有一个零点.则在这两个区间内,函数的图象有什么共同点?函数值的变化有什么共同点?思考2:若二次函数()2f x ax bx c =++有两个零点,其中一个在区间(,)m n 内,那么在区间(,)m n 内,它的函数值有什么变化规律?思考3:对于二次函数()2f x ax bx c =++,如果()()0f m f n ⋅<(m n <),则它在区间[,]m n 内一定有零点吗?思考4:一般地,如果函数()f x 在区间[],a b 上有()()0f a f b ⋅<,那么函数()f x 在区间(),a b 内一定存在零点吗?请举例说明.思考5:在(4)的条件下,再添加什么条件就可以保证函数()f x 区间(),a b 内一定存在零点?2.零点存在性定理:如果函数y =f (x )在区间[a ,b ]上的图象是_______________一条曲线,并且有_____________,那么,函数y =f (x )在区间(a ,b )内有零点.即存在c ∈(a ,b ),使得f (c )=0,这个c 也就是方程f (x )=0的根.小组讨论:已知函数f (x )的图象在区间[a ,b ]上是连续不断的一条曲线,试判断下列结论是否正确.(1)若f (a )·f (b )>0,则函数f (x )在区间(a ,b )内无有零点;()(2)函数f (x )在区间(a ,b )内有零点,必有f (a )·f (b )<0.()(3)若f (a )·f (b )<0,则函数f (x )在区间(a ,b )内有且仅有一个零点;()练习3函数()31f x x x =--的有零点的区间是()A .(-1,0)B .(0,1)C .(1,2)D .(2,3)例1判断方程2201430149990x x -+=有无实数解.四、定理应用.例2求函数()26ln f x x x =+-的零点的个数.五、课后反馈基础题:(1)课本第88页练习.(2)已知函数f (x )的图象是连续不断的,有如下的x ,f (x )对应值表:那么函数在区间[1,6]上的零点至少有()A .5个B .4个C .3个D .2个(3)方程–x 3–3x +5=0的零点所在的大致区间为()A .(–2,0)B .(0,1)C .(0,1)D .(1,2)思考题:函数()26ln f x x x =+-在区间(2,3)内有零点,你能想到办法求出这个零点吗?x 1234567f (x )239-711-5-12-26。

高考数学《函数零点的个数问题》知识讲解与例题讲解

高考数学《函数零点的个数问题》知识讲解与例题讲解

高考数学《函数零点的个数问题》知识讲解与例题讲解一、知识点讲解与分析:1、零点的定义:一般地,对于函数()()y f x x D =∈,我们把方程()0f x =的实数根x 称为函数()()y f x x D =∈的零点2、函数零点存在性定理:设函数()f x 在闭区间[],a b 上连续,且()()0f a f b <,那么在开区间(),a b 内至少有函数()f x 的一个零点,即至少有一点()0,x a b ∈,使得()00f x =。

(1)()f x 在[],a b 上连续是使用零点存在性定理判定零点的前提 (2)零点存在性定理中的几个“不一定”(假设()f x 连续) ① 若()()0f a f b <,则()f x 的零点不一定只有一个,可以有多个 ② 若()()0f a f b >,那么()f x 在[],a b 不一定有零点 ③ 若()f x 在[],a b 有零点,则()()f a f b 不一定必须异号3、若()f x 在[],a b 上是单调函数且连续,则()()()0f a f b f x <⇒在(),a b 的零点唯一4、函数的零点,方程的根,两图像交点之间的联系设函数为()y f x =,则()f x 的零点即为满足方程()0f x =的根,若()()()f x g x h x =−,则方程可转变为()()g x h x =,即方程的根在坐标系中为()(),g x h x 交点的横坐标,其范围和个数可从图像中得到。

由此看来,函数的零点,方程的根,两图像的交点这三者各有特点,且能相互转化,在解决有关根的问题以及已知根的个数求参数范围这些问题时要用到这三者的灵活转化。

(详见方法技巧) 二、方法与技巧:1、零点存在性定理的应用:若一个方程有解但无法直接求出时,可考虑将方程一边构造为一个函数,从而利用零点存在性定理将零点确定在一个较小的范围内。

例如:对于方程ln 0x x +=,无法直接求出根,构造函数()ln f x x x =+,由()110,02f f ⎛⎫>< ⎪⎝⎭即可判定其零点必在1,12⎛⎫⎪⎝⎭中 2、函数的零点,方程的根,两函数的交点在零点问题中的作用 (1)函数的零点: 工具:零点存在性定理作用:通过代入特殊值精确计算,将零点圈定在一个较小的范围内。

1.函数的零点与方程的根

1.函数的零点与方程的根
a>0 ∆ = 8a 2 + 24a + 4 > 0 1 −1 < − <1 2a f (1) ≥ 0 f ( −1) ≥ 0 a<0 ∆ = 8a 2 + 24a + 4 > 0 1 或 −1 < − <1 2a f (1) ≤ 0 f ( −1) ≤ 0
定义证明.(2)因在 为增函数, 解:(1)定义证明 因在 ( −1,+∞ ) 为增函数 定义证明 为增,又 故在 (0,+∞ ) 为增 又 f(0)= -1<0,f(1)=2.5,所 所 以在(0,1)有且只有一个正根 下用二分法 有且只有一个正根.下用二分法 以在 有且只有一个正根 列表,区间 中点,中点函数值 约为 0.28(列表 区间 中点 中点函数值 列表 区间,中点 中点函数值)
一、一元二次函数与一元二次方程 内容复习
知识归纳: 一元二次函数、不等式、 知识归纳:、一元二次函数、不等式、方程的关系 1、
∆ = 0
∆ = 0
∆ < 0
二次函数
y = ax
2
+ bx + c
( a > 0 )的 图象
一元二次方程 有两相异实根 有两相等实根
(a
ax
2
> 0) 的根
+ bx + c = 0

