流体力学-音速和马赫数(1)
流体力学各无量纲数定义.

流体⼒学各⽆量纲数定义.雷诺数:对于不同的流场,雷诺数可以有很多表达⽅式。
这些表达⽅式⼀般都包括流体性质(密度、黏度)再加上流体速度和⼀个特征长度或者特征尺⼨。
这个尺⼨⼀般是根据习惯定义的。
⽐如说半径和直径对于球型和圆形并没有本质不同,但是习惯上只⽤其中⼀个。
对于管内流动和在流场中的球体,通常使⽤直径作为特征尺⼨。
对于表⾯流动,通常使⽤长度。
管内流场对于在管内的流动,雷诺数定义为:Re =pVD=VD =Q£“ v vA式中:*是平均流速(国际单位:m/s)管直径(⼀般为特征长度)(m)*流体动⼒黏度(Pa s或N -s/m2)■ “运动黏度(“ =/!/ P (m2/s)*流体密度(kg/m3)*I体积流量(m3/s)⼀:横截⾯积(m2)假如雷诺数的体积流率固定,则雷诺数与密度(P、速度的开⽅(闪)成正⽐;与管径(D)和黏度(u)成反⽐假如雷诺数的质量流率(即是可以稳定流动)固定,贝y雷诺数与管径(D)、黏度(u)成反⽐;与 "速度(⾎)成正⽐;与密度(p)⽆关平板流对于在两个宽板(板宽远⼤于两板之间距离)之间的流动,特征长度为两倍的两板之间距离。
流体中的物体对于流体中的物体的雷诺数,经常⽤Rep表⽰。
⽤雷诺数可以研究物体周围的流动情况,是否有漩涡分离,还可以研究沉降速度。
流体中的球对于在流体中的球,特征长度就是这个球的直径,特征速度是这个球相对于远处流体的速度,密度和黏度都是流体的性质。
在这种情况下,层流只存在于Re=0.1或者以下。
在⼩雷诺数情况下,⼒和运动速度的关系遵从斯托克斯定律。
搅拌槽对于⼀个圆柱形的搅拌槽,中间有⼀个旋转的桨或者涡轮,特征长度是这个旋转物体的直径。
速度是ND,N是转速(周/秒)。
雷诺数表达为:⼚pND览Re = --------- ?当Re>10,000时,这个系统为完全湍流状态。
[1]过渡流雷诺数对于流过平板的边界层,实验可以确认,当流过⼀定长度后,层流变得不稳定形成湍流。
流体力学 音速和马赫数

0
1
极限状态
流体力学
1 1
气体动力函数表
对于一定的 γ值按 Ma的大小事先计算好 无量纲热力参数值,列成表格,称为气体 动力函数表
流体力学
气流参数与通道面积的关系1
连续方程
d uA 0
d du dA 0 u A
动量方程
udu dp d
2 1 2 Ma 1 2 1
2
流体力学
以Ma或表示的气流参数关系式3
1 2
1 2 Ma
2
1
2
Ma 2
2 2 1 2 Ma 1 2 1 1
Ma 滞止状态
临界状态 0 1
uc
uc
流体力学
微弱扰动传播的区域5-例题
当我们听到超音速飞机的声音时,( A、飞机正朝我们飞来 )
B、飞机正好在我们头顶上
C、飞机已经越过我们头顶飞去
D、以上都不对
流体力学
微弱扰动传播的区域6-例题
例:超音速飞机在高空巡航,飞机通过观察者头 顶多少秒后,观察者方可听到发动机的声 音?Ma = 1.5 , z = 1000m , t = 20℃。
EV
不可压缩流体
流体力学
c
音速4
气体的等熵弹性模量
EV p
c
EV
p
完全气体
p RgT
c Rg T
当地音速
流体力学
马赫数
u Ma c
c
当地音速,某时刻某空间位置状态 参数不同,音速也不同
Ma 1 Ma 1
亚音速流动 超音速流动
流体力学-PPT问题的答案

第一章1、什么是流体?流体的三大特性?流体是能流动的物质。
从其力学特征看,流体是一种受任何微小剪切力都能连续变形的物质。
流体的三大特性:易流动性,可压缩性,粘性2、什么是流体的连续介质假设?对于流体质点而言,我们假定他们之间没有空隙,在空间连续分布,所以将流体视为由无数连续分布的流体质点所组成的连续介质,这就是流体的连续介质假设。
连续介质假设是流体力学的基本假设之一,我们依据了这个假设,才能把微观问题转化为宏观问题来处理。
3、什么是不可压缩流体?流体的膨胀系数和压缩系数全为零的流体叫不可压缩流体。
