专题3.1 动量和能量答案2

合集下载

动量和能量一章习题解答

动量和能量一章习题解答
解:根据动量定理(取竖直向下为坐标轴正方向) 所以,安全带对人的平均冲力为 此力为负值说明其方向与取定的坐标轴方向相反,是竖直向上的。
习题3—8 一个人从10.0m深的井中提水,起始桶中装有10.0kg的水,由 于水桶漏水,每升高1.00m要漏去0.20kg的水。求水桶被匀速地从井中 提到井口人所作的功。 解:依题意,桶中水的质量随桶到井底的距离x的变化关系为 因此,水桶被匀速地从井中提到井口人所作的功为
解:∵ ,
45˚ B Y X O A B A 图2-22
∴ (N•s)
[注意:本题已给出坐 标系,用矢量列式进行 计算更方便]
习题3—7 高空作业时系安全带是必要的。假如一质量为51.0kg的人在 操作时不慎从高空跌落下来,由于有安全带的保护,最终使他被悬挂起 来。已知此时人离原处的距离为2.0m,安全带弹性缓冲作用时间为 0.50s,求安全带对人的平均冲力。
(C) A2方向。 (D) A3方向。 解:小球与平板组成的系统在水平方向动量守恒,小球与平板碰撞
后小球仍旧保持原来的水平速度;在竖直方向,由于是完全弹性碰撞而 且小球与平板的质量相等,因而碰撞后两者交换速度,即碰后小球竖直 方向的速度为零。综合上述分析可知,碰撞后小球以原水平速度v向右 运动。所以应该选择答案(C).
习题3―19图
习题3—19 质量为m的平板A(体 积不计),用竖立的弹簧支持而处 在水平位置,如图。从平台上投 掷一个质量为m的球B,球的初速 为v,沿水平方向。球由于重力作 用而下落,与平板发生完全弹性 碰撞,且假定平板是光滑的。则 球与平板碰撞后的运动方向应为 [ ] (A) A0方向。 (B) A1方向。
(2) 由引力势能公式,可得卫星的势能为 (3) 卫星的机械能为