3.方程有一正根一负根 ⇔ ac < 0
如果两根都大于2乍办? 如果两根都大于 乍办? 乍办
2.方程有两个不相等的负实数根 ⇔
∆ = b − 4 ac > 0 b x1 + x 2 = − > 0 a c x1 x 2 = > 0 a

高中数学常见题型解法归纳 函数的零点个数问题的求解方法

高中数学常见题型解法归纳 函数的零点个数问题的求解方法

高中数学常见题型解法归纳 函数的零点个数问题的求解方法【知识要点】一、方程的根与函数的零点(1)定义:对于函数()y f x =(x D ∈),把使f(x)=0成立的实数x 叫做函数()y f x =(x D ∈)的零点.函数的零点不是一个点的坐标,而是一个数,类似的有截距和极值点等.(2)函数零点的意义:函数()y f x =的零点就是方程f(x)=0的实数根,亦即函数()y f x =的图像与x 轴的交点的横坐标,即:方程f(x)=0有实数根⇔函数()y f x =的图像与x 轴有交点⇔函数()y f x =有零点.(3)零点存在性定理:如果函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(<⋅b f a f ,那么函数()y f x =在区间(,)a b 内至少有一个零点,即存在(,c a b ∈)使得()0f c =,这个c 也就是方程的根.函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(<⋅b f a f 是函数()y f x =在区间(,)a b 内至少有一个零点的一个充分不必要条件.零点存在性定理只能判断是否存在零点,但是零点的个数则不能通过零点存在性定理确定,一般通过数形结合解决. 二、二分法(1)二分法及步骤对于在区间[,]a b 上连续不断,且满足0)()(<⋅b f a f 的函数()y f x =,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到函数零点近似值的方法叫做二分法. (2)给定精确度ε,用二分法求函数的零点近似值的步骤如下: 第一步:确定区间[,]a b ,验证0)()(<⋅b f a f ,给定精确度ε. 第二步:求区间(,)a b 的中点1x .第三步:计算1()f x :①若1()f x =0,则1x 就是函数的零点;②若1()()0f a f x <,则令1b x = (此时零点01(,)x a x ∈)③若1()()0f x f b <,则令1a x =(此时零点01(,)x x b ∈)第四步:判断是否达到精确度ε即若a b ε-<,则得到零点值a 或b ,否则重复第二至第四步.三、一元二次方程2()0(0)f x ax bx c a =++=≠的根的分布讨论一元二次方程2()0(0)f x ax bx c a =++=≠的根的分布一般从以下个方面考虑列不等式组: (1)a 的符号; (2)对称轴2bx a=-的位置; (3)判别式的符号; (4)根分布的区间端点的函数值的符号.四、精确度为0.1指的是零点所在区间的长度小于0.1,其中的任意一个值都可以取;精确到0.1指的是零点保留小数点后一位数字,要看小数点后两位,四舍五入. 五、方法总结函数零点问题的处理常用的方法有:(1) 方程法;(2)图像法;(3)方程+图像法. 【方法点评】方法一 方程法使用情景 方程可以直接解出来. 解题步骤 先解方程,再求解.【例1 】已知函数2()32(1)(2)f x x a x a a 区间(1,1)-内有零点,求实数a 的取值范围.【点评】(1)本题如果用其它方法比较复杂,用这种方法就比较简洁.关键是能发现方程能直接解出来.(2)对于含有参数的函数要尝试因式分解,如果不好因式分解,再考虑其它方法.【反馈检测1】函数2()(1)cos f x x x =-在区间[0,4]上的零点个数是( ) A .4 B .5 C .6 D . 7方法二 图像法使用情景 一些简单的初等函数或单调性容易求出,比较容易画出函数的图像.解题步骤先求函数的单调性,再画图分析.【例2】(2017全国高考新课标I 理科数学)已知函数2()(2)xx f x ae a e x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.(2) ①若0,a ≤由(1)知()f x 至多有一个零点.②若0a >,由(1)知当ln x a =-时,()f x 取得最小值,1(ln )1ln f a a a-=-+. (i )当1a =时,(ln )f a -=0,故()f x 只有一个零点. (ii )当(1,)a ∈+∞时,由于11ln a a-+>0,即(ln )0f a ->,故()f x 没有零点. (iii )当0,1a ∈()时,11ln 0a a-+<,即(ln )0f a -<. 422(2)(2)2220,f ae a e e ----=+-+>-+>故()f x 在(,ln )a -∞-只有一个零点.00000000003ln(1),()(2)203ln(1)ln ,()n n n n n n f n e ae a n e n n aa f x a>-=+-->->->->-∞设正整数满足则由于因此在(-lna,+)有一个零点.综上所述,a 的取值范围为(0,1).【点评】(1)本题第2问根据函数的零点个数求参数的范围,用的就是图像法. 由于第1问已经求出了函数的单调性,所以第2问可以直接利用第1问的单调性作图分析. (2) 当0,1a ∈()时,要先判断(,ln )a -∞的零点的个数,此时考查了函数的零点定理,(ln )0f a -<,还必须在该区间找一个函数值为正的值,它就是422(2)(2)2220,f aea e e ----=+-+>-+>要说明(2)0f ->,这里利用了放缩法,丢掉了42ae ae --+.(3) 当0,1a ∈()时,要判断(ln ,)a -+∞上的零点个数,也是在考查函数的零点定理,还要在该区间找一个函数值为正的值,它就是03ln(1)n a>-,再放缩证明0()f n >0. (4)由此题可以看出零点定理在高考中的重要性.【例3】已知3x =是函数()()2ln 110f x a x x x =++-的一个极值点. (Ⅰ)求a ;(Ⅱ)求函数()f x 的单调区间;(Ⅲ)若直线y b =与函数()y f x =的图象有3个交点,求b 的取值范围.(Ⅲ)由(Ⅱ)知,()f x 在()1,1-内单调增加,在()1,3内单调减少,在()3,+∞上单调增加,且当1x =或3x =时,()'0f x =所以()f x 的极大值为()116ln 29f =-,极小值为()332ln 221f =- 因此()()21616101616ln 291f f =-⨯>-=()()213211213f e f --<-+=-<所以在()f x 的三个单调区间()()()1,1,1,3,3,-+∞直线y b =有()y f x =的图象各有一个交点,当且仅当()()31f b f <<,因此,b 的取值范围为()32ln 221,16ln 29--【点评】本题第(3)问,由于函数()f x 中没有参数,所以可以直接画图数形结合分析解答.【反馈检测2】已知函数2()1x e f x ax=+,其中a 为实数,常数 2.718e =.(1) 若1 3x=是函数()f x的一个极值点,求a的值;(2) 当4a=-时,求函数()f x的单调区间;(3) 当a取正实数时,若存在实数m,使得关于x的方程()f x m=有三个实数根,求a的取值范围.方法三方程+图像法使用情景函数比较复杂,不容易求函数的单调性.解题步骤先令()0f x=,重新构造方程()()g x h x=,再画函数(),()y g x y h x==的图像分析解答.【例4】函数()lg cosf x x x=-的零点有()A.4 个 B.3 个 C.2个 D.1个【点评】调性不是很方便,所以先令()lg cos0f x x x=-=,可化为lg cosx x=,再在同一直角坐标系下画出lgy x=和cosy x=的图像分析解答.(2)方程+图像是零点问题中最难的一种,大家注意理解掌握和灵活应用.【反馈检测3】设函数()()()221ln,1,02f x x m xg x x m x m=-=-+>.(1)求函数()f x的单调区间;(2)当1m≥时,讨论函数()f x与()g x图象的交点个数.422510152025oy=cosxy=lgxyx参考答案【反馈检测1答案】C【反馈检测2答案】(1)95a =;(2)()f x 的单调增区间是51(1)2-,15(,12+; ()f x 的单调减区间是1(,)2-∞-,15(,12-,5(1)++∞;(3)a 的取值范围是(1,)+∞. 【反馈检测2详细解析】(1)222(21)()(1)xax ax e f x ax -+'=+ 因为13x =是函数()f x 的一个极值点,所以1()03f '=,即12910,935a a a -+==. 而当95a =时,229591521(2)()()59533ax ax x x x x -+=-+=--,可验证:13x =是函数()f x 的一个极值点.因此95a =.(2) 当4a =-时,222(481)()(14)xx x e f x x -++'=-令()0f x '=得24810x x -++=,解得51x =,而12x ≠±.所以当x 变化时,()f x '、()f x 的变化是x1(,)2-∞-15(,1)22-- 512-51(1,)22-15(,1)22+ 512+5(1,)2++∞ ()f x '--++-()f x极小值极大值因此()f x 的单调增区间是51(1,)22-,15(,1)22+;()f x 的单调减区间是1(,)2-∞-,15(,1)2--,5(1,)++∞; 【反馈检测3答案】(1)单调递增区间是),m +∞, 单调递减区间是(m ;(2)1.【反馈检测3详细解析】(1)函数()f x 的定义域为()()(0,,'x m x m f x x+∞=.当0x m <<()'0f x <,函数()f x 单调递减,当x m >时,()'0f x >函数()f x 单调递增,综上,函数()f x 的单调递增区间是),m +∞, 单调递减区间是(m .(2)令()()()()211ln ,02F x f x g x x m x m x x =-=-++->,问题等价于求函数()F x 的零点个数,()()()1'x x m F x x--=-,当1m =时,()'0F x ≤,函数()F x 为减函数,F x有唯一零点,即两函数图象总有一个交点.综上,函数()。