4、体积压缩系数、温度膨胀系数如何定义?体积压缩系数:表示当温度保持不变时,单位压强增量所引起的体积变化率。
温度膨胀系数:表示当压强不变时,单位温升所引起的流体体积的变化率。
5、什么是流体的黏性?流体的粘性是指流体质点运动发生相对滑移时产生切向阻力的性质。
6、什么是牛顿内摩擦定律?作用在流层上的切向力与速度梯度成正比,其比例系数为流体的动力粘度7、动力黏度与压强、温度有什么关系?普通压强对流体的黏度几乎没有影响,可以认为,流体的黏度只随温度变化。
温度对流体粘度的影响很大。
液体的黏度随着温度的上升而减小,气体的黏度随着温度的上升而增大。
之所以会出现这种情况,是因为构成它们黏性的机理不同。
液体分子间的吸引力是构成液体黏性的主要因素;构成气体黏性的主要因素是气体分子做随机运动时,在不同流速的流层间所进行的动量交换。
8、什么是理想流体?黏性为零的流体称为理想流体9、如何计算肥皂泡内的压强?设肥皂泡外压强为大气压强P0,表面张力系数为σ。
表面张力引起的附加压力成为毛细压力,曲面的凹面高于凸面的压强差为ΔP=2σR(R为球面的曲率半径)。
对肥皂泡,因为存在两个液体表面,故泡内高于泡外的压强差为ΔP=4σR.所以肥皂泡内压强:P1=P0+4σR1、什么是质量力、表面力,二者有何关系?质量力:指作用在流体内部每一个质点上的力,它的大小与流体的质量成正比。
流体力学无量纲数

流体力学无量纲数
流体力学中有很多重要的无量纲数,用来描述流体流动的性质和特征。
以下是一些常见的流体力学无量纲数:
1. 雅努森数(Reynolds number):表示惯性力和黏性力的相
对重要性,定义为惯性力与黏性力之比。
在流动中,当雅努森数较大时,惯性力主导流动;当雅努森数较小时,黏性力主导流动。
通常用Re表示。
2. 马赫数(Mach number):表示流体流动的速度相对于声速
的大小,定义为流体流速与声速之比。
当马赫数为1时,流体速度等于声速,称为“音速”。
通常用Ma表示。
3. 弗洛德数(Froude number):用于描述自由水面流动的无
量纲数,表示惯性力和重力力的相对重要性,定义为流体速度与重力波传播速度的比值。
通常用Fr表示。
4. 韦伯数(Weber number):描述表面张力和惯性力的相对重要性,定义为流体惯性力与表面张力之比。
通常用We表示。
5. 斯特劳哈尔数(Strouhal number):表示非定常流动中惯性
力和黏性力的相对重要性,定义为流动涡旋频率与流体流速和特征长度的比值。
通常用St表示。
除了以上列举的无量纲数,还有伽利略数(Galilei number)、伯努利数(Bernoulli number)、辛克勒数(Sikler number)等等,用于描述特定流动问题的无量纲数。
这些无量纲数的存在
和使用,方便了流体力学研究者对流体流动性质进行分析和比较。
流体力学第十二章气体动力学基础.ppt

由理想气体状态方程 故
p RT
p
kRT
s
第6页
(12.6)
退出 返回
第十二章
气体动力学基础 第一节 压力波的传播,音速
流体力学
中国科学文化出版社
退出
第十二章 气体动力学基础
第一节 压力波的传播,音速 第二节 运动点扰源产生的扰动场,马赫数与马
赫角 第三节 一元稳定等熵流动的基本方程 第四节 理想气体一元稳定等熵流动的基本特性 第五节 气流参数与流道截面积的关系 第六节 渐缩喷管和拉伐尔喷管
退出 返回
第十二章
气体动力学基础 第一节 压力波的传播,音速
为压缩声波,反之,就称为膨胀声波。如果活塞左右作微小的往复振动, 那么就有压缩声波和膨胀声波间隔地以音速a 向右传播,声波到达处的流体
跟着作微小的左右往复振动。
由于微弱扰动传播过程中介质压力、密度和温度变化很小,因此可假定这
个过程是等熵过程,即
第5页
退出 返回
第十二章
气体动力学基础 第一节 压力波的传播,音速
第3页
退出 返回
第十二章
气体动力学基础 第一节 压力波的传播,音速
