人教-B-版【高中】数学必修4第一章导学案
【2019-2020年度】人教B版高中数学-选修4-1教学案-第一章-圆 幂 定 理 (Word)

【2019-2020年度】人教B版高中数学-选修4-1教学案-第一章-圆幂定理(Word)1.3.1 圆幂定理[对应学生用书P25][读教材·填要点]1.相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等.2.切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.3.圆幂定理已知⊙(O,r),通过一定点P,作⊙O的任一条割线交圆于A,B两点,则PA·PB为定值,设定值为k,则:(1)当点P在圆外时,k=PO2-r2,(2)当点P在圆内时,k=r2-OP2,(3)当点P在⊙O上时,k=0.[小问题·大思维]1.从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积有什么关系?提示:相等.2.从圆外一点引圆的切线,则这一点、两个切点及圆心四点是否共圆?若共圆,圆的直径是什么?提示:四点共圆.且圆心为圆外一点与原圆心连线的中点,直径为圆外一点到原圆心的距离.[对应学生用书P26][例1]弦,它们相交于AB的中点P,PD=a,∠OAP=30°,求CP的长.[思路点拨] 本题考查相交弦定理及垂径定理、勾股定理的综合应用.解决本题需要先在Rt△OAP中,求得AP的长,然后利用相交弦定理求解.[精解详析] ∵P为AB的中点,∴由垂径定理得OP⊥AB.在Rt△OAP中,BP=AP=acos30°=a.由相交弦定理,得BP·AP=CP·DP,即2=CP·a,解之得CP=a.在实际应用中,若圆中有两条相交弦,要想到利用相交弦定理.特别地,如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项.1.如图,已知AB和AC是圆的两条弦,过点B作圆的切线与AC 的延长线相交于点D.过点C作BD的平行线与圆相交于点E,与AB 相交于点F,AF=3,FB=1,EF=,则线段CD的长为________.解析:因为AF=3,EF=,FB=1,所以CF===2,因为EC∥BD,所以△ACF∽△ADB,所以====,所以BD===,且AD=4CD,又因为BD是圆的切线,所以BD2=CD·AD=4CD2,所以CD=.答案:43[例2] A,M为PA 的中点,过点M引圆的割线交圆于B,C两点,且∠BMP=100°,∠BPC =40°.求∠MPB的大小.[思路点拨] 本题考查切割线定理,由定理得出△BMP∽△PMC 而后转化角相等进行求解.[精解详析] 因为MA为圆O的切线,所以MA2=MB·MC.又M为PA的中点,所以MP2=MB·MC.因为∠BMP=∠PMC,所以△BMP∽△PMC,于是∠MPB=∠MCP.在△MCP中,由∠MPB+∠MCP+∠BPC+∠BMP=180°,得∠MPB =20°.相交弦定理、切割线定理涉及与圆有关的比例线段问题,利用相交弦定理能做到知三求一,利用切割线定理能做到知二求一.2.(北京高考)如图,AB为圆O的直径,PA为圆O的切线,PB与圆O相交于D.若PA=3,PD∶DB=9∶16,则PD=________;AB=________.解析:设PD=9t,DB=16t,则PB=25t,根据切割线定理得32=9t×25t,解得t=,所以PD=,PB=5.在直角三角形APB中,根据勾股定理得AB=4.答案:4[例3] PBC为割线,弦CD∥AP,AD、BC相交于E点,F为CE上一点,且DE2=EF·EC.(1)求证:∠P=∠EDF;(2)求证:CE·EB=EF·EP;(3)若CE∶BE=3∶2,DE=6,EF=4,求PA的长.[思路点拨] 本题考查切割线定理、相交弦定理.以及相似三角形的判定与性质的综合应用.解答本题需要分清各个定理的适用条件,并会合理利用.[精解详析] (1)证明:∵DE2=EF·EC,∴DE∶CE=EF∶ED.∵∠DEF是公共角,∴△DEF∽△CED.∴∠EDF=∠C.∵CD∥AP,∴∠C=∠P.∴∠P=∠EDF.(2)证明:∵∠P=∠EDF,∠DEF=∠PEA,∴△DEF∽△PEA.∴DE∶PE=EF∶EA.即EF·EP=DE·EA.∵弦AD、BC相交于点E,∴DE·EA=CE·EB.∴CE·EB=EF·EP.(3)∵DE2=EF·EC,DE=6,EF=4,∴EC=9.∵CE∶BE=3∶2,∴BE=6.∵CE·EB=EF·EP,∴9×6=4×EP.解得:EP=.∴PB=PE-BE=,PC=PE+EC=.由切割线定理得:PA2=PB·PC,∴PA2=×.∴PA=.相交弦定理、切割线定理是最重要的定理,在与圆有关的问题中经常用到,这是因为这三个定理可得到的线段的比例或线段的长,而圆周角定理、弦切角定理得到的是角的关系,这两者的结合,往往能综合讨论与圆有关的相似三角形问题.因此,在实际应用中,见到圆的两条相交弦要想到相交弦定理;见到切线和割线要想到切割线定理.3.如图所示,过点P的直线与⊙O相交于A,B两点.若PA=1,AB=2,PO=3,则⊙O的半径等于________.解析:设⊙O的半径为r(r>0),∵PA=1,AB=2,∴PB=PA+AB=3.延长PO交⊙O于点C,则PC=PO+r=3+r.设PO交⊙O于点D,则PD=3-r.由圆的割线定理知,PA·PB=PD·PC,∴1×3=(3-r)(3+r),∴9-r2=3,∴r= .答案: 6[对应学生用书P27]一、选择题1.如右图,⊙O的直径CD与弦AB交于P点,若AP=4,BP=6,CP=3,则⊙O半径为( )A.5.5 B.5C.6 D.6.5解析:由相交弦定理知AP·PB=CP·PD,∵AP=4,BP=6,CP=3,∴PD===8.∴CD=3+8=11,∴⊙O的半径为5.5.答案:A2.如图,P是圆O外一点,过P引圆O的两条割线PB,PD,PA=AB=,CD=3,则PC等于( )A.2或-5 B.2C.3 D.10解析:设PC=x,由割线定理知PA·PB=PC·PD.即×2 =x(x +3),解得x=2或x=-5(舍去).故选B.答案:B3.如图,AD、AE和BC分别切⊙O于D,E,F,如果AD=20,则△ABC的周长为( )A.20 B.30C.40 D.35解析:∵AD,AE,BC分别为圆O的切线.∴AE=AD=20,BF=BD,CF=CE.∴△ABC的周长为AB+AC+BC=AB+AC+BF+CF=(AB+BD)+(AC+CE)=AD+AE=40.答案:C4.如图,△ABC中,∠C=90°,⊙O的直径CE在BC上,且与AB相切于D点,若CO∶OB=1∶3,AD=2,则BE等于( )A. B.22C.2 D.1解析:连接OD,则OD⊥BD,∴Rt△BOD∽Rt△BAC.∴=.设⊙O的半径为a,∵OC∶OB=1∶3,OE=OC,∴BE=EC=2a.由题知AD、AC均为⊙O的切线,AD=2,∴AC=2.∴=,∴BD=2a2.又BD2=BE·BC,∴BD2=2a·4a=8a2.∴4a4=8a2,∴a=.∴BE=2a=2.答案:B二、填空题5.(重庆高考)过圆外一点P作圆的切线PA(A为切点),再作割线PBC分别交圆于B,C.若PA=6,AC=8,BC=9,则AB=________.解析:如图所示,由切割线定理得PA2=PB·PC=PB·(PB+BC),即62=PB·(PB+9),解得PB=3(负值舍去).由弦切角定理知∠PAB=∠PCA,又∠APB=∠CPA,故△APB∽△CPA,则=,即=,解得AB=4.答案:46.如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且DF=CF=,AF∶FB∶BE=4∶2∶1.若CE与圆相切,则线段CE的长为____________.解析:设BE=x,则FB=2x,AF=4x,由相交弦定理得DF·FC =AF·FB,即2=8x2,解得x=,EA=,再由切割线定理得CE2=EB·EA =×=,所以CE=.答案:727.如图,⊙O的弦ED、CB的延长线交于点A.若BD⊥AE,AB=4,BC=2,AD=3,则DE=________;CE=________.解析:由切割线定理知,AB·AC=AD·AE.即4×6=3×(3+DE),解得DE=5.∵BD⊥AE,且E、D、B、C四点共圆,∴∠C=90°.在直角三角形ACE中,AC=6,AE=8,∴CE==2.答案:5 278.(重庆高考)如图,在△ABC中,∠C=90°,∠A=60°,AB=20,过C作△ABC的外接圆的切线CD,BD⊥CD,BD与外接圆交于点E,则DE的长为________.解析:由题意得BC=AB·sin 60°=10.由弦切角定理知∠BCD=∠A=60°,所以CD=5,BD=15,由切割线定理知,CD2=DE·BD,则DE=5.答案:5三、解答题9.如图,PT切⊙O于T,PAB,PDC是圆O的两条割线,PA=3,PD=4,PT=6,AD=2,求弦CD的长和弦BC的长.解:由已知可得PT2=PA·PB,且PT=6,PA=3,∴PB=12.同理可得PC=9,∴CD=5.∵PD·PC=PA·PB,∴=,∴△PDA∽△PBC,∴=⇒=,∴BC=6.10.如图,⊙O的半径OB垂直于直径AC,M为AO上一点,BM的延长线交⊙O于N,过N点的切线交CA的延长线于P.(1)求证:PM2=PA·PC;(2)若⊙O的半径为2 ,OA= OM,求MN的长.解:(1)证明:连接ON,则ON⊥PN,且△OBN为等腰三角形,则∠OBN=∠ONB,∵∠PMN=∠OMB=90°-∠OBN,∠PNM=90°-∠ONB,∴∠PMN=∠PNM,∴PM=PN.由条件,根据切割线定理,有PN2=PA·PC,所以PM2=PA·PC.(2)依题意得OM=2,在Rt△BOM中,BM==4.延长BO交⊙O于点D,连接DN.由条件易知△BOM∽△BND,于是=,即=,得BN=6.所以MN=BN-BM=6-4=2.11.如下图,已知⊙O1和⊙O2相交于A、B两点,过点A作⊙O1的切线,交⊙O2于点C,过点B作两圆的割线分别交⊙O1,⊙O2于点D、E,DE与AC相交于点P.(1)求证:PA·PE=PC·PD;(2)当AD与⊙O2相切,且PA=6,PC=2,PD=12时,求AD的长.解:(1)证明:连接AB,CE,∵CA切⊙O1于点A,∴∠1=∠D.又∵∠1=∠E,∴∠D=∠E.又∵∠2=∠3,∴△APD∽△CPE.∴=.即PA·PE=PC·PD.(2)∵PA=6,PC=2,PD=12.∴6×PE=2×12,∴PE=4.由相交弦定理,得PE·PB=PA·PC.∴4PB=6×2,∴PB=3.∴BD=PD-PB=12-3=9,DE=PD+PE=16.∵DA切⊙O2于点A,∴DA2=DB·DE,即AD2=9×16,∴AD=12.11 / 11。