高中数学课时分层作业二十三方程的根与函数的零点含解析必修1

高中数学课时分层作业二十三方程的根与函数的零点含解析必修1

课时分层作业二十三方程的根与函数的零点(30分钟60分)一、选择题(每小题5分,共30分)1。

已知函数f(x)=若f(f(0))=4a,则实数a等于()A。

B. C.2D。

9【解析】选C。

由题知f(0)=2,f(2)=4+2a,由4+2a=4a,解得a=2。

2.设函数f(x)=,若f(m)=3,则实数m的值为()A。

—2 B。

8 C.1 D.2【解析】选D。

因为当0<x〈2时,log2x<1,所以由f(m)=3得m ≥2,所以m2-1=3,解得m=2。

3.函数y=f(x)在区间[1,4]上的图象是连续不断的曲线,且f(1)·f(4)〈0,则函数y=f(x)()A。

在(1, 4)内至少有一个零点B.在(1,4)内至多有一个零点C。

在(1,4)内有且只有一个零点D.在(1, 4)内不一定有零点【解析】选A。

由已知y=f(x)的图象在区间[1,4]上是连续不断的曲线,且f(1)·f(4)〈0,故在(1,4)内至少有一零点.4。

函数f(x)=—x3—3x+5的零点所在的大致区间是()A.(-2,0)B。

(0,1) C.(1,2)D。

(2,3)【解析】选C。

因为函数f(x)=—x3-3x+5是单调递减函数,又因为f(1)=—13—3×1+5=1>0,f(2)=—23-3×2+5=-9〈0,所以函数f(x)的零点必在区间(1,2)上,故必存在零点的区间是(1,2).5.已知x0是函数f(x)=2x+的一个零点.若x1∈(1,x0),x2∈(x0,+∞),则有()A.f(x1)〈0,f(x2)<0B.f(x1)〈0,f(x2)>0C.f(x1)〉0,f(x2)<0D.f(x1)>0,f(x2)〉0【解析】选B。