而扰动未波及处,流体仍是静止的,压力和密度仍为 p、 。如果原来管内 的流体不是静止的,而是以均匀速度 w 向右流动,那么加一微弱扰动后的 情形就如图12.2(b)所示。这时微弱扰动在流速为 w 的流体中以相对速度a 传播,且传播的绝对速度与流体运动的速度 w 有关。在顺流方向,微弱扰 动的绝对传播速度为 a w;在逆流方向,微弱扰动的绝对传播速度为 a w。显然在上述两种情况下,管内流体的运动都是不稳定的。 为了方便分析,设想将坐标系固连在以速度 a 或 w a 前进的压力分界面上, 这样相对该坐标来说,流动就是稳定的,如图12.2(c)所示。站在相对坐 标上的观察者看到流体稳定地从右向左流动,穿过压力分界面时,速度由 a 降至 a dw ,而压力由 p 升高到p dp ,密度 由增加为 d 。
流体力学音速和马赫数

微弱扰动传播的区域6-例题
例:超音速飞机在高空巡航,飞机通过观察者头 顶多少秒后,观察者方可听到发动机的声 音?Ma = 1.5 , z = 1000m , t = 20℃。
解:马赫角
arcsin
1 Ma
arctan
Z
u
流体力学
2.17 s
马赫锥 μ
Z
μ x = uΔτ
突破音障1
1.0
出口达到临界状态,
Ma = 1
pcr
p0
pe pcr
O
(1) (2) (3) (4) (5)
出口 x
pb pcr
流体力学
出口为临界状态,背压继续降 低的扰动不能向上游传播
收缩形喷管中的流动5
p
pe pcr
p0
1.0
气流在管外经过膨胀波系 pcr
连续膨胀后达到与背压平 p0
衡
O
(1) (2) (3) (4) (5)
p0
0
T0
2
h h0
1
c c0
1
dp d
p
dT 1 T
dh 1 h
2 dc 1 c
所有热力学参数变化一致, p 变化最快
流体力学
参考状态-等熵滞止状态6
静参数与速度的关系
u2 C pT0 C pT 2
T
u2
1
T0
2C pT0
u 减小,T,p, 均增大
Ma > 1
8.4 喷管计算
喷管
改变内壁几何形状来 加速气流的管道
收缩喷管
缩放喷管
假设
流体力学
一元定常等熵流动 完全气体 比热为常数
收缩形喷管中的流动1
流体力学各无量纲数定义

雷诺数:对于不同的流场,雷诺数可以有很多表达方式。
这些表达方式一般都包括流体性质(密度、黏度)再加上流体速度和一个特征长度或者特征尺寸。
这个尺寸一般是根据习惯定义的。
比如说半径和直径对于球型和圆形并没有本质不同,但是习惯上只用其中一个。
对于管内流动和在流场中的球体,通常使用直径作为特征尺寸。
对于表面流动,通常使用长度。
管内流场对于在管内的流动,雷诺数定义为:式中:•是平均流速(国际单位: m/s)•管直径(一般为特征长度) (m)•流体动力黏度 (Pa·s或N·s/m²)•运动黏度 (ρ) (m²/s)•流体密度(kg/m³)•体积流量 (m³/s)•横截面积(m²)假如雷诺数的体积流率固定,则雷诺数与密度(ρ)、速度的开方()成正比;与管径(D)和黏度(u)成反比假如雷诺数的质量流率(即是可以稳定流动)固定,则雷诺数与管径(D)、黏度(u)成反比;与√速度()成正比;与密度(ρ)无关平板流对于在两个宽板(板宽远大于两板之间距离)之间的流动,特征长度为两倍的两板之间距离。
流体中的物体对于流体中的物体的雷诺数,经常用Re p表示。
用雷诺数可以研究物体周围的流动情况,是否有漩涡分离,还可以研究沉降速度。
流体中的球对于在流体中的球,特征长度就是这个球的直径,特征速度是这个球相对于远处流体的速度,密度和黏度都是流体的性质。
在这种情况下,层流只存在于Re=0.1或者以下。
在小雷诺数情况下,力和运动速度的关系遵从斯托克斯定律。
搅拌槽对于一个圆柱形的搅拌槽,中间有一个旋转的桨或者涡轮,特征长度是这个旋转物体的直径。
速度是ND,N是转速(周/秒)。
雷诺数表达为:当Re>10,000时,这个系统为完全湍流状态。
[1]过渡流雷诺数对于流过平板的边界层,实验可以确认,当流过一定长度后,层流变得不稳定形成湍流。
对于不同的尺度和不同的流体,这种不稳定性都会发生。