动量与能量综合专题

动量与能量综合专题

动量与能量综合专题一、动量守恒定律动量守恒定律是物理学中的一个重要定律,它表述的是物体动量的变化遵循一定的规律。

当两个或多个物体相互作用时,它们的总动量保持不变。

这个定律的适用范围非常广泛,从微观粒子到宏观宇宙,只要有物体之间的相互作用,就可以应用动量守恒定律来描述。

在理解动量守恒定律时,需要注意以下几点:1、系统:动量守恒定律适用于封闭的系统,即系统内的物体之间相互作用,不受外界的影响。

2、总动量:动量的变化是指物体之间的总动量的变化,而不是单个物体的动量变化。

3、方向:动量是矢量,具有方向性。

在计算动量的变化时,需要考虑动量的方向。

二、能量守恒定律能量守恒定律是物理学中的另一个重要定律,它表述的是能量不能被创造或消灭,只能从一种形式转化为另一种形式。

这个定律的适用范围同样非常广泛,从微观粒子到宏观宇宙,只要有能量的转化和转移,就可以应用能量守恒定律来描述。

在理解能量守恒定律时,需要注意以下几点:1、封闭系统:能量守恒定律适用于封闭的系统,即系统内的能量之间相互转化和转移,不受外界的影响。

2、转化与转移:能量的转化和转移是不同的。

转化是指一种形式的能量转化为另一种形式的能量,而转移是指能量从一个物体转移到另一个物体。

3、方向:能量的转化和转移是有方向的。

在计算能量的变化时,需要考虑能量的方向。

三、动量与能量的综合应用在实际问题中,动量和能量往往是相互的。

当一个物体受到力的作用时,不仅会引起物体的运动状态的变化,还会引起物体能量的变化。

因此,在解决复杂问题时,需要综合考虑动量和能量的因素。

例如,在碰撞问题中,两个物体相互作用后可能会发生弹射、粘合、破碎等情况。

这些情况的发生不仅与物体的动量有关,还与物体的能量有关。

如果两个物体的总动量不为零,它们将会继续运动;如果两个物体的总能量不为零,它们将会继续发生能量的转化和转移。

因此,在解决碰撞问题时,需要综合考虑物体的动量和能量因素。

四、总结动量守恒定律和能量守恒定律是物理学中的两个重要定律,它们分别描述了物体动量的变化和能量的转化和转移遵循的规律。

高中物理解题高手:专题13动量守恒和能量守恒

高中物理解题高手:专题13动量守恒和能量守恒

高中物理解题高手:专题13动量守恒和能量守恒动量守恒和能量守恒[重点难点提示]动量和能量是高考中的必考知识点,考查题型多样,考查角度多变,大部分试题都与牛顿定律、曲线运动、电磁学知识相互联系,综合出题。

其中所涉及的物理情境往往比较复杂,对学生的分析综合能力,推理能力和利用数学工具解决物理问题的能力要求均高,常常需要将动量知识和机械能知识结合起来考虑。

有的物理情景设置新颖,有的贴近于学生的生活实际,特别是多次出现动量守恒和能量守恒相结合的综合计算题。

在复习中要注意定律的适用条件,掌握几种常见的物理模型。

一、解题的基本思路:解题时要善于分析物理情境,需对物体或系统的运动过程进行详细分析,挖掘隐含条件,寻找临界点,画出情景图,分段研究其受力情况和运动情况,综合使用相关规律解题。

⑴由文字到情境即是审题,运用D图象语言‖分析物体的受力情况和运动情况,画出受力分析图和运动情境图,将文字叙述的问题在头脑中形象化。

画图,是一种能力,又是一种习惯,能力的获得,习惯的养成依靠平时的训练。

⑵分析物理情境的特点,包括受力特点和运动特点,判断物体运动模型,回忆相应的物理规律。

⑶决策:用规律把题目所要求的目标与已知条件关联起来,选择最佳解题方法解决物理问题。

二、基本的解题方法:阅读文字、分析情境、建立模型、寻找规律、解立方程、求解验证⑴分步法(又叫拆解法或程序法):在高考计算题中,所研究的物理过程往往比较复杂,要将复杂的物理过程分解为几步简单的过程,分析其符合什么样的物理规律再分别列式求解。

这样将一个复杂的问题分解为二三个简单的问题去解决,就化解了题目的难度。

⑵全程法(又叫综合法):所研究的对象运动细节复杂,但从整个过程去分析考虑问题,选用适合整个过程的物理规律,如两大守恒定律或两大定理或功能关系,就可以很方便的解决问题。

⑶等效法(又叫类比法):所给的物理情境比较新颖,但可以把它和熟悉的物理模型进行类比,把它等效成我们熟知的情境,方便的解决问题。

安徽庐江二中高三物理二轮复习----动量和能量(2)

安徽庐江二中高三物理二轮复习----动量和能量(2)

专题训练——动量和能量(2)一、单项选择题1.如图所示,图线表示作用在某物体上的合外力随时间变化的关系,若物体开始时是静止的,那么( )A .前3 s 内合外力对物体做的功为零B .前5 s 内物体的动能变化量为零C .在前5 s 内只有第1 s 末物体的动能最大D .在前5 s 内只有第5 s 末物体的速率最大2.质量为g k 1023⨯、发动机的额定功率为80kw 的汽车在平直公路上行驶,若汽车所受阻力大小恒为N 3104⨯,则下列说法错误的是( )A .汽车的最大速度是20m/sB .若汽车保持额定功率启动,则当其速度为5m/s 时,加速度为6m/s 2C .汽车维持加速度2m/s 2匀加速运动的时间最多为10sD .汽车以加速度2m/s 2匀加速启动,启动后第2s 末时发动机的实际功率是32kw3.如图甲所示,斜面AB 与水平面BC 是由同种材料制成的。