【B版】人教课标版高中数学必修四《弧度制和弧度制与角度制的换算》导学案-新版

1.1.2 弧度制和弧度制与角度制的换算学习目标1.理解弧度制的意义;2.能正确的应用弧度与角度之间的换算;3.记住公式=l rα(l 为以α作为圆心角时所对圆弧的长,r 为圆半径); 4.熟练掌握弧度制下的弧长公式、扇形面积公式及其应用。
重点、难点弧度与角度之间的换算;弧长公式、扇形面积公式的应用。
学习过程(一)复习:初中时所学的角度制,是怎么规定r 角的?角度制的单位有哪些,是多少进制的?(二) 叫做1弧度的角,用符号 表示,读作 。
练习:圆的半径为r ,圆弧长为2r 、3r 、2r 的弧所对的圆心角分别为多少? <思考>:圆心角的弧度数与半径的大小有关吗?由上可知:如果半径为r 的园的圆心角α所对的弧长为l ,那么,角α的弧度数的绝对值是: ,α的正负由 决定。
正角的弧度数是一个 ,负角的弧度数是一个 ,零角的弧度数是 。
<说明>:我们用弧度制表示角的时候,“弧度”或rad 经常省略,即只写一实数表示角的度量。
例如:当弧长4l r π=且所对的圆心角表示负角时,这个圆心角的弧度数是44l r r rπαπ-=-=-=-. (三)角度与弧度的换算3602rad π= 180r a dπ=1rad 0.01745rad 180π=≈ 1801rad 5718'π⎛⎫=≈ ⎪⎝⎭1 归纳:把角从弧度化为度的方法是: 把角从度化为弧度的方法是:<试一试>:一些特殊角的度数与弧度数的互相转化,请补充完整例1、把下列各角从度化为弧度:(1)252 (2)1115' (3)30 (4)6730'变式练习:把下列各角从度化为弧度:(1)22 º30′ (2)—210º (3)1200º例2、把下列各角从弧度化为度:(1)35π (2) 3.5 (3) 2 (4)4π变式练习:把下列各角从弧度化为度:(1)12π (2)43π- (3)310π(四)弧度数表示弧长与半径的比,是一个实数,这样在角集合与实数集之间就建立了一个一一对应关系.(五) 弧度下的弧长公式和扇形面积公式 弧长公式:l r α=⋅扇形面积公式:12S lr =.说明:以上公式中的α必须为弧度单位.例3、知扇形的周长为8cm ,圆心角α为2rad ,,求该扇形的面积。
人教B版高一数学(必修4)导学案:1.1.2弧度制和弧度制和角度制的换算(无答案)

2.集合 等于()
A.ቤተ መጻሕፍቲ ባይዱB. C. D.
3.已知扇形AOB的面积为4,圆心角的弧度数为2,则该扇形的弧长为()
A. 4 B. 2 C. 1 D. 8
4. 弧度化为角度是,是第象限的角。
B组:
1. 1弧度的圆心角所对的弦长为2,求这个圆心角所对的弧长及圆心角所夹的扇形的面积。
教学反思
落实是成功的保证!
2. 转化为弧度数为()
A. B. C. D.
3.圆的半径是 ,则 的圆心角与圆弧围成的扇形的面积是()
A. B. C. D.
4. 7弧度的角是第象限的角,与7弧度的角的终边相同的最小正角为。
积极思考勤于动手天才来自勤奋!
课后巩固作业
A组:
1.在面积不等的圆内,1弧度的圆心角所对的()
A.弧长相等B.弦长相等
引申(1)把 化成弧度,(2)把 化成度。
探究二把下列各角化成0到 的角加上 的形式,并指出它们是哪个现象的角: 。
引申把下列各角的度数化成弧度数,并写成0到 的角加上 的形式
(1) ;(2) ;(3) 。
认真听讲是学习高效的捷径!
探究三 (1)已知扇形的周长为 ,面积为 ,求扇形圆心角的弧度数;
(2)已知一扇形的圆心角是 ,半径等于 ,求扇形的面积;
2.长度等于的圆弧所对的圆心角叫做1弧度的角,弧度记作。
3.弧度制与角度制的换算
,
4.特殊角的度数与弧度制的对应关系
度
弧度
5. 分别是弧长、半径、弧所对圆心角的弧度数。
(1)弧度数公式: ,
(2)弧长公式: ,
(3)扇形面积公式:
教师是学生学习的引导者学生是学习的主人!
数学人教B版必修4:1.3.2余弦、正切函数的图象与性质 导学案 Word版缺答案

§1.3.2余弦、正切函数的图象与性质(课前预习案)班级:___ 姓名:________ 编写:一、新知导学1.由y=cosx=sin (____)(x R ∈)可知,余弦函数y=cosx 图象与正弦函数y=sinx 的图象的形状 ,把正弦曲线向 平移个单位就可得余弦函数图象。
2.3.余弦函数y=cosx 的定义域是 ,值域是 ,奇偶性为 ,周期为 ,单调递增区间为 ,单调递减区间为 ,对称中心为 ,对称轴为 。
4. R x xy ∈=tan ,且()z k k x ∈+≠ππ的图象,称“正切曲线”.5.正切函数的性质:(1)定义域:____________;(2)值域:_____ (3)周期性:_______;(4)奇偶性:________;(5)单调性:_________________.(6)对称中心:4.函数y=-xcosx的部分图象是( ) A. B. C.D.例3.求函数tan()4y x π=+的定义域.跟进练习3.函数)42tan(π-=x y 的定义域________________. 例4.不通过求值,比较下列各组中两个正切函数值的大小: (1) 与 ; (2))411tan(π- 与)513tan(π- . 四、当堂检测 1.要由y=sin2x 的图象平移后得到y=cos (2x+3π)的图象,只要把y=sin2x 的图象( ) A.向左平移56π个单位 B.向右平移56π个单位 C.向左平移512π个单位 D.向右平移512π个单位 2.函数y=-xcosx 的部分图象是( )A. B. C. D. 3.下列函数中,以π为周期的偶函数是( )A.y=sin xB.y=sin xC.y=cos(2x+3π)D.y=sin(x+2π) 4.给出下列命题: ①函数y=sinx 在第一.四象限都是增函数;②函数y=cos(x ωϕ+)的最小正周期 为2πω;③函数y=sin(2732x π+)是偶函数;④函数y=sin2x 的图象向左平移4π个 单位,得到y=sin(2x+4π)的图象。
人教版高中数学B版目录

人教版高中数学B版目录第一篇:人教版高中数学B版目录人教版高中数学B版必修第一章1.1 集合集合与集合的表示方法必修一必修二必修三必修四第二章第三章第一章第二章第一章第二章第三章第一章第二章1.2 集合之间的关系与运算函数2.1 函数2.2 一次函数和二次函数 2.3 函数的应用(Ⅰ)2.4 函数与方程基本初等函数(Ⅰ)3.1 指数与指数函数 3.2 对数与对数函数 3.3 幂函数3.4 函数的应用(Ⅱ)立体几何初步1.1 空间几何体1.2 点、线、面之间的位置关系平面解析几何初步2.1平面真角坐标系中的基本公式2.2 直线方程 2.3 圆的方程2.4 空间直角坐标系算法初步1.1 算法与程序框图 1.2 基本算法语句1.3 中国古代数学中的算法案例统计2.1 随机抽样2.2 用样本估计总体 2.3 变量的相关性概率3.1 随机现象 3.2 古典概型3.3 随机数的含义与应用 3.4 概率的应用基本初等函(Ⅱ)1.1 任意角的概念与弧度制 1.2 任意角的三角函数 1.3三角函数的图象与性质平面向量2.1 向量的线性运算必修五第三章第一章第二章第三章2.2 向量的分解与向量的坐标运算 2.3平面向量的数量积 2.4 向量的应用三角恒等变换3.1 和角公式3.2 倍角公式和半角公式3.3 三角函数的积化和差与和差化积解直角三角形1.1 正弦定理和余弦定理 1.2 应用举例数列2.1 数列 2.2 等差数列 2.3 等比数列不等式3.1 不等关系与不等式 3.2 均值不等式3.3 一元二次不等式及其解法 3.4 不等式的实际应用3.5二元一次不等式(组)与简单线性规划问题人教版高中数学B版选修常用逻辑用语命题与量词第一章1.1 选修1-1 选修1-2 选修4-5 第二章第三章第一章第二章第三章第四章第一章第二章第三章1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的四种形式圆锥曲线与方程2.1 椭圆 2.2 双曲线 2.3 抛物线导数及其应用3.1 导数3.2 导数的运算 3.3导数的应用统计案例推理与证明数系的扩充与复数的引入框图不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法 1.4 绝对值的三角不等式 1.5 不等式证明的基本方法柯西不等式与排序不等式及其应用2.1 柯西不等式2.2 排序不等式2.3平均值不等式(选学)2.4 