工程流体力学第八章

k p2 k 1 V2 2 RT0 [1 ( ) ] k 1 p0
P1,T1 V1=0
k
环境压强,P3 2 2
s
p3 p* (3) 超临界 p0 p0
p2=p*≠p3,Ma2=1, G=Gmax,气体在喷嘴出口未完全膨胀 壅塞现象 :对于一给定的收缩喷嘴,当环境压力p3下
一、声速与马赫数 1 声速
声速(a)是小扰动压力波在静止介质中的传播速
度,反映了介质本身可压缩性的大小。
dF dV B p1=p+dp V1=dv 1=+d dV
dF dV A
p,,V=0
A
B
若活塞间流体不可压:扰动 瞬时传递到B,声速a→∞
若活塞间流体可压:
dF A p1,1 V=dV p, V=0 B 扰动后 扰动前 x
降到临界压力时,它的流量就达到最大。继续减小p3不
再影响喷嘴内的流动,流量也不改变。
例8-1: 大容器内的空气通过收缩喷嘴流入绝对压强为 50kpa的环境中,已知容器内的温度是1500C,喷嘴出口 直径为2cm,在喷嘴出口气流速度达到声速,容器罐内 的压强至少为多少?并计算相应的质量流量。
ቤተ መጻሕፍቲ ባይዱP3 2 2
3 Ma=1. (扰动源以音速向左运动)
马赫线
扰动不可 到达区/寂 静区
t=0
(
c ) Ma=1
扰动中心
即:扰动源运动马赫数为1时,扰动不能传播到扰动源 的前方,在其左侧形成一个寂静区。
当扰动源静止,来流以音速自左向右运动:
马赫线 V=a t=0
扰动不可到达 区/寂静区
p1=p+dp 1=+d V1=dv
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
u0
uc
同心球面波
扰动波会超越扰动源向前传播, 扰动可传遍整个流场
uc
流体力学
扰动波的传播总落后于扰动源, 形成以扰动源为顶点的马赫锥, 扰动传播有界
微弱扰动传播的区域5-例题
当我们听到超音速飞机的声音时,( ) A、飞机正朝我们飞来 B、飞机正好在我们头顶上 C、飞机已经越过我们头顶飞去 D、以上都不对
p RgT
过程方程
p
C
流体力学
一元等熵气流的基本特性
基本特性
热力参数与速度之间的相互变化关系
参考状态
在整个运动过 程中参数不变
等熵滞止状态、临界状态、极限状态
流体力学
参考状态-等熵滞止状态1
静参数
气流的当地状态参数
滞止参数
某热力过程 速度滞止为零 时的参数
等熵过程
当地状态
速度滞止为零的状态
绝热过程 等熵过程
dux p+dp
c
ρ+dρ
T+dT
p ρ T ux = 0
流体力学
微弱扰动波传播速度-音速1
dux p+dp
c
ρ+dρ
T+dT
p ρ T ux = 0
音速
微弱扰动波在可压缩介质中传播的速度 波的传播速度与流体质点的运动速度不同
流体力学
音速2
p+dp c - dux
c
p
ρ+dρ
ρ
马赫数
Ma u c
c
当地音速,某时刻某空间位置状态 参数不同,音速也不同
流体力学
Ma 1 Ma 1 Ma 1
亚音速流动 超音速流动 音速流动
微弱扰动传播的区域1
静止点源,流体以某速度流动
u
扰动源
流体速度 u = 0
2c
同心球面波,扰动向四面八
3c c
方传递
流体力学
微弱扰动传播的区域2
流体速度 u < c 只要时间足够长,扰动可波 及全场
可压缩1
可压缩性不能被忽略
D v 0
Dt t s
密度场非定常、高速、密度梯度大
高速空气动力学
流体力学
炮弹、飞机、火箭等的飞行
可压缩2
气体在喷管及扩压器内的流动
叶轮机械
有明显粘性效应的气体管道流动
输气管道
有明显热交换的气体流动
流体力学
反应器、冷凝器等
概述1
一元、定常、可压缩、等熵
可压缩流动的基本概念、一元定常等熵流 动、喷管中的流动计算
dp
u2 2
C
等熵
p
C
u2 2
1
p
C2
能量方程
流体力学
d
h
u2 2
q
一元定常等熵气流基本方程组2
h
u2 2
C3
能量方程的各种形式
CpT
u2 2
C
1
p
u2 2
C