质量相等的可视为质点的a 、b 两物块,从斜面上的同一位置A 由静止开始下滑,经B 点在水平面上滑行一段时间后停止。

不计经过B 点时的能量损失,用传感器采集到它们的速度—时间图象如图乙所示,则由上述信息判断下列说法正确的是( )A .在斜面上滑行的加速度物块a 比物块b 的小B .在水平面上滑行的距离物块a 比物块b 的小C .与斜面间的动摩擦因数物块a 比物块b 的小D .在整个运动过程中克服摩擦力做的功物块a 比物块b 多4.如图所示,一条轻绳一端通过定滑轮悬挂一个质量为m 的重物,在另一端施加拉力F ,使重物从地面由静止开始加速向上运动。

当重物上升高度为h 时,轻绳断开,不计一切摩擦,则( )A .重物从开始向上加速到轻绳断开的过程中重力势能的增量为FhB .轻绳断开瞬间重物重力的瞬时功率为-2(F -mg )mg 2hC .重物上升过程中机械能守恒D .重物落地前瞬间的动能为Fh ﹢mgh5.质量分别为2m 和m 的A 、B 两球之间压缩一根轻弹簧,静置于光滑水平桌面上。

动量与能量部分习题分析与解答共23页

动量与能量部分习题分析与解答共23页

26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰

28、知之者不如好之者,好之者不如乐之者。——孔子

29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇

30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
13、遵守纪律的风气的培养,只有领 导者本 身在这 方面以 身作则 才能收 到成效 。—— 马卡连 柯 14、劳动者的组织性、纪律性、坚毅 精神以 及同全 世界劳 动者的 团结一 致,是 取得最 后胜利 的保证 。—— 列宁 摘自名言网
15、机会是不守纪律的。量与能量部分习题分析与解 答
11、战争满足了,或曾经满足过人的 好斗的 本能, 但它同 时还满 足了人 对掠夺 ,破坏 以及残 酷的纪 律和专 制力的 欲望。 ——查·埃利奥 特 12、不应把纪律仅仅看成教育的手段 。纪律 是教育 过程的 结果, 首先是 学生集 体表现 在一切 生活领 域—— 生产、 日常生 活、学 校、文 化等领 域中努 力的结 果。— —马卡 连柯(名 言网)

动量和能量

动量和能量

1.机车从静止开始沿平直轨道做匀加速运动,所受的阻力始终不变,在此过程中,下列说法正确的是( )A .机车输出功率逐渐增大B .机车输出功率不变C .在任意两相等时间内,机车动能变化相等D .在任意两相等时间内,机车动量变化大小相等答案:AD详解:阻力不变时的匀加速,说明牵引力恒定,速度逐渐变大,于是根据P = Fv ,P 逐渐增大。

任意两相等的时间内,速度变化大小相等。

于是动量变化大小相等。

动能要有速度的平方,动能变化不等。

2.如图所示,用轻弹簧连接的木块A 和B 放在光滑水平面上,木块A 紧靠竖直墙壁,一颗子弹沿水平方向射入木块B 后留在其中,由子弹、弹簧、木块A 和B 组成的系统,在下列的四个过程中,(1) 动量不守恒,机械能守恒的是( ) (2) 机械能不守恒,动量守恒的是( ) (3) 动量和机械能都守恒的是( )A .子弹进入B 的过程B .带子弹的木块B 向左运动,直到弹簧压缩至最短的过程C .弹簧推着带子弹的木块B 向右运动,直到弹簧恢复原长的过程D .带子弹的木块B 继续向右运动,直到弹簧达到最大伸长答案:(1)BC (2)A (3)D子弹进入B ,机械能必然不守恒,有一部分转化为内能了。

动量守恒。

(注意,因为B 项单独列出木块B 运动,因此认为此时木块B 还没有位移) BCD 三项明显都是机械能守恒,其中满足动量守恒的只有D. 因为BC 情况系统水平方向是要受到墙的作用力的。

3.两个木块A 和B 的质量分别为3=A m kg,2=B m kg ,A 、B 之间用一轻弹簧连接在一起.A 靠在墙壁上,用力F 推B 使两木块之间弹簧压缩,地面光滑,如图3所示。