最大值与最小值问题,优化的数学模型数学归纳法与贝努利不等式 3.1 数学归纳法原理3.2用数学归纳法证明不等式,贝努利不等式第二篇:高中数学目录必修1第一章集合与函数概念1.1 集合阅读与思考集合中元素的个数1.2 函数及其表示阅读与思考函数概念的发展历程1.3 函数的基本性质信息技术应用用计算机绘制函数图象第二章基本初等函数(Ⅰ)2.1 指数函数信息技术应用借助信息技术探究指数函数的性质2.2 对数函数阅读与思考对数的发明探究也发现互为反函数的两个函数图象之间的关系2.3 幂函数第三章函数的应用3.1 函数与方程阅读与思考中外历史上的方程求解信息技术应用借助信息技术方程的近似解3.2 函数模型及其应用信息技术应用收集数据并建立函数模型必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图阅读与思考画法几何与蒙日1.3 空间几何体的表面积与体积探究与发现祖暅原理与柱体、椎体、球体的体积第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质阅读与思考欧几里得《原本》与公理化方法第三章直线与方程3.1 直线的倾斜角与斜率探究与发现魔术师的地毯3.2 直线的方程3.3 直线的交点坐标与距离公式阅读与思考笛卡儿与解析几何第四章圆与方程4.1 圆的方程阅读与思考坐标法与机器证明4.2 直线、圆的位置关系4.3 空间直角坐标系信息技术应用用《几何画板》探究点的轨迹:圆必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型阅读与思考概率与密码必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数阅读与思考三角学与天文学1.3 三角函数的诱导公式1.4 三角函数的图像与性质探究与发现函数y=Asin(ωx+φ)及函数y=Acos(ωx+φ)探究与发现利用单位圆中的三角函数线研究正弦函数、余弦函数的性质信息技术应用1.5 函数y=Asin(ωx+φ)的图像阅读与思考振幅、周期、频率、相位1.6 三角函数模型的简单应用第二章平面向量2.1平面向量的实际背景及基本概念阅读与思考向量及向量符号的由来2.2平面向量的线性运算2.3平面向量的基本定理及坐标表示2.4平面向量的数量积2.5平面向量应用举例阅读与思考向量的运算(运算律)与图形性质第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式信息技术应用利用信息技术制作三角函数表3.2 简单的三角恒等变换必修5第一章解三角形1.1 正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2 应用举例阅读与思考海伦和秦九韶1.3 实习作业第二章数列2.1 数列的概念与简单表示法阅读与思考斐波那契数列信息技术应用2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列的前n项和阅读与思考九连环探究与发现购房中的数学第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4 基本不等式选修1-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词阅读与思考“且”“或”“非”与“交”“并”“补”1.4 全称量词与存在量词第二章圆锥曲线与方程2.1 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.2 双曲线探究与发现2.3 抛物线阅读与思考圆锥曲线的光学性质及其应用第三章导数及其应用3.1 变化率与导数3.2 导数的计算探究与发现牛顿法──用导数方法求方程的近似解3.3 导数在研究函数中的应用信息技术应用图形技术与函数性质3.4 生活中的优化问题举例实习作业走进微积分选修1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用第二章推理与证明2.1 合情推理与演绎推理阅读与思考科学发现中的推理2.2 直接证明与间接证明第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算第四章框图4.1 流程图4.2 结构图信息技术应用用word2002绘制流程图选修2-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.3 双曲线2.4 抛物线第三章空间向量与立体几何3.1 空间向量及其运算阅读与思考向量概念的推广与应用3.2 立体几何中的向量方法选修2-2第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算选修2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2 排列与组合探究与发现组合数的两个性质1.3 二项式定理探究与发现“杨辉三角”中的一些秘密第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2 二项分布及其应用探究与发现服从二项分布的随机变量取何值时概率最大2.3 离散型随机变量的均值与方差2.4 正态分布信息技术应用μ,σ对正态分布的影响第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用选修3-1第一讲早期的算术与几何一古埃及的数学二两河流域的数学三丰富多彩的记数制度第二讲古希腊数学一希腊数学的先行者二毕达哥拉斯学派三欧几里得与《原本》四数学之神──阿基米德第三讲中国古代数学瑰宝一《周髀算经》与赵爽弦图二《九章算术》三大衍求一术四中国古代数学家第四讲平面解析几何的产生一坐标思想的早期萌芽二笛卡儿坐标系三费马的解析几何思想四解析几何的进一步发展第五讲微积分的诞生一微积分产生的历史背景二科学巨人牛顿的工作三莱布尼茨的“微积分”第六讲近代数学两巨星一分析的化身──欧拉二数学王子──高斯第七讲千古谜题一三次、四次方程求根公式的发现二高次方程可解性问题的解决三伽罗瓦与群论四古希腊三大几何问题的解决第八讲对无穷的深入思考一古代的无穷观念二无穷集合论的创立三集合论的进一步发展与完善第九讲中国现代数学的开拓与发展一中国现代数学发展概观二人民的数学家──华罗庚三当代几何大师──陈省身选修3-3第一讲从欧氏几何看球面一平面与球面的位置关系二直线与球面的位置关系和球幂定理三球面的对称性第二讲球面上的距离和角一球面上的距离二球面上的角第三讲球面上的基本图形一极与赤道二球面二角形三球面三角形1.球面三角形2.三面角3.对顶三角形4.球极三角形第四讲球面三角形一球面三角形三边之间的关系二、球面“等腰”三角形三球面三角形的周长四球面三角形的内角和第五讲球面三角形的全等1.“边边边”(s.s.s)判定定理2.“边角边”(s.a.s.)判定定理3.“角边角”(a.s.a.)判定定理4.“角角角”(a.a.a.)判定定理第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体的欧拉公式三用球面多边形的内角和公式证明欧拉公式第七讲球面三角形的边角关系一球面上的正弦定理和余弦定理二用向量方法证明球面上的余弦定理1.向量的向量积2.球面上余弦定理的向量证明三从球面上的正弦定理看球面与平面四球面上余弦定理的应用──求地球上两城市间的距离第八讲欧氏几何与非欧几何一平面几何与球面几何的比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何的意义选修3-4对称与群第一讲平面图形的对称群一平面刚体运动1.平面刚体运动的定义2.平面刚体运动的性质二对称变换1.对称变换的定义2.正多边形的对称变换3.对称变换的合成4.对称变换的性质5.对称变换的逆变换三平面图形的对称群第二讲代数学中的对称与抽象群的概念一 n元对称群Sn思考题二多项式的对称变换思考题三抽象群的概念1.群的一般概念2.直积第三讲对称与群的故事一带饰和面饰思考题二化学分子的对称群三晶体的分类四伽罗瓦理论选修4-1几何证明选讲第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行射影二平面与圆柱面的截线三平面与圆锥面的截线选修4-2第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵的相等二二阶矩阵与平面向量的乘法三线性变换的基本性质(一)线性变换的基本性质(二)一些重要线性变换对单位正方形区域的作用第二讲变换的复合与二阶矩阵的乘法一复合变换与二阶矩阵的乘法二矩阵乘法的性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1.逆变换与逆矩阵2.逆矩阵的性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1.二元一次方程组的矩阵形式2.逆矩阵与二元一次方程组探索与发现三阶矩阵与三阶行列式第四讲变换的不变量与矩阵的特征向量一变换的不变量——矩阵的特征向量1.特征值与特征向量2.特征值与特征向量的计算二特征向量的应用1.Anα的简单表示2.特征向量在实际问题中的应用选修4-4坐标系与参数方程第一讲坐标系一平面直角坐标系二极坐标系三简单曲线的极坐标方程四柱坐标系与球坐标系简介第二讲参数方程一曲线的参数方程二圆锥曲线的参数方程三直线的参数方程四渐开线与摆线选修4-5不等式选讲第一讲不等式和绝对值不等式一不等式1.