Rg T u2 C 1 2
c2 u2 C
1 2
动量方程、能量方程相同
流体力学
一元定常等熵气流基本方程组3
状态方程
流体力学
8.3 等熵流基本方程式和基本概念
等熵流动
可逆
粘性影响小,参数变 化连续
绝热 流速高,忽略热交换
热力学关系式
h C pT e CVT
Cp
RgC p C p CV
Rg 1
流体力学
Rg C p CV
Cp
CV
CV
Cp
Rg
1
一元定常等熵气流基本方程组1
连续方程
uA C1
动量方程
A p1 ρ1
T1 u1
控制体
A + dA
p2 ρ2 T2 u2
加给单位质量气体的热量
dx x
等于单位质量气体的焓和动能的增量
流体力学
一元定常可压缩流基本方程组2
状态方程 p RT
对空气而言,适用完全气体假设的范围
240K T 2000K p 9.8 105 Pa
在完全气体假设的范围内,如果温度不太 高,定压比热、定容比热可视为常数
假想
流体力学
等熵滞止状态
参考状态-等熵滞止状态2
h u2 C 等熵滞止到速度为0
2
h0 常 数
C pT
u2 2
C
等熵滞止
T0 常 数
p u2 C 1 2
等熵滞止
p0 常数
0 常数
c2 u2 C
1 2
等熵滞止
c0 常 数
流体力学
参考状态-等熵滞止状态3
uA C 动量方程 定常一元,忽略质量力
控制体 A p ρ u T
dx
A + dA p+dp ρ+dρ T+dT u+du
x
dp udu 0
流体力学
dp
u2 2
C
一元定常可压缩流基本方程组1
能量方程
定常,一元
m h2
u22 2
gz2
h1
u12 2
gz1
Q W轴
d
h
u2 2
q
音障 – 突破音障
音障是一种物理现象,当物体的速度接近音速 时,将会逐渐追上自己发出的声波。声波叠合 累积的结果,会造成局部激波,从而使空气阻力 骤增,对飞行器的加速产生障碍,而这种因为音 速造成提升速度的障碍称为音障
突破音障
流体力学
突破音障3
流体力学
8.2 一元气流的流动特性
连续方程
变截面管道,定常,一元
微弱扰动波-压缩波和膨胀波
dduVx pp+-dp
c
ρρ+-dρ
TT+-ddTT
p ρ T uVx == 00
波传播方向 质点运动方向
波面过后
流体力学
压缩波
相同
热力参数 增大
膨胀波
相反
热力参 数减小
微弱扰动波传播的热力过程
微弱扰动波传播的热力过程
参数变化极其微小,忽略不可逆损失 可逆过程
波前后温差较小,波速很高
基础知识
流体力学
积分形式控制方程,马赫数,体积弹 性模量
概述2
可压缩流动的基本概念
定常一元等熵流动
控制方程组、参考状态、气流参数与 通道面积的关系
几何喷管中的流动
流体力学
8.1 音速和马赫数
微弱扰动波
扰动
介质状态发生某种程度的变化
流体力学
p+dp
dux +d
T+dT
p ρ T ux = 0
扰动区 扰动波面 未扰动区
2c
c
3c
流体速度 u = c
2c 3c
只影响过O点垂直于来流的 O c 平面的右半空间
流体力学
微弱扰动传播的区域3
流体速度 u > c
A
扰动只波及锥面内部
c OV
μ
2c
3c
马赫锥
B
马赫角
OA与来流的夹角
流体力学
arcsin
c u
arcsin
1 Ma
微弱扰动传播的区域4
扰动源运动,气体静止
流体力学
微弱扰动传播的区域6-例题
例:超音速飞机在高空巡航,飞机通过观察者头 顶多少秒后,观察者方可听到发动机的声 音?Ma = 1.5 , z = 1000m , t = 20℃。
解:马赫角
arcsin
1 Ma
arctan
Z
u
流体力学
2.17 s
马赫锥 μ
Z
μ x = uΔτ
突破音障1
T+dT
T
连续方程
dux
c
d
运动方程-动量方程
流体力学
dp c d c
dux
dp
c
音速3
音速基本公式
其它形式音速方程
由
EV dp
d
c dp
d
c EV
不可压缩流体 EV
流体力学
c
音速4
气体的等熵弹性p RgT
流体力学
c RgT
当地音速