因为x〉1时,y=2x,y=都是增函数,所以f(x)=2x+在(1,+∞)上是增函数,所以有且只有一个零点x0,根据零点存在性定理及函数增减性知,f(x1)<0,f(x2)〉0。

2022版新高考数学总复习真题专题--函数的零点与方程的根(解析版)

2022版新高考数学总复习真题专题--函数的零点与方程的根(解析版)

2022版新高考数学总复习--§2.6 函数的零点与方程的根— 五年高考 —考点 函数的零点1.(2020天津,9,5分)已知函数f (x )={x 3,x ≥0,-x ,x <0.若函数g (x )=f (x )-|kx 2-2x |(k ∈R )恰有4个零点,则k 的取值范围是( )A.(-∞,-12)∪(2√2,+∞) B.(-∞,-12)∪(0,2√2) C.(-∞,0)∪(0,2√2) D.(-∞,0)∪(2√2,+∞) 答案 D2.(2019天津文,8,5分)已知函数f (x )={2√x ,0≤x ≤1,1x , x >1.若关于x 的方程f (x )=-14x +a (a ∈R )恰有两个互异的实数解,则a 的取值范围为 ( )A.[54,94] B.(54,94]C.(54,94]∪{1} D.[54,94]∪{1} 答案 D3.(2019浙江,9,4分)设a ,b ∈R ,函数f (x )={x , x <0,13x 3-12(a +1)x 2+ax , x ≥0.若函数y =f (x )-ax -b 恰有3个零点,则 ( )A.a <-1,b <0B.a <-1,b >0C.a >-1,b <0D.a >-1,b >0 答案 C4.(2017山东理,10,5分)已知当x ∈[0,1]时,函数y =(mx -1)2的图象与y =√x +m 的图象有且只有一个交点,则正实数m 的取值范围是 ( )A.(0,1]∪[2√3,+∞)B.(0,1]∪[3,+∞)C.(0,√2]∪[2√3,+∞)D.(0,√2]∪[3,+∞)答案B5.(2017课标Ⅲ,文12,理11,5分)已知函数f(x)=x2-2x+a(e x-1+e-x+1)有唯一零点,则a= ()A.-12B.13C.12D.1答案C6.(2021北京,15,5分)已知f(x)=|lg x|-kx-2,给出下列四个结论:①若k=0,则f(x)有两个零点;②∃k<0,使得f(x)有一个零点;③∃k<0,使得f(x)有三个零点;④∃k>0,使得f(x)有三个零点.以上正确结论的序号是.答案①②④7.(2019江苏,14,5分)设f(x),g(x)是定义在R上的两个周期函数,f(x)的周期为4,g(x)的周期为2,且f(x)是奇函数.当x∈(0,2]时,f(x)=√1-(x-1)2,g(x)={k(x+2),0<x≤1,-12,1<x≤2,其中k>0.若在区间(0,9]上,关于x的方程f(x)=g(x)有8个不同的实数根,则k的取值范围是.答案[13,√2 4)以下为教师用书专用(1—8)1.(2015天津文,8,5分)已知函数f(x)={2-|x|,x≤2,(x-2)2,x>2,函数g(x)=3-f(2-x),则函数y=f(x)-g(x)的零点个数为()A.2B.3C.4D.5答案 A 由已知条件可得g (x )=3-f (2-x )={|x -2|+1,x ≥0,3-x 2, x <0.函数y =f (x )-g (x )的零点个数即为函数y =f (x )与y =g (x )图象的交点个数,在平面直角坐标系内作出函数y =f (x )与y =g (x )的图象如图所示.由图可知函数y =f (x )与y =g (x )的图象有2个交点,所以函数y =f (x )-g (x )的零点个数为2,选A . 2.(2014北京文,6,5分)已知函数f (x )=6x -log 2x.在下列区间中,包含f (x )零点的区间是 ( ) A.(0,1) B.(1,2) C.(2,4) D.(4,+∞)答案 C ∵f (1)=6-log 21=6>0, f (2)=3-log 22=2>0,f (4)=64-log 24=32-2<0,∴包含f (x )零点的区间是(2,4),故选C . 3.(2011课标,10,5分)在下列区间中,函数f (x )=e x+4x -3的零点所在的区间为 ( )A.(-14,0)B.(0,14)C.(14,12)D.(12,34)答案 C 显然f (x )为定义域R 上的连续函数.如图作出y =e x与y =3-4x 的图象,由图象知函数f (x )=e x+4x -3的零点一定落在区间(0,34)内,又f (14)=√e 4-2<0, f (12)=√e -1>0.故选C .评析 本题考查函数零点的概念及求解方法,考查学生分析问题、解决问题的能力,属中等难度试题. 4.(2016山东文,15,5分)已知函数f (x )={|x |,x ≤m ,x 2-2mx +4m ,x >m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是 .答案 (3,+∞)解析 f (x )的图象如图所示,若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,只需4m -m 2<m ,解之得m >3或m <0,又m >0,所以m >3.方法总结 分段函数问题、函数零点个数问题或方程根的个数问题通常采用数形结合的思想方法来解决. 评析 本题考查基本初等函数及分段函数的图象,考查数形结合的思想方法,属于难题. 5.(2016天津文,14,5分)已知函数f (x )= {x 2+(4a -3)x +3a ,x <0,log a (x +1)+1, x ≥0(a >0,且a ≠1)在R 上单调递减,且关于x 的方程|f (x )|=2-x3恰有两个不相等的实数解,则a 的取值范围是 . 