不等式的基本性质2.基本不等式3.三个正数的算术-几何平均不等式二绝对值不等式1.绝对值三角不等式2.绝对值不等式的解法第二讲讲明不等式的基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式柯西不等式二一般形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式选修4-6初等数论初步第一讲整数的整除一整除1.整除的概念和性质2.带余除法3.素数及其判别法二最大公因数与最小公倍数1.最大公因数2.最小公倍数三算术基本定理第二讲同余与同余方程一同余1.同余的概念2.同余的性质二剩余类及其运算三费马小定理和欧拉定理四一次同余方程五拉格朗日插值法和孙子定理六弃九验算法第三讲一次不定方程一二元一次不定方程二二元一次不定方程的特解三多元一次不定方程第四讲数伦在密码中的应用一信息的加密与去密二大数分解和公开密钥选修4-7优选法与试验设计初步第一讲优选法一什么叫优选法二单峰函数三黄金分割法——0.618法1.黄金分割常数2.黄金分割法——0.618法阅读与思考黄金分割研究简史四分数法1.分数法阅读与思考斐波那契数列和黄金分割2.分数法的最优性五其他几种常用的优越法1.对分法2.盲人爬山法3.分批试验法4.多峰的情形六多因素方法1.纵横对折法和从好点出发法2.平行线法3.双因素盲人爬山法第二讲试验设计初步一正交试验设计法1.正交表2.正交试验设计3.试验结果的分析4.正交表的特性二正交试验的应用选修4-9风险与决策第一讲风险与决策的基本概念一风险与决策的关系二风险与决策的基本概念1.风险(平均损失)2.平均收益3.损益矩阵4.风险型决策探究与发现风险相差不大时该如何决策第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介一马尔可夫链简介1.马尔可夫性与马尔可夫链2.转移概率与转移概率矩阵二马尔可夫型决策简介三长期准则下的马尔可夫型决策理论1.马尔可夫链的平稳分布2.平稳分布与马尔可夫型决策的长期准则3.平稳准则的应用案例第三篇:高中数学目录【人教版】高中数学教材总目录必修一第一章集合与函数概念1.1 集合阅读与思考集合中元素的个数1.2 函数及其表示阅读与思考函数概念的发展历程1.3 函数的基本性质信息技术应用用计算机绘制函数图象实习作业小结第二章基本初等函数(Ⅰ)2.1 指数函数信息技术应用借助信息技术探究指数函数的性质2.2 对数函数阅读与思考对数的发明探究也发现互为反函数的两个函数图象之间的关系2.3 幂函数小结复习参考题第三章函数的应用3.1 函数与方程阅读与思考中外历史上的方程求解信息技术应用借助信息技术方程的近似解3.2 函数模型及其应用信息技术应用收集数据并建立函数模型实习作业小结复习参考题必修二第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图阅读与思考画法几何与蒙日1.3 空间几何体的表面积与体积探究与发现祖暅原理与柱体、椎体、球体的体积实习作业小结复习参考题第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质阅读与思考欧几里得《原本》与公理化方法小结复习参考题第三章直线与方程3.1 直线的倾斜角与斜率探究与发现魔术师的地毯3.2 直线的方程3.3 直线的交点坐标与距离公式阅读与思考笛卡儿与解析几何小结复习参考题第四章圆与方程4.1 圆的方程阅读与思考坐标法与机器证明4.2 直线、圆的位置关系4.3 空间直角坐标系信息技术应用用《几何画板》探究点的轨迹:圆必修三第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术小结复习参考题第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱实习作业小结复习参考题第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型阅读与思考概率与密码小结复习参考题必修四第一章三角函数.1 任意角和弧度制1.2 任意角的三角函数阅读与思考三角学与天文学1.3 三角函数的诱导公式1.4 三角函数的图像与性质探究与发现函数y=Asin(ωx+φ)及函数y=Acos(ωx+φ)探究与发现利用单位圆中的三角函数线研究正弦函数、余弦函数的性质信息技术应用1.5 函数y=Asin(ωx+φ)的图像阅读与思考振幅、周期、频率、相位1.6 三角函数模型的简单应用小结复习参考题第二章平面向量2.1平面向量的实际背景及基本概念阅读与思考向量及向量符号的由来2.2平面向量的线性运算2.3平面向量的基本定理及坐标表示2.4平面向量的数量积2.5平面向量应用举例阅读与思考向量的运算(运算律)与图形性质小结复习参考题第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式信息技术应用利用信息技术制作三角函数表3.2 简单的三角恒等变换必修五第一章解三角形1.1 正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2 应用举例阅读与思考海伦和秦九韶1.3 实习作业小结复习参考题第二章数列2.1 数列的概念与简单表示法阅读与思考斐波那契数列信息技术应用2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列的前n项和阅读与思考九连环探究与发现购房中的数学小结复习参考题第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4 基本不等式选修1-1 第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词阅读与思考“且”“或”“非”与“交”“并”“补”1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.2 双曲线探究与发现2.3 抛物线阅读与思考圆锥曲线的光学性质及其应用小结复习参考题第三章导数及其应用3.1 变化率与导数3.2 导数的计算探究与发现牛顿法──用导数方法求方程的近似解3.3 导数在研究函数中的应用信息技术应用图形技术与函数性质3.4 生活中的优化问题举例实习作业走进微积分选修1-2 第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题第二章推理与证明2.1 合情推理与演绎推理阅读与思考科学发现中的推理2.2 直接证明与间接证明小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题第四章框图4.1 流程图4.2 结构图选修2—1 第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.3 双曲线探究与发现2.4 抛物线探究与发现阅读与思考小结复习参考题第三章空间向量与立体几何3.1 空间向量及其运算阅读与思考向量概念的推广与应用 3.2 立体几何中的向量方法选修2—2 第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用小结复习参考题第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算选修2-3 第一章计数原理1.1 分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2 排列与组合。
人教版高中数学必修四第一章1-2-2同角三角函数的基本关系式《学案》

班级:__________姓名:__________设计人:__________日期:__________♒♒♒♒♒♒♒课前预习·预习案♒♒♒♒♒♒♒温馨寄语在年轻人的颈项上,没有什么东西能比事业心这颗灿烂的宝珠更迷人的了。
——哈菲兹学习目标1.理解同角三角函数的基本关系.2.会利用同角三角函数的基本关系化简、求值、证明恒等式.学习重点同角三角函数的基本关系式的推导,会利用同角三角函数的基本关系式进行三角函数的化简与证明学习难点会用同角三角函数的基本关系式进行三角函数的化简与证明自主学习同角三角函数的基本关系平方关系: .商的关系:.tanα=预习评价1.已知θ是第一象限角且,则cosθ=.2.化简:= .3.已知3sinα+cosα=0,则t a n = .♒♒♒♒♒♒♒知识拓展·探究案♒♒♒♒♒♒♒合作探究1.同角三角函数基本关系设角是一个任意象限角,点P(x,y)为角α终边上任意一点,它与原点的距离为r(r= >0),那么:,请根据三角函数的定义思考下面问题:(1)从以上三角函数的定义,试计算sin2α+cos2α与的值,并根据你计算的结果,写出sin ,cos ,t a n 之间的关系式.(2)同角三角函数的两个基本关系成立的条件各是什么?2.利用同角三角函数关系可以解决哪些问题?教师点拨对同角三角函数基本关系的三点说明(1)关系式中的角一定是同角,否则公式可能不成立,如sin230°+cos260°≠1.(2)同角不要拘泥于形式,将换成或2α也成立,如.(3)商的关系中要注意公式中的隐含条件,cos ≠0,即交流展示——利用基本关系求值1.已知( )A. B. C. D.2.已知,则等于A. B. C. D.3.______.4.已知是第二象限角,,则变式训练1.(2011·山东省潍坊市月考)已知cos α-sin α=-,则sin αcos α的值为()A. B.± C. D.±2.已知tan α=-2,且<α<π,则cos α+sin α=.