当轻弹簧具有8J 的势能时,突然撤去力F 将木块B 由静止释放.求:(1)撤去力F 后木块B 能够达到的最大速度是多大?(2)木块A 离开墙壁后,弹簧能够具有的弹性势能的最大值多大?3、s m v m /22= J E m 8.4=图34.(A)如图所示,两个质量都为M 的木块A 、B 用轻质弹簧相连放在光滑的水平地面上,一颗质量为m 的子弹以速度v 射向A 块并嵌在其中,求弹簧被压缩后的最大弹性势能。

高三物理动量、能量计算题专题训练

高三物理动量、能量计算题专题训练

动量、能量计算题专题训练1.(19分)如图所示,光滑水平面上有一质量M=4.0kg 的带有圆弧轨道的平板车,车的上表面是一段长L=1.5m 的粗糙水平轨道,水平轨道左侧连一半径R=0.25m 的41光滑圆弧轨道,圆弧轨道与水平轨道在O ′点相切。

现将一质量m=1.0kg 的小物块(可视为质点)从平板车的右端以水平向左的初速度v 0滑上平板车,小物块与水平轨道间的动摩擦因数μ=0.5。

小物块恰能到达圆弧轨道的最高点A 。

取g=10m/2,求:(1)小物块滑上平板车的初速度v 0的大小。

(2)小物块与车最终相对静止时,它距O ′点的距离。

(3)若要使小物块最终能到达小车的最右端,则v 0要增大到多大?2.(19分)质量m A =3.0kg .长度L =0.70m .电量q =+4.0×10-5C 的导体板A 在足够大的绝缘水平面上,质量m B =1.0kg 可视为质点的绝缘物块B 在导体板A 的左端,开始时A 、B 保持相对静止一起向右滑动,当它们的速度减小到0v =3.0m/s 时,立即施加一个方向水平向左.场强大小E =1.0×105N/C 的匀强电场,此时A 的右端到竖直绝缘挡板的距离为S =2m ,此后A 、B 始终处在匀强电场中,如图所示.假定A 与挡板碰撞时间极短且无机械能损失,A 与B 之间(动摩擦因数1μ=0.25)及A 与地面之间(动摩擦因数2μ=0.10)的最大静摩擦力均可认为等于其滑动摩擦力,g 取10m/s 2(不计空气的阻力)求:(1)刚施加匀强电场时,物块B 的加速度的大小?(2)导体板A 刚离开挡板时,A 的速度大小?(3)B 能否离开A ,若能,求B 刚离开A 时,B 的速度大小;若不能,求B 距A 左端的最大距离。

3.(19分)如图所示,一个质量为M 的绝缘小车,静止在光滑的水平面上,在小车的光滑板面上放一质量为m 、带电荷量为q 的小物块(可以视为质点),小车的质量与物块的质量之比为M :m=7:1,物块距小车右端挡板距离为L ,小车的车长为L 0=1.5L ,现沿平行车身的方向加一电场强度为E 的水平向右的匀强电场,带电小物块由静止开始向右运动,而后与小车右端挡板相碰,若碰碰后小车速度的大小是滑块碰前速度大小的14,设小物块其与小车相碰过程中所带的电荷量不变。

大学物理第三章-动量守恒定律和能量守恒定律-习题及答案

大学物理第三章-动量守恒定律和能量守恒定律-习题及答案
t1
即:作用在两质点组成的系统的合外力的冲量等于系统内两质点动量之和的增 量,即系统动量的增量。 2.推广:n 个质点的情况
t2 t2 n n n n F d t + F d t m v mi vi 0 i外 i内 i i i 1 i 1 i 1 i 1 t1 t1
yv 2
同乘以 ydy,得
y 2 gdty y
积分 得
y
0
y
gdty
yvdt( yv)
0
1 3 1 gy ( yv) 2 3 2
因而链条下落的速度和落下的距离的关系为
2 v gy 3
1/ 2
7
第4讲
动量和冲量
考虑到内力总是成对出现的,且大小相等,方向相反,故其矢量和必为零, 即
F
i 0
n