答案 [13,23)解析 ∵函数f (x )在R 上单调递减,∴{-4a -32≥0,0<a <1,3a ≥1,解得13≤a ≤34.在同一直角坐标系下作出函数y =|f (x )|与y =2-x3的图象,如图所示.方程|f (x )|=2-x3恰有两个不相等的实数解等价于y =|f (x )|的图象与y =2-x3的图象恰有两个交点,则需满足3a <2,得a <23,综上可知,13≤a <23.易错警示 (1)f (x )在R 上单调递减,需满足{-4a -32≥0,0<a <1,3a ≥1,缺少条件是失分的一个原因;(2)由方程解的个数求参数范围往往利用数形结合思想将问题转化为两个函数图象交点个数的问题是解决这类问题常用的方法.评析 本题主要考查分段函数的单调性及函数与方程,利用数形结合思想,将方程解的个数问题转化为两个函数图象交点个数的问题是求解这类问题的常用方法.6.(2015湖南理,15,5分)已知函数f (x )={x 3,x ≤a ,x 2,x >a .若存在实数b ,使函数g (x )=f (x )-b 有两个零点,则a 的取值范围是 . 答案 (-∞,0)∪(1,+∞)解析 当a <0时,若x ∈(a ,+∞),则f (x )=x 2,当b ∈(0,a 2)时,函数g (x )=f (x )-b 有两个零点,分别是x 1=-√b ,x 2=√b .当0≤a ≤1时,f (x )的图象如图所示,易知函数y =f (x )-b 最多有一个零点. 当a >1时, f (x )的图象如图所示,当b ∈(a 2,a 3]时,函数g (x )=f (x )-b 有两个零点,分别是x 1=√b 3,x 2=√b .综上,a ∈(-∞,0)∪(1,+∞).7.(2015北京理,14,5分)设函数f (x )={2x -a , x <1,4(x -a )(x -2a ), x ≥1.①若a =1,则f (x )的最小值为 ;②若f (x )恰有2个零点,则实数a 的取值范围是 .答案 ①-1 ②[12,1)∪[2,+∞)解析 ①当a =1时, f (x )={2x -1,x <1,4(x -1)(x -2),x ≥1,其大致图象如图所示:由图可知f (x )的最小值为-1. ②当a ≤0时,显然函数f (x )无零点;当0<a <1时,易知f (x )在(-∞,1)上有一个零点,要使f (x )恰有2个零点,则当x ≥1时, f (x )有且只有一个零点,结合图象可知,2a ≥1,即a ≥12,则12≤a <1;当a ≥1时,2a >1,由二次函数的性质可知,当x ≥1时, f (x )有2个零点, 则要使f (x )恰有2个零点,则需要f (x )在(-∞,1)上无零点,则2-a ≤0,即a ≥2. 综上可知,满足条件的a 的取值范围是[12,1)∪[2,+∞).8.(2015湖北文,13,5分)函数f (x )=2sin x sin (x +π2)-x 2的零点个数为 .答案 2解析 f (x )=2sin x cos x -x 2=sin 2x -x 2,函数f (x )的零点个数可转化为函数y 1=sin 2x 与y 2=x 2图象的交点个数,在同一坐标系中画出y 1=sin 2x 与y 2=x 2的图象如图所示:由图可知两函数图象有2个交点,则f (x )的零点个数为2.— 三年模拟 — A 组 考点基础题组考点 函数的零点1.(2019广东汕头达濠华侨中学,东厦中学第二次联考,12)设函数f (x )是定义在R 上周期为2的函数,且对任意的实数x ,恒有f (x )-f (-x )=0.当x ∈[-1,0]时, f (x )=x 2,若g (x )=f (x )-log a x 在x ∈(0,+∞)上有且仅有三个零点,则a的取值范围为 ( )A.[3,5]B.[4,6]C.(3,5)D.(4,6) 答案 C2.(2020湖南长沙明德中学3月月考,10)已知定义在R 上的函数f (x )满足f (2-x )=f (2+x ),当x ≤2时, f (x )=x e x,若关于x 的方程f (x )=k (x -2)+2有三个不相等的实数根,则实数k 的取值范围是 ( ) A.(-1,0)∪(0,1) B.(-1,0)∪(1,+∞) C.(-e ,0)∪(0,e ) D.(-e ,0)∪(e ,+∞) 答案 A3.(多选题)(2021辽宁沈阳市郊联体一模,12)已知函数f (x )={2x +2,-2≤x ≤1,lnx -1,1<x ≤e ,若关于x 的方程f (x )=m 恰有两个不同解x 1,x 2(x 1<x 2),则(x 2-x 1)f (x 2)的取值可能是 ( ) A.-3 B.-1 C.0 D.2 答案 BC4.(2021福建三明三模,15)函数f (x )=ln x +2x -6零点的一个近似值为 .(误差不超过0.25,自然对数的底数e ≈2.72)答案 2.45(可填(2.36,2.54)中的任一实数)5.(2021湖北九师联盟2月质量检测,15)若函数f (x )={x 3-3x +1-a ,x >0,x 3+3x 2-a ,x ≤0恰有3个零点,则实数a 的取值范围为 . 答案 (-1,0)∪[1,4)B 组 综合应用题组时间:30分钟 分值:35分一、单项选择题(每小题5分,共15分)1.(2020河北新时代NT 教育模拟自测)已知函数f (x )={|lnx |,x >0,x 2+2x +2,x ≤0,若f (x )=kx 有两个不等实根,则实数k 的取值范围是 ( )A.2-2√2<k <0或k =1e B.k <2-2√2C.2-2√2<k <0D.k <2-2√2或k =1e 答案 D2.