交流展示——三角函数式的化简5.若,则sinαcosα=A. B. C. D.6.当角α的终边在直线3x+4y=0上时,sin α+cos α=B. C. D.±7.(2012·聊城测试)已知tan α,是关于x的方程x2-kx+k2-3=0的两个实根,且3π<α<π,则cos α+sin α=.变式训练已知,求(1);(2)的值.交流展示——三角恒等式的证明8.求证:.9.证明:(1-tan4A)cos2A+tan2A=1.变式训练求证:学习小结1.三角函数求值的常用方法若已知tan =m,求其他三角函数值,其方法是解方程组求出sin a和cos a的值.若已知tan =m,求形如的值,其方法是将分子、分母同除以co s a(或cos2a)转化为tan 的代数式,再求值.形如a sin2 +bsin •cos +c•cos2 通常把分母看作1,然后用sin2 +cos2 代换,分子分母同除以cos2 再求解.提醒:在应用平方关系求sin 或cos 时,函数值的正、负是由角的终边所在的象限决定的,切不可不加分析,凭想象乱写结果.2.三角函数式化简的本质及关注点(1)本质:三角函数式化简的本质是一种不指定答案的恒等变形,体现了由繁到简的最基本的数学解题原则.(2)关注点:不仅要熟悉和灵活运用同角三角函数的基本关系式,还要熟悉并灵活应用这些公式的等价变形,如sin2α=1-cos2α,cos2α=1-sin2α,1=sin2α+cos2α,sinα=tanα•cosα,cosα= .3.对三角函数式化简的原则(1)使三角函数式的次数尽量低.(2)使式中的项数尽量少.(3)使三角函数的种类尽量少.(4)使式中的分母尽量不含有三角函数.(5)使式中尽量不含有根号和绝对值符号.(6)能求值的要求出具体的值,否则就用三角函数式来表示.4.证明三角恒等式的常用方法证明恒等式的过程就是分析、转化、消去等式两边差异来促成统一的过程,证明时常用的方法有:(1)从一边开始,证明它等于另一边,遵循由繁到简的原则.(2)证明左右两边等于同一个式子.(3)证明左边减去右边等于零或左、右两边之比等于1.(4)证明与原式等价的另一个式子成立,从而推出原式成立.当堂检测1.已知A为三角形的一个内角,且,则cos A−sin A的值为A. B. C. D.2.化简(1+tan2α)·cos2α=__________.3.已知在△ABC中,.(1)求sin A·cos A的值.(2)判断△ABC是锐角三角形还是钝角三角形.(3)求tan A的值.知识拓展在中,,求的值.详细答案♒♒♒♒♒♒♒课前预习·预习案♒♒♒♒♒♒♒【自主学习】(1)sin2α+cos2α=1(2)【预习评价】1.2.cos20°3.♒♒♒♒♒♒♒知识拓展·探究案♒♒♒♒♒♒♒【合作探究】1.(1)sin2α+co s2α= + = =1,由以上计算结果可得出以下结论;sin2α+cos2α=1及tanα= .(2)对于平方关系只需同角即可;对于商的关系第一保证是同角,第二保证α≠kπ+ (k∈Z).2.(1)求值:已知一个角的三角函数值,求这个角的其他三角函数的值;(2)化简三角函数式;(3)证明三角恒等式.【交流展示——利用基本关系求值】1.C.【备注】对于与之间的关系,通过平方可以表达出来.2.A,结合可得,所以3.1【解析】本题主要考查同角三角函数基本关系.原式.4.【解析】本题考查同角三角函数基本关系式的应用.利用同角三角函数基本关系式,已知一个角的一个三角函数值可求这个角的其它三角函数值.,又,∴【变式训练】1.A【解析】由已知得(cos α-sin α)2=sin2α+cos2α-2sin αcos α=1-2sin αcos α=,解得sin αcos α=,故选A.2.【解析】本题主要考查了三角函数的概念,意在考查考生对基本概念的理解和应用能力由tan α=-2,得=-2,又sin2α+cos2α=1,且<α<π,解得sin α=,cos α=-,则sin α+cos α==.【交流展示——三角函数式的化简】5.B【解析】由,得,即t a nα.故选B.6.D【解析】在角α的终边上取点P(4t,-3t)(t≠0),则|OP|=5|t|.根据任意角的三角函数的定义,当t>0时,sin α==-,cos α==,sin α+cos α=;当t<0时,sin α==,cos α==-,sin α+cos α=-. 7.-【解析】∵tan α·=k2-3=1,∴k=±2,而3π<α<π,则tan α+=k=2,得tan α=1,则sin α=cos α=-,∴cos α+sin α=-.【变式训练】(1);(2).的一次或二次齐次式,所以可将分子和分母同除以或,然后将代入求解即可.【备注】注意到的应用.【交流展示——三角恒等式的证明】8.证明: 因为1cos sin sin 1cos x x x x+--(1cos )(1cos )sin sin sin (1cos )x x x x x x +--=- 22221cos sin sin sin 0sin (1cos )sin (1cos )x x x xx x x x ---===--,所以1cos sin =sin 1cos x x x x+-. 9.∵左边=·cos 2A+=+=+==1=右边,∴原等式成立. 【变式训练】右边左边.【解析】通过“切割化弦”将右边分子、分母中的正切化为再进行通分求解.【备注】在三角恒等式的证明中化异为同是基本思想,“1”的代换要灵活运用. 【当堂检测】 1.D【解析】由A 为三角形的内角且,可知,,∴cosA −,.故选D. 2.13.(1)由1sin cos 5A A +=,两边平方,得112sin cos 25A A +⋅=,所以12sin cos 25A A ⋅=-. (2)由(1)得12sin cos 025A A ⋅=-<.又0A π<<,所以cos 0A <, 所以A 为钝角.所以ABC ∆是钝角三角形.(3)因为12sin cos 25A A ⋅=-, 所以22449(sin cos )12sin cos 12525A A A A -=-⋅=+=, 又sin 0,cos 0A A ><,所以sin cos 0A A ->,所以7sin cos 5A A -=. 又1sin cos 5A A +=,所以43sin ,cos 55A A ==-. 所以4sin 45tan 3cos 35A A A ===--. 【知识拓展】解:∵,①∴,即,∴.∵,∴,.∴.∵,∴.②①+②,得.①−②,得.∴.【解析】本题主要考查同角三角函数基本关系以及三角形中函数符号的判定。
山东省高中数学必修四(人教B版)同步教学课件:第一章+基本初等函数(14份)123

6
tanα=csoinsαα=
3= 3
2.
3
当α是第四象限角时,
sinα=- 1-cos2α=- tanα=csoinsαα=- 2.
1-
332=-
6 3.
(3)∵tanα=- 22<0,∴α是第二、四象限角.
由tanα=csoinsαα=- 22, sin2α+cos2α=1,
解析
(1)由tanα=
sinα csα=-3sinα,代入所求
式得45s-inα3-sin2α- +33ssininαα=-1012sisninαα=-56.
(2)原式=2sin2α-c32ocso2αs+ α·ssiinnα2+α 5cos2α
=2tan2α-32tanα+5·1+t1an2α
2.商数关系: tanα=csoinsαα .
思考探究 1.同角三角函数的基本关系式对任意角α都成立吗? 提示 平方关系对任意角都成立.商数关系对任意不等于 kπ+π2(k∈Z)的角都成立.
2.你知道“同角”的含义吗? 提示 “同角”有两层含义,一是“角相同”,二是对 “任意”一个角(在使函数有意义的前提下)的关系式都成立, 与角的表达形式无关.如:sin23α+cos23α=1等.
变式训练2 已知tanα=2,求下列各式的值: (1)2ccoossαα+-23ssiinnαα; (2)4sin2α-1 9cos2α; (3)4sin2α-3sinαcosα-5cos2α.
由csoinsAA=
2 3
sin2A+cos2A=1
得,cos2A=191,∴sin2A=121.
∴sinA=
22 11 .
答案
22 11
名师点拨 1.当已知一个角的某一个三角函数值时,利用两个关系 式,就可以求出这个角的另外两个三角函数值.用平方关系时 注意符号的选取. 2.除了掌握两个基本公式外,还要熟练掌握其等价形 式: sin2α+cos2α=1⇔sin2α=1-cos2α⇔cos2α=1-sin2α; tanα=csoinsαα⇔sinα=tanα·cosα.
高中数学人教B版必修四讲义:第一章 1.3 1.3.1 第二课时 正弦型函数y=Asin(ωx+φ) Word版含答案