(2020辽宁葫芦岛兴城高级中学模拟)已知函数f (x )=2x ,函数g (x )与p (x )=1+ln (-2-x )的图象关于点(-1,0)对称,若f (x 1)=g (x 2),则x 1+x 2的最小值为 ( ) A.2 B.ln2-12C.12ln 2 D.ln 2答案 C3.(2019河北衡水中学第二次调研,12)已知函数f (x )={x 2+4x ,x ≤0,xlnx ,x >0,g (x )=kx -1,若方程f (x )-g (x )=0在x ∈(-2,e 2)上有3个实根,则k 的取值范围为 ( )A.(1,2]B.(1,32]∪{2} C.(1,32)∪(32,2) D.(1,32)∪(32,2+1e 2)答案 B二、多项选择题(每小题5分,共10分)4.(2021湖南衡阳联考(一),12)已知函数f (x )=e sin|x |+e|sin x |,以下结论正确的是 ( )A. f (x )是偶函数B. f (x )的最小值为2C. f (x )在区间(-π,-π2)上单调递减 D.g (x )=f (x )-2πx 的零点个数为5 答案 ABD5.(2021山东日照一模,11)已知函数f (x )对于任意x ∈R ,均满足f (x )=f (2-x ).当x ≤1时, f (x )={lnx ,0<x ≤1,e x,x ≤0,若函数g (x )=m |x |-2-f (x ),则下列结论正确的为 ( ) A.若m <0,则g (x )恰有两个零点 B.若32<m <e ,则g (x )有三个零点 C.若0<m ≤32,则g (x )恰有四个零点 D.不存在m 使得g (x )恰有四个零点 答案 ABC三、填空题(每小题5分,共10分)6.(2021山东济南十一学校联考,16)如果两个函数存在零点,分别为α,β,且满足|α-β|<n ,则称两个函数互为“n 度零点函数”.若f (x )=ln (x -2),g (x )=ax 2-ln x 互为“2度零点函数”,则实数a 的取值范围为 .答案 (0,12e]7.(2020山东淄博实验中学模拟,16)已知函数f (x )=(2-a )·(x -1)-2ln x.若函数f (x )在(0,12)上无零点,则a 的最小值为 . 答案 2-4ln 2— 一年原创 —1.(2021 5·3原创题)已知x 0是函数f (x )=x 2e x -2+ln x -2的零点,则下列结论错误的是( )A.ln x 0=2-x 0B.e 2-x 0+ln x 0=2C.x 0∈(1,2)D.ln x 0-1x 0>0 答案 D2.(2021 5·3原创题)已知函数f (x )={|x +2|,x ≤0,log 2x ,x >0.关于x 的方程[f (x )]2=mf (x )+1有4个不同的实数根,则实数m 的取值范围为( )A.(-32,1) B.(-∞,32] C.(1,32] D.(-∞,-32) 答案 B3.(2021 5·3原创题)已知f (x )={lnx ,x ≥1,x 2,x <1,若g (x )=f 2(x )+mf (x )+2有5个零点,则实数m 的取值范围为( )A.(-∞,-2√2)B.(-∞,-3)C.(-∞,-3]D.(-2√3,-3) 答案 B4.(2021 5·3原创题)已知函数F (x )=(x 3+x2)3+x 3+x2-2x ,设x 1,x 2(x 1<x 2)是函数的两个非零零点,则函数y =2(x 1+2x 2)t +2(2x 1+x 2)t+1(t ∈R )的最小值为( )A .2√2B .0C .1D .4 答案 A5.(2021 5·3原创题)已知函数f (x )=|x |(x +1),若函数g (x )=f (x )+2f (x )+m 有四个不同零点x 1,x 2,x 3,x 4,则实数m 的取值范围是 ;若x 1<x 2<x 3<x 4,则f (x 1)f (x 2)f (x 3)f 3(x 4)的值是 .答案 (-∞,-334);8 6.(2021 5·3原创题)函数f (x )=|cos x |-m sin x -3m 无零点,则m 的取值范围是 . 答案 (-∞,0)∪(√24,+∞)11 / 11 7.(2021 5·3原创题)已知f (x )是定义在(-∞,0)∪(0,+∞)上的奇函数,且当x >0时,f (x )={3x -7,0<x ≤2,|x -5|-1,x >2.g (x )=f (x )-a. (1)若函数g (x )恰有三个不相同的零点,求实数a 的值;(2)记h (a )为函数g (x )的所有零点之和.当-1<a <1时,求h (a )的取值范围.解析 (1)作出函数f (x )的图象,如图,由图象可知,当且仅当a =2或a =-2时,直线y =a 与函数y =f (x )的图象有三个不同的交点,∴当且仅当a =2或a =-2时,函数g (x )恰有三个不相同的零点.(2)由f (x )的图象可知,当-1<a <1时,g (x )有6个不同的零点.设这6个零点从左到右依次为x 1,x 2,x 3,x 4,x 5,x 6. 则x 1+x 2=-10,x 5+x 6=10,x 3是方程-3-x +7-a =0的解,x 4是方程3x-7-a =0的解. ∴h (a )=-10-log 3(7-a )+log 3(7+a )+10=log 37+a7-a .∵当-1<a <1时,7+a 7-a =147-a -1∈(34,43),∴h (a )∈(1-2log 32,2log 32-1).∴当-1<a <1时,h (a )的取值范围为(1-2log 32,2log 32-1).技巧点拨 遇到函数零点求和时,往往要结合函数的图象,注意函数图象的对称性,理清零点间的关系再求和.。

方程的根与函数的零点(最终版)

方程的根与函数的零点(最终版)

10
8
6
函数图象
方程的根
7
x2 2x 36 0
5
f
(x)
x2
4
2x
3
3
2
1
4
-3
2
-1
1
2
1
2
8
6
3 -3
4 -4
y5
x1 3
x2 1
2x 1 0
f ( x) 5 2x 1
4
3
2
4
6
1
8
10
4
2 15
0
1
2
3
4
2 10
4
x0
函数图象与x轴 的交点坐标
(-3, 0) (1, 0)
(0, 0)
例二、已知函数 y f (x) 是R上的连续函数,观
察下表,判断函数在哪些区间内一定存在零点, 并简述理由。
x123456789
f(x) 0.2 0.4 -0.4 -0.3 1 6 8 -3 -1
例三、试判断函数 f (x) ex x 4是否有零点, 若有,有几个?
解:因为 f (1) e 3 0 且 f (2) e2 2 0 所以函数在区间(1, 2) 存在零点;
零点:对于函数 y f (x),我们把使 f (x)=0的 实数x叫做函数 y f (x)的零点。
代数方面:零点就是方程 f (x)=0 的实根 图形方面:零点就是函数 y f (x) 的图象
与x轴交点的横坐标
判断方程 f (x) 0 是否有实根 判断函数 y f (x) 的图象与x轴是否有交点
判断函数 y f (x) 是否有零点
1
f (x) x2 x 6

函数的零点与方程根的关系

函数的零点与方程根的关系

函数的零点与方程根的关系
函数的零点表示的是函数与x轴的交点,方程的根表示的是方程的解,他们的含义是不一样的.但是,他们的解法其实质是一样的.
【解法】
求方程的根就是解方程,把所有的解求出来,一般要求的是二次函数或者方程组,这里不多讲了.我们重点来探讨一下函数零点的求法(配方法).
例题:求函数f(x)=x4+5x3﹣27x2﹣101x﹣70的零点.
解:∵f(x)=x4+5x3﹣27x2﹣101x﹣70
=(x﹣5)•(x+7)•(x+2)•(x+1)
∴函数f(x)=x4+5x3﹣27x2﹣101x﹣70的零点是:5、﹣7、﹣2、﹣1.
通过这个题,我们发现求函数的零点常用的方法就是配方法,把他配成若干个一次函数的乘积或者是二次函数的乘积,最后把它转化为求基本函数的零点或者说求基本函数等于0时的解即可.
【考查趋势】
考的比较少,了解相关的概念和基本的求法即可.
第1页共1页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方程的根与函数的零点
题型及解析
标准化管理部编码-[99968T-6889628-J68568-1689N]
方程的根与函数的零点题型及解析1.求下列函数的零点
(1)f(x)=x3+1;(2)f(x)=;(3)y=﹣x2+3x+4;(4)y=x2+4x+4.
分析:根据函数零点的定义解f(x)=0,即可得到结论.
解:(1)由f(x)=x3+1=0得x=﹣1,即函数的零点为﹣1;(2)由f(x)==0
得x2+2x+1=0得(x+1)2=0,得x=﹣1,即函数的零点为﹣1.(3)由y=﹣x2+3x+4=0,可得(x﹣4)(x+1)=0,所以函数的零点为4,﹣1;(4)y=x2+4x+4,可得(x+2)2=0,所以函数的零点为﹣2.
2.①求函数f(x)=2x+x﹣3的零点的个数;②求函数f(x)=log
2
x﹣x+2的零点的个数;③求函数的零点个数是多少?
分析:①由题意可判断f(x)是定义域上的增函数,从而求零点的个数;②由题意可
得,函数y=log
2
x 的图象和直线y=x﹣2的交点个数,数形结合可得结论.③由函数
y=lnx 的图象与函数y=的图
象只有一个交点,可得函数f(x)=lnx-(1/x)的零点个数.
解:①∵函数f(x)=2x+x﹣3单调递增,又∵f(1)=0,故函数f(x)=2x+x﹣3
有且只有一个零点
②函数f(x)=log
2x﹣x+2的零点的个数,即函数y=log
2
x 的图象和直线y=x﹣2
的交点个数,如图所示:故函数y=log
2
x 的图象(红色部分)和直线y=x﹣2(蓝
色部分)的交点个数为2,即函数f(x)=log
2
x﹣x+2的零点的个数为2;③函数
f(x)=lnx-(1/x)的零点个数就是函数y=lnx的图象与函数y=1/x的图象