1.3.1正弦函数的图象与性质第二课时正弦型函数y=A sin(ωx+φ)(1)函数y=A sin(ωx+φ)的初相、振幅、周期、频率分别为多少?(2)将y=sin(x+φ)(其中φ≠0)的图象怎样变换,能得到y=sin x的图象?(3)函数y =A sin x ,x ∈R(A >0且A ≠1)的图象,可由正弦曲线y =sin x ,x ∈R 怎样变换得到?(4)函数y =sin ωx ,x ∈R(ω>0且ω≠1)的图象,可由正弦曲线y =sin x ,x ∈R 怎样变换得到?[新知初探]1.函数y =A sin(ωx +φ),A >0,ω>0中参数的物理意义[点睛] 当A <0或φ<0时,应先用诱导公式将x 的系数或三角函数符号前的数化为正数,再确定初相φ.如函数y =-sin ⎝⎛⎭⎫2x -π4的初相不是φ=-π4. 2.φ,ω,A 对函数y =sin(x +φ)图象的影响 (1)φ对函数y =sin(x +φ),x ∈R 的图象的影响(2)ω(ω>0)对y =sin(ωx +φ)的图象的影响(3)A (A >0)对y =A sin(ωx +φ)的图象的影响[点睛] (1)A 越大,函数图象的最大值越大,最大值与A 是正比例关系.(2)ω越大,函数图象的周期越小,ω越小,周期越大,周期与ω为反比例关系. (3)φ大于0时,函数图象向左平移,φ小于0时,函数图象向右平移,即“加左减右”.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)函数y =A sin(ωx +φ),x ∈R 的最大值为A .( ) (2)函数y =3sin(2x -5)的初相为5.( )(3)由函数y =sin ⎝⎛⎭⎫x +π3的图象得到y =sin x 的图象,必须向左平移.( ) (4)把函数y =sin x 的图象上点的横坐标伸长到原来的3倍就得到函数y =sin 3x 的图象.( )答案:(1)× (2)× (3)× (4)×2.函数y =13sin ⎝⎛⎭⎫13x +π6的周期、振幅、初相分别是( ) A .3π,13,π6B .6π,13,π6C .3π,3,-π6D .6π,3,π6答案:B3.为了得到函数y =sin(x +1)的图象,只需把函数y =sin x 的图象上所有的点( ) A .向左平行移动1个单位长度 B .向右平行移动1个单位长度 C .向左平行移动π个单位长度 D .向右平行移动π个单位长度 答案:A4.将函数y =sin x 的图象上所有点的横坐标缩短到原来的14倍(纵坐标不变)得________的图象.答案:y =sin 4x[典例] 说明y =-2sin ⎝⎛⎭⎫2x -π6+1的图象是由y =sin x 的图象经过怎样变换得到的. [解] [法一 先伸缩后平移]y =sin x 的图象――――――――――――――――――→各点的纵坐标伸长到原来的2倍且关于x 轴作对称变换y =-2sin x 的图象――――――――――→各点的横坐标缩短到原来的12y=-2sin 2x 的图象π−−−−−−−→12向右平移个单位长度y =-2sin ⎝⎛⎭⎫2x -π6的图象―――――――――→向上平移1个单位长度y =-2sin ⎝⎛⎭⎫2x -π6+1的图象. [法二 先平移后伸缩]y =sin x 的图象――――――――――――――――→各点的纵坐标伸长到原来的2倍且关于x 轴作对称变换y =-2sin x 的图象π−−−−−−−→6向右平移个单位长度y =-2sin x -π6的图象―――――――――――→各点的横坐标缩短到原来的12y =-2sin ⎝⎛⎭⎫2x -π6的图象―――――――――――→向上平移1个单位长度 y =-2sin ⎝⎛⎭⎫2x -π6+1的图象.由函数y =sin x 的图象通过变换得到函数y =A sin(ωx +φ)的图象的步骤[活学活用]1.将函数y =sin ⎝⎛⎭⎫2x -π6向左平移π6个单位,可得到函数图象是( ) A .y =sin 2x B .y =sin ⎝⎛⎭⎫2x -π6 C .y =sin ⎝⎛⎭⎫2x +π6 D .y =sin ⎝⎛⎭⎫2x -π3 解析:选C y =sin ⎝⎛⎭⎫2x -π6的图象π−−−−−−→6向左平移个单位y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6-π6=sin ⎝⎛⎭⎫2x +π6的图象.2.把函数y =f (x )的图象向左平移π4个单位长度,向下平移1个单位长度,然后再把所得图象上每个点的横坐标伸长到原来的2倍(纵坐标保持不变),得到函数y =sin x 的图象,则y =f (x )的解析式为( )A .y =sin ⎝⎛⎭⎫2x -π4+1 B .y =sin ⎝⎛⎭⎫2x -π2+1 C .y =sin ⎝⎛⎭⎫12x +π4-1 D .y =sin ⎝⎛⎭⎫12x +π2-1解析:选B 将函数y =sin x 的图象上每个点的横坐标缩短到原来的12(纵坐标保持不变),得到函数y =sin 2x 的图象,将所得图象向上平移1个单位长度,得到函数y =sin 2x +1的图象,再将所得图象向右平移π4个单位长度,得到函数y =sin 2⎝⎛⎭⎫x -π4+1=sin2x -π2+1的图象.故选B.[典例] 如图是函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的图象的一部分,求此函数的解析式.[解] [法一 逐一定参法] 由图象知A =3, T =5π6-⎝⎛⎭⎫-π6=π, ∴ω=2πT=2, ∴y =3sin(2x +φ).∵点⎝⎛⎭⎫-π6,0在函数图象上, ∴0=3sin ⎝⎛⎭⎫-π6×2+φ. ∴-π6×2+φ=k π,得φ=π3+k π(k ∈Z).∵|φ|<π2,∴φ=π3.∴y =3sin ⎝⎛⎭⎫2x +π3. [法二 待定系数法]由图象知A =3.∵图象过点⎝⎛⎭⎫π3,0和⎝⎛⎭⎫5π6,0,∴⎩⎨⎧πω3+φ=π,5πω6+φ=2π,解得⎩⎪⎨⎪⎧ω=2,φ=π3.∴y =3sin ⎝⎛⎭⎫2x +π3. [法三 图象变换法]由A =3,T =π,点⎝⎛⎭⎫-π6,0在图象上,可知函数图象由y =3sin 2x 向左平移π6个单位长度而得,所以y =3sin 2⎝⎛⎭⎫x +π6,即y =3sin ⎝⎛⎭⎫2x +π3.给出y =A sin(ωx +φ)的图象的一部分,确定A ,ω,φ的方法(1)第一零点法:如果从图象可直接确定A 和ω,则选取“第一零点”(即“五点法”作图中的第一个点)的数据代入“ωx +φ=0”(要注意正确判断哪一点是“第一零点”)求得φ.(2)特殊值法:通过若干特殊点代入函数式,可以求得相关待定系数A ,ω,φ.这里需要注意的是,要认清所选择的点属于五个点中的哪一点,并能正确代入列式.(3)图象变换法:运用逆向思维的方法,先确定函数的基本解析式y =A sin ωx ,再根据图象平移规律确定相关的参数.[活学活用]如图为函数y =A sin(ωx +φ)(A >0,ω>0) 的图象的一部分,试求该函数的解析式. 解:由图可得:A =3,T = 2|MN |=π.从而ω=2πT =2, 故y =3sin(2x +φ),又∵2×π3+φ=2 k π,k ∈Z ,∴φ=-2π3+2 k π,k ∈Z.∴y =3sin ⎝⎛⎭⎫2x -2π3. [典例] 在函数y =2sin ⎝⎭⎫4x +2π3的图象的对称中心中,离原点最近的一个中心的坐标是________.[解析] 设4x +2π3=k π(k ∈Z),得x =k π4-π6(k ∈Z)∴函数y =2sin ⎝⎛⎭⎫4x +2π3图象的对称中心坐标为⎝⎛⎭⎫k π4-π6,0(k ∈Z). 取k =1得⎝⎛⎭⎫π12,0满足条件. [答案] ⎝⎛⎭⎫π12,0正弦型函数对称轴、对称中心的求法[活学活用]将本例中对称中心改为对称轴,其他条件不变,则离y 轴最近的一条对称轴方程为________.解析:由4x +2π3=k π+π2,得x =k π4-π24, 取k =0时,x =-π24满足题意.答案:x =-π24[典例] 已知弹簧上挂着的小球做上下振动时,小球离开平衡位置的位移s (cm)随时间t (s)的变化规律为s =4sin ⎝⎛⎭⎫2t +π3,t ∈[0,+∞).用“五点法”作出这个函数的简图,并回答下列问题:(1)小球在开始振动(t =0)时的位移是多少?(2)小球上升到最高点和下降到最低点时的位移分别是多少? (3)经过多长时间小球往复振动一次? [解] 列表如下,描点、连线,图象如图所示.(1)将t =0代入s =4sin ⎝⎛⎭⎫2t +π3,得s =4sin π3=23, 所以小球开始振动时的位移是2 3 cm.(2)小球上升到最高点和下降到最低点时的位移分别是4 cm 和-4 cm. (3)因为振动的周期是π,所以小球往复振动一次所用的时间是π s.解三角函数应用问题的基本步骤[活学活用]通常情况下,同一地区一天的温度随时间变化的曲线接近函数y =A sin(ωx +φ)+b 的图象.2018年2月下旬某地区连续几天最高温度都出现在14时,最高温度为14 ℃;最低温度出现在凌晨2时,最低温度为零下2 ℃.(1)求出该地区该时段的温度函数y =A sin(ωx +φ)+b (A >0,ω>0,|φ|<π,x ∈[)0,24)的表达式;(2)29日上午9时某高中将举行期末考试,如果温度低于10 ℃,教室就要开空调,请问届时学校后勤应该开空调吗?解:(1)由题意知⎩⎪⎨⎪⎧ A +b =14,-A +b =-2,解得⎩⎪⎨⎪⎧A =8,b =6,易知T 2=14-2,所以T =24,所以ω=π12,易知8sin ⎝⎛⎭⎫π12×2+φ+6=-2, 即sin ⎝⎛⎭⎫π12×2+φ=-1, 故π12×2+φ=-π2+2k π,k ∈Z , 又|φ|<π,得φ=-2π3,所以y =8sin ⎝⎛⎭⎫π12x -2π3+6(x ∈[0,24)). (2)当x =9时,y =8sin ⎝⎛⎭⎫π12×9-2π3+6=8sin π12+6<8sin π6+6=10.所以届时学校后勤应该开空调.层级一 学业水平达标1.最大值为12,最小正周期为2π3,初相为π6的函数表达式是( )A .y =12sin ⎝⎛⎭⎫x 3+π6 B .y =12sin ⎝⎛⎭⎫x 3-π6 C .y =12sin ⎝⎛⎭⎫3x -π6 D .y =12sin ⎝⎛⎭⎫3x +π6 解析:选D 由最小正周期为2π3,排除A 、B ;由初相为π6,排除C.2.