交点的个数,由函数y=lnx 的图象与函数y=1/x的图象只有一个交点,如图
所示,
可得函数f(x)=lnx-(1/x)的零点个数是1
3.①已知方程x2﹣3x+a=0在区间(2,3)内有一个零点,求实数a的取值范围
②已知a是实数,函数f(x)=﹣x2+ax﹣3在区间(0,1)与(2,4)上各有一个
零点,求a的取值.
③已知函数f(x)=x2﹣2ax+4在区间(1,2)上有且只有一个零点,求a的取值范围
分析:①由已知,函数f(x)在区间(2,3)内有一个零点,它的对称轴为x=3/2,得出不等式组,解出即可;
②若函数f(x)=﹣x2+ax﹣3在区间(0,1)与(2,4)上各有一个零点,则f(0)<0,f(1)>0,f(2)>0,f(4)<0,解得答案;③若函数f(x)=x2﹣2ax+4只有一个零点,则△=0,经检验不符合条件;则函数f(x)=x2﹣2ax+4有两个零点,进而f (1)f(2)<0,解得答案
解:①若函数f(x)=﹣x2+ax﹣3在区间(0,1)与(2,4)上各有一个零点,则f (0)<0,f(1)>0,f(2)>0,f(4)<0,即-3<0,a-4>0,2a-7>0,4a-19<0,解得:a∈(4,19/4);②∵令f(x)=x2﹣3x+a,它的对称轴为x=3/2,∴函数f (x)在区间(2,3)单调递增,∵方程x2﹣3x+a=0在区间(2,3)内有一个零点,∴函数f(x)在区间(2,3)内与x轴有一个交点,根据零点存在性定理得出:f(2)<0,f(3)>0,即a-2<0,9-9+a>0,解得0<a<2;③解:若函数f(x)=x2﹣2ax+4只有
一个零点,则△=4a2﹣16=0,解得:a=±2,此时函数的零点为±2不在区间(1,2)上,即函数f(x)=x2﹣2ax+4有两个零点,则f(1)f(2)<0,即(5﹣2a)(8﹣
4a)<0,解得:a∈(2,5/2)
4.已知函数f(x)的图象是连续不断的,观察下表:函数f(x)在区间[﹣2,2]上的零点至少有几个?
分析:看区间端点值,只要在区间两端点处函数值异号,由零点存在性定理即可解决问题.
解:由题中表得,f(﹣2)<0,f(﹣1)>0,f(0)<0,f(1)<0,f(2)>0,
由零点存在性定理可得f(x)在区间[﹣2,﹣1],[﹣1,0],[1,2]上个有一个零点,故函数f(x)在区间[﹣2,2]上的零点至少有3个
5.已知y=f(x)是定义在R上的函数,下列命题正确的是()
A.若f(x)在区间[a,b]上的图象是一条连续不断的曲线,且在(a,b)内有零点,则有f(a)f(b)<0
B.若f(x)在区间[a,b]上的图象是一条连续不断的曲线,且有f(a)f(b)>0,则其在(a,b)内没有零点C.若f(x)在区间(a,b)上的图象是一条连续不断的曲线,且有f(a)f(b)<0,则其在(a,b)内有零点D.如果函数f(x)在区间[a,b]上的图象是一条连续不断的曲线,且有f(a)f(b)<0,则其在(a,b)内有零点
分析:据函数零点的定义,函数零点的判定定理,运用特殊函数判断即可.
解:①y=x2,在(﹣1,1)内有零点,但是f(﹣1)f(1)>0,故A不正确,②y=x2,f (﹣1)f(1)>0,在(﹣1,1)内有零点,故B不正确,③若f(x)在区间(a,b)上的图象是一条连续不断的曲线,f(a)=﹣1,f(b)=1,在(a,b)恒成立有f(x)>0,可知满足f(a)f(b)<0,但是其在(a,b)内没有零点.故C不正确.所以ABC不正确,故选D
6.若y=f(x)在区间[a,b]上的图象为连续不断的一条曲线,则下列说法正确的是
()
A.若f(a)f(b)<0,不存在实数c∈(a,b),使得f(c)=0; B.若f(a)f (b)<0,存在且只存在一个实数c∈(a,b),使得f(c)=0; C.若f(a)f(b)>0,不存在实数c∈(a,b),使得f(c)=0; D.若f(a)f(b)>0,有可能存在实数c∈(a,b),使得f(c)=0
分析:画满足条件的函数图象排除不正确的选项
解:首先,设函数y=f(x)在区间[a,b]上的图象如左图:图中满足f(a)·f(b)<0,有可能存在实数c∈(a,b)使得f(c)=0,故A,B错误;其次,设函数y=f(x)在区间[a,b]上的图象如右图:图中满足f(a)·f(b)>0,有可能存在实数c∈(a,b)使得f(c)=0,故C错误;D正确.
7.已知函数f(x)=mx2﹣3x+1的图象上其零点至少有一个在原点右侧,求实数m的取值范围
分析:根据题意,二次函数的图象与x轴的交点至少有一个在原点的右侧,有两种情况,一是只有一个在右侧,二是两个都在右侧,分类讨论即可.
解:(1)当m=0时,f(x)=﹣3x+1,直线与x轴的交点为(1/3,0),即函数的零点为1/3,在原点右侧,符合题意;(2)当m≠0时,∵f(0)=1,∴抛物线过点(0,1);若m<0时,f(x)的开口向下,如图所示;
∴二次函数的两个零点必然是一个在原点右侧,一个在原点左侧,满足题意;若m>0,f (x)的开口向上,如图所示,要使函数的零点在原点右侧,当且仅当△=9﹣4m≥0,且>0即可,如图所示,解得0<m≤;综上,m的取值范围是(﹣∞,9/4]
8.函数y=f(x)的图象在[a,b]内是连续的曲线,若f(a)f(b)>0,则函数y=f (x)在区间(a,b)内()
A.只有一个零点B.至少有一个零点 C.无零点D.无法确定
分析:可列举适当的函数图象,看图象与x轴的交点个数,将选项逐个排除,即可得到正确答案.
解:如图1,有f(a)f(b)>0,但函数y=f(x)的图象与x轴无交点,所以f(x)在区间(a,b)内无零点,可排除A,B,如图2,有f(a)f(b)>0,但函数y=f (x)的图象与x轴只有一个交点,所以f(x)在区间(a,b)内有且只有一个零点,可排除C,综上知,函数y=f(x)在区间(a,b)内的零点个数无法确定.
故答案为D
9.若二次函数f(x)=x2+mx+3+2m(1)若函数f(x)有两个零点,其中一个零点小于0,另一零点大于5,求m的取值范围;(2)f(x)在区间[1,7]上有最大值22,求m 的取值范围.
分析:(1)利用二次函数的性质,函数的零点,列出不等式,即可求解m的范围.(2)利用二次函数的对称轴以及函数的最值,列出不等式求解即可.
解:(1)二次函数f(x)=x2+mx+3+2m,开口向上,由图象可知则m<﹣4 即m∈(﹣∞,﹣4);(2)由题意可知或可得m=-10/3。

相关文档
最新文档