为了得到函数y =sin ⎝⎛⎭⎫x -π3的图象,只需把函数y =sin x 的图象( )A .向左平移π3个单位长度B .向右平移π3个单位长度C .向上平移π3个单位长度D .向下平移π3个单位长度解析:选B 将函数y =sin x 的图象向右平移π3个单位长度,所得图象对应的函数解析式为y =sin ⎝⎛⎭⎫x -π3. 3.已知简谐运动f (x )=2sin ⎝⎛⎭⎫π3x +φ⎝⎛⎭⎫|φ|<π2的图象经过点(0,1),则该简谐运动的最小正周期T 和初相φ分别为( )A .T =6,φ=π6B .T =6,φ=π3C .T =6π,φ=π6D .T =6π,φ=π3解析:选A T =2πω=2ππ3=6,∵图象过(0,1)点,∴sin φ=12.∵-π2<φ<π2,∴φ=π6.4.将函数y =sin ⎝⎛⎭⎫x +π6的图象向左平移π个单位长度,则平移后的函数图象( ) A .关于直线x =π3对称B .关于直线x =π6对称C .关于点⎝⎛⎭⎫π3,0对称D .关于点⎝⎛⎭⎫π6,0对称 解析:选A 函数y =sin ⎝⎛⎭⎫x +π6的图象向左平移π个单位长度,得到y =sin ⎝⎛⎭⎫x +π6+π=-sin ⎝⎛⎭⎫x +π6的图象,其对称轴方程为x +π6=k π+π2,k ∈Z ,即x =k π+π3,k ∈Z ,令k =0,得x =π3,故选A.5.函数y =sin ⎝⎛⎭⎫2x -π3在区间⎣⎡⎦⎤-π2,π上的简图是( )解析:选A 当x =0时,y =sin ⎝⎛⎭⎫-π3=-32<0, 故可排除B 、D ;当x =π6时,sin ⎝⎛⎭⎫2×π6-π3=sin 0=0,排除C. 6.将函数y =sin x 的图象向左平移φ(0≤φ<2π)个单位长度后,得到函数y =sin ⎝⎛⎭⎫x -π6的图象,则φ=________.解析:因为φ∈[0,2π),所以把y =sin x 的图象向左平移φ个单位长度得到y =sin (x +φ)的图象,而sin ⎝⎛⎭⎫x +11π6=sin ⎝⎛⎭⎫x +11π6-2π=sin ⎝⎛⎭⎫x -π6,即φ=11π6. 答案:11π67.已知函数f (x )=sin(ωx +φ)(ω>0)的图象如图所示,则ω=________. 解析:由题意设函数周期为T , 则T 4=2π3-π3=π3,∴T =4π3. ∴ω=2πT =32.答案:328.将函数y =sin ⎝⎛⎭⎫x -π3图象上各点的纵坐标不变,横坐标伸长为原来的5倍,可得到函数__________________的图象.解析:y =sin ⎝⎛⎭⎫x -π3的图象――――――――――――→图象上各点的纵坐标不变横坐标伸长为原来的5倍y =sin ⎝⎛⎭⎫15x -π3的图象. 答案:y =sin ⎝⎛⎭⎫15x -π39.已知函数f (x )的图象上每一点的纵坐标保持不变,横坐标扩大到原来的2倍,然后把所得的图象沿x 轴向左平移π2个单位长度,这样得到的图象与y =12sin x 的图象相同,求f (x )的解析式.解:反过来想,y =12sin x π−−−−−−−→2向右平移个单位长度y =12sin ⎝⎛⎭⎫x -π2−−−−−−−→1横坐标变为原来的倍2 y =12sin ⎝⎛⎭⎫2x -π2,即f (x )=12sin ⎝⎛⎭⎫2x -π2. 10.已知函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π)的图象的一段如图所示,求它的解析式.(1)求函数f (x )的解析式;(2)求函数f (x )的最小正周期、频率、振幅、初相. 解:(1)由图象可知A =2,T 2=5π6-π6=2π3,∴T =4π3,ω=2πT =32.将N ⎝⎛⎭⎫π6,-2代入y =2sin ⎝⎛⎭⎫32x +φ得, 2sin ⎝⎛⎭⎫32×π6+φ=-2,∴π4+φ=2k π-π2,φ=2k π-3π4(k ∈Z). ∵|φ|<π,∴φ=-3π4.∴函数的解析式为y =2sin ⎝⎛⎭⎫32x -3π4. (2)由(1),知f (x )的最小正周期为4π3=8,频率为34π,振幅为2,初相为-3π4. 层级二 应试能力达标1.如图所示的是一个半径为3米的水轮,水轮的圆心O 距离水面2米,已知水轮每分钟旋转4圈,水轮上的点P 到水面的距离y (米)与时间t (秒)满足关系式y =A sin(ωt +φ)+2,则( )A .ω=152π,A =3 B .ω=2π15,A =3 C .ω=2π15,A =5 D .ω=152π,A =5 解析:选B 由题意知A =3,ω=2π×460=2π15.2.要得到函数y =sin ⎝⎛⎭⎫4x -π3的图象,只需将函数y =sin 4x 的图象( ) A .向左平移π12个单位B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位解析:选B 由y =sin ⎝⎛⎭⎫4x -π3=sin 4⎝⎛⎭⎫x -π12得,只需将y =sin 4x 的图象向右平移π12个单位即可,故选B.3.已知函数f (x )=sin ⎝⎛⎭⎫ωx +π4(ω>0)的最小正周期为π,则该函数的图象( ) A .关于直线x =π8对称B .关于点⎝⎛⎭⎫π4,0对称 C .关于直线x =π4对称D .关于点⎝⎛⎭⎫π8,0对称解析:选A 依题意得T =2πω=π,ω=2,故f (x )=sin ⎝⎛⎭⎫2x +π4,所以f ⎝⎛⎭⎫π8=sin ⎝⎛⎭⎫2×π8+π4=sin π2=1,f ⎝⎛⎭⎫π4=sin ⎝⎛⎭⎫2×π4+π4=sin 3π4=22,因此该函数的图象关于直线x =π8对称,不关于点⎝⎛⎭⎫π4,0和点⎝⎛⎭⎫π8,0对称,也不关于直线x =π4对称.故选A. 4.把函数y =sin ⎝⎛⎭⎫5x -π2的图象向右平移π4个单位长度,再把所得图象上各点的横坐标缩短为原来的12倍,所得函数图象的解析式为( )A .y =sin ⎝⎛⎭⎫10x -3π4B .y =sin ⎝⎛⎭⎫10x -7π2 C .y =sin ⎝⎛⎭⎫10x -3π2 D .y =sin ⎝⎛⎭⎫10x -7π4 解析:选D 将原函数图象向右平移π4个单位长度,得y =sin ⎣⎡⎦⎤5⎝⎛⎭⎫x -π4-π2=sin ⎝⎛⎭⎫5x -7π4的图象,再把y =sin ⎝⎛⎭⎫5x -7π4的图象上各点的横坐标缩短为原来的12倍得y =sin ⎝⎛⎭⎫10x -7π4的图象.5.将函数y =sin ⎝⎛⎭⎫2x -π4图象上所有点的横坐标保持不变,纵坐标________(填“伸长”或“缩短”)为原来的________倍,将会得到函数y =3sin ⎝⎛⎭⎫2x -π4的图象. 解析:A =3>0,故将函数y =sin ⎝⎛⎭⎫2x -π4图象上所有点的横坐标保持不变,纵坐标伸长为原来的3倍即可得到函数y =3sin ⎝⎛⎭⎫2x -π4的图象. 答案:伸长 36.将函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ≤π2图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图象,则f ⎝⎛⎭⎫π6=________. 解析:将y =sin x 的图象向左平移π6个单位长度可得y =sin ⎝⎛⎭⎫x +π6的图象,保持纵坐标不变,横坐标变为原来的2倍可得y =sin ⎝⎛⎭⎫12x +π6的图象,故f (x )=sin ⎝⎛⎭⎫12x +π6,所以f ⎝⎛⎭⎫π6=sin ⎝⎛⎭⎫12×π6+π6=sin π4=22. 答案:227.求函数y =sin ⎝⎛⎭⎫2x +π3图象的对称轴、对称中心. 解:令2x +π3=k π+π2(k ∈Z),得x =k π2+π12(k ∈Z).令2x +π3=k π,得x =k π2-π6(k ∈Z).即对称轴为直线x =k π2+π12(k ∈Z),对称中心为⎝⎛⎭⎫k π2-π6,0(k ∈Z).8.如图为函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫|φ|<π2的一个周期内的图象. (1)写出f (x )的解析式;(2)若y =g (x )与y =f (x )的图象关于直线x =2对称,写出g (x )的解析式;(3)指出g (x )的周期、频率、振幅、初相. 解:(1)由图知A =2,T =7-(-1)=8, ∴ω=2πT =2π8=π4,∴f (x )=2sin ⎝⎛⎭⎫π4x +φ. 将点(-1,0)代入,得0=2sin ⎝⎛⎭⎫-π4+φ. ∵|φ|<π2,∴φ=π4,∴f (x )=2sin ⎝⎛⎭⎫π4x +π4. (2)作出与f (x )的图象关于直线x =2对称的图象(图略),可以看出g (x )的图象相当于将f (x )的图象向右平移2个单位长度得到的,∴g (x )=2sin ⎣⎡⎦⎤π4(x -2)+π4=2sin ⎝⎛⎭⎫π4x -π4. (3)由(2)知,g (x )的周期T =2ππ4=8,频率f =1T =18,振幅A =2,初相φ0=-π4.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教-B-版【高中】数学必修4第一章导学案 2020-12-12【关键字】方法、问题、难点、良好、合作、提升、发现、掌握、了解、研究、规律、位置、思想、成果、重点、能力、方式、关系、推广、满足、引导、强化、完善、巩固、加强、中心第 一 章 第 1 节 第 1 课时 【学习目标】1.了解角的概念及推广。
2.掌握终边相同的角及象限角的概念。
【学习重点】角的概念的推广。
【学习难点】1.角的旋转合成。
2.终边相同的角的集合。
【学习方法】阅读,讨论,练习 【学习过程】一、预习成果展示(学生以思维导图形式展示预习成果) 二、小组探究解疑(小组合作学习新知,讨论解疑) 1.角的概念的推广: 2.角的加减法运算: 3.终边相同的角的集合: 4.象限角(轴上角):三、反馈矫正点拨(将难点问题集中呈现,教师点拨)1.(1)分别写出终边在x 正半轴和负半轴,y 正半轴和负半轴,x 轴和y 轴上的角的集合。
(2)分别写出第一象限、第二象限、第三象限和第四象限的角的集合。
2.在直角坐标系中,判断下列语句的真假: (1)第一象限的角一定是锐角。
(2)终边相同的角一定相等。
(3)相等的角终边一定相同。
(4)小于90°的角一定是锐角。
(5)象限角为钝角的终边一定在第二象限。
(6)终边在直线y=3x 上的象限角表示为0060360k +⋅,k ∈Z 。
3.在0°~360°范围内,找出与下列各角终边相同的角,并判断它们是第几象限角: (1)-150° (2)650° (3)-950°15′4.射线OA 绕端点O 逆时针旋转270°到达OB 位置,由OB 位置顺时针旋转一周到达OC 位置,求∠AOC 的大小?四、强化巩固练习(通过精选习题训练巩固新知) 1.若α分别是第一,二,三,四象限的角,那么2α分别是第几象限角?α2的终边又分别在哪呢?(你能总结出一点规律吗)2.小明发现自己的手表走慢了10分钟,他想把时间调准那么时针和分针各旋转了多大的角度呢?3.(1)若︒<<<︒-9090βα ,则βα-的取值范围是_________________. (2)若︒<<<︒-6030βα ,则βα-的取值范围是_________________. 五、反思总结提升(绘制完善思维导图总结本课内容) 【课后作业】《阳光课堂》对应练习(一)课题:弧度制和弧度制与角度制的换算第 一 章 第 1 节 第 2 课时【学习目标】1.了解弧度的意义。
2.掌握弧度与角度的换算方法。
3.加强自身的计算能力。
【学习重点】弧度与角度的换算。
【学习难点】记住一些特殊角度的弧度。
【学习方法】记忆,练习,讨论 【学习过程】一、预习成果展示(学生以思维导图形式展示预习成果) 二、小组探究解疑(小组合作学习新知,讨论解疑) 1. 1弧度的角(弧度制): 2.特殊角度与弧度的换算:3.推导弧长与扇形面积公式(弧度制表示):三、反馈矫正点拨(将难点问题集中呈现,教师点拨)1.已知扇形的周长为6 cm,面积是2cm ,则扇形的圆心角的弧度数是( ) A .1 B.4 C.1或4 D.2或4 四、强化巩固练习(通过精选习题训练巩固新知) 1.将下列角度化为弧度(1)-240° (2)1080° (3)22°30′ (4)-180° 2.将下列弧度化为角度(1)12π (2)23π- (3)35π (4)2 (5)-3 3.把下列各角化为0到π2的角加上πk 2(Z k ∈)的形式(1)-64° (2)718π- (3)400° (3)-24.在半径为5cm 的扇形中,圆心角为2rad ,求扇形的面积。
5.已知集合M={x |x=2πk +4π ,Z k ∈},P={x |x=4πk +2π ,Z k ∈},则( ) A. M=P B. M ⊆P C. M ⊇P D. M ⋂P=Φ6.集合A={x |24ππππ+<<+k x k , Z k ∈},集合B={x |6+x-2x ≥0},则A ⋂B=?五、反思总结提升(绘制完善思维导图总结本课内容)【课后作业】《阳光课堂》对应练习(二) 课题:三角函数的定义第 一 章 第 2 节 第 1 课时 【学习目标】1.理解并掌握正弦,余弦,正切的定义。
2.了解余切,正割,余割的定义。
3.掌握三角函数在各象限的符号。
【学习重点】1.三角函数的定义。
2.三角函数在各象限的符号。
【学习难点】由定义判断三角函数在各象限的符号。
【学习方法】阅读,记忆,讨论 【学习过程】一、预习成果展示(学生以思维导图形式展示预习成果) 二、小组探究解疑(小组合作学习新知,讨论解疑) 1. 三角函数的定义:2.一些特殊角的各个三角函数值:3.三角函数在各象限的符号:三、反馈矫正点拨(将难点问题集中呈现,教师点拨) 1.已知角α终边经过点P (21-,23),则cos α=____,sin α=____,tan α=____,cot α=____,sec α=____,csc α=____2.求23π的各三角函数值。
3.已知角α的终边在直线y=2x 上,求sin α,cos α,tan α的值。
4.确定下列各三角函数的符号 (1)sin156° (2)cos 516π(3)cos (-80°) (4)tan (817π-) (5)sin (3π-) (6)tan556°12′ 四、强化巩固练习(通过精选习题训练巩固新知) 1.填空:(1)若sin α>0,且cos α<0,则α是第____象限角;(2)若tan α>0,且cos α<0,则α是第____象限角; (3)若sin α<0,且tan α<0,则α是第____象限角; (4)若cos α>0,且sin α<0,则α是第____象限角。
2.设A 是三角形的一个内角,那么在sinA ,cosA ,tanA 中,哪些可能是负值? 五、反思总结提升(绘制完善思维导图总结本课内容) 【课后作业】《阳光课堂》对应练习(三)课题:三角函数的定义第 一 章 第 1 节 第 2 课时 【学习目标】1.理解并掌握正弦,余弦,正切的定义。
2.了解余切,正割,余割的定义。
3.掌握三角函数在各象限的符号。
【学习重点】1.三角函数的定义。
2.三角函数在各象限的符号。
【学习难点】由定义判断三角函数在各象限的符号。
【学习方法】练习 【学习过程】一、预习成果展示(学生以思维导图形式展示预习成果) 二、强化巩固练习(通过精选习题训练巩固新知)1.设角α终边上一点P (-4a ,3a )(a ≠0)则2sin α+cos α=( )。
A. 52B. 52±C. 52- D. 与α有关但不确定。
2.若角α终边经过点P (2sin30°,-2cos30°)则sin α=( )。
A.21 B. 21- C. 23- D. 33-3.使得代数式αααtan cos sin -有意义的α的取值范围是________。
4.sin 2θ=53 ,542cos -=θ ,则θ角的终边在第____象限。
5. 已知α是第三象限角,且2sinα=2sinα-,则2α是第____象限角。
6.已知函数f (x )=xxx x x x x x cot cot tan tan cos cos sin sin +++则函数f (x )的值域是 。
7. 若sin α·cos α>0 则角α的终边在第 象限。
8.已知∆ABC 中sin cos 0A B ⋅<则∆ABC 为( )。
A. 钝角三角形B. 锐角三角形C. 直角三角形D.任意三角形 9. 已知α是第三象限角,则下列各式中不成立的是( )。
A. sin α+cos α<0B. tan α-sin α<0C. cos α-cot α<0D.cot α⨯csc α<010.已知α是第二象限角,则点P (sin (cos α),cos (sin α))在第____象限。
三、反馈矫正点拨(将难点问题集中呈现,教师点拨) 1.若)21(α2sin < 1 则α的取值范围是____。
2.已知点()39,2P a a -+在角α的终边上,且cos α0≤,sin α>0则α的取值范围是? 四、、反思总结提升(绘制完善思维导图总结本课内容) 【课后作业】三角函数的定义练习题1~5 课题:单位圆与三角函数线第 一 章 第 2 节 第 3 课时 【学习目标】1.能正确用三角函数线表示任意角的三角函数值。
2.培养数形结合的良好思维习惯。
【学习重点】利用单位圆有关的三角函数线表示三角函数值。
【学习难点】利用单位圆有关的三角函数线表示三角函数值。
【学习方法】阅读,记忆,讨论,练习 【学习过程】一、预习成果展示(学生以思维导图形式展示预习成果) 二、小组探究解疑(小组合作学习新知,讨论解疑)1.单位圆:2.正弦线:3.余弦线:4.正切线:5.分别作出下列各角的正弦线,余弦线,正切线: (1)3π(2)32π- (3)65π (4)613π-6.已知点P (sin α-cos α,tan α)在第一象限,则在[0,2π)内的角α的取值范围是( )。
A. )45,()43,2(ππππ⋃)45,()2,4(ππππ⋃)23,45()43,2(ππππ⋃),43()2,4(ππππ⋃ 三、反馈矫正点拨(将难点问题集中呈现,教师点拨) 1.(1)设24παπ<<,角α的正弦线,余弦线,正切线的数量分别是a ,b 和c ,试比较a ,b ,c 的大小; (2)若432παπ<<,那么a,b,c 的大小关系又如何? 2.证明:若20πα<< ,则sin α+cos α>1 3.证明:若20πα<<,则sin α<α<tan α4.由三角函数线你能否判断sin α-cos α的正负分界线吗?能否判断sin α+cos α的正负分界线吗?四、强化巩固练习(通过精选习题训练巩固新知) 1.确定1cos 1sin -的符号2.(1)在[0,2π)内满足sin α≥21的角α的取值范围是 。
(2)满足sin α≥21的角α的取值范围是 。
(3)满足sin )(32πα+≥21的角α的取值范围是 。
(4)求()2lg 34sin y x =-的定义域五、反思总结提升(绘制完善思维导图总结本课内容) 【课后作业】《阳光课堂》对应练习(四)课题:第 一 章 第 2 节 第 4 课时 【学习目标】同角三角函数的基本关系式(一)【学习重点】同角三角函数的基本关系式的理解与应用。