i内
0

设作用在系统上的合外力用 F外力 表示,且系统的初动量和末动量分别用
5
第4讲
动量和冲量
P0 和 P 表示,则
t2 n n F d t m v mi vi 0 i i 外力 t1
F外 dt=dPFra bibliotek力的效果 关系 适用对象 适用范围 解题分析
*动量定理与牛顿定律的关系 牛顿定律 动量定理 力的瞬时效果 力对时间的积累效果 牛顿定律是动量定理的 动量定理是牛顿定律的 微分形式 积分形式 质点 质点、质点系 惯性系 惯性系 必须研究质点在每时刻 只需研究质点(系)始末 的运动情况 两状态的变化
1
第4讲
动量和冲量
§3-1 质点和质点系的动量定理
实际上,力对物体的作用总要延续一段时间,在这段时间内,力的作用将 积累起来产生一个总效果。下面我们从力对时间的累积效应出发,介绍冲量、 动量的概念以及有关的规律,即动量守恒定律。 一、冲量 质点的动量定理 1.动量:Momentum——表示运动状态的物理量 1)引入:质量相同的物体,速度不同,速度大难停下来,速度小容易停下;速 度相同的物体,质量不同,质量大难停下来,质量小容易停下。 2)定义:物体的质量 m 与速度 v 的乘积叫做物体的动量,用 P 来表示 P=mv 3)说明:动量是矢量,大小为 mv,方向就是速度的方向;动量表征了物体的 运动状态 -1 4)单位:kg.m.s 5)牛顿第二定律的另外一种表示方法 F=dP/dt 2.冲量:Impulse 1)引入:使具有一定动量 P 的物体停下,所用的时间Δt 与所加的外力有关, 外力大,Δt 小;反之外力小,Δt 大。 2)定义: 作用在物体外力与力作用的时间Δt 的乘积叫做力对物体的冲量, 用 I 来表 示 I= FΔt 在一般情况下,冲量定义为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动量和能量 第一讲答案
训练1:(1)根据动量守恒:v M m mv )(0+= 系统机械能的减少量:2220111222
E mv mv Mv mgl μ∆=--= (2)m 、M 相对位移为l ,根据能量守恒得:Q mgl μ=,可解出L
训练2:小球与斜面之间的摩擦力对小球做功使小球的机械能减小,选项A 错误;在小球运动的过程中,重力、摩擦力对小球做功,绳的张力对小球不做功.小球动能的变化等于重力、摩擦力做功之和,故选项B 、D 错误,C 正确. 训练3:(1)由A 到B 过程,根据动能定理:mgR=2
1m v 2 ∴物体到达B 点时的速率v =gR 2=8.0102⨯⨯=4m/s (2)由A 到C 过程,由动能定理:mgR -μmgs =0 ∴ 物体与水平面间的动摩擦因数μ=R /s =0.8/4=0.2 训练4:(1)根据机械能守恒 E k =mgR
(2)根据机械能守恒 ΔE k =ΔE p mv 2=12
mgR 小球速度大小 v=gR 速度方向沿圆弧的切线向下,与竖直方向成30°
(3)根据牛顿运动定律及机械能守恒,在B 点N B -mg=m v B 2R ,mgR =12
mv B 2 解得 N B =3mg 在C 点:N C =mg 训练5: ①小球经过B 点时,重力与支持力的合力提供向心力,由公式可得:R
v m mg F B NB
2=- 解得:mg F NB 3= ②小球离开B 点后做平抛运动,在竖直方向有:221gt R H =- 水平方向有:t v S B = 解以上两式得: R R H S )(2-= ③由R R H S )(2-=,根据数学知识知,当R R H =-(即2
1=H R )时,S 有最大值,其最大值为:H R R S m ===222 训练6:(1)物块沿斜面下滑C 到B 的过程中,在重力、支持力和摩擦力作用下做匀加速运动,设下滑到达斜面底端B 时的速度为v ,则由动能定理可得:21cos 0sin 2
h mgh mg mv μθθ-⋅=- 所以
v = 代入数据解得:0.6=v m/s (2)设物块运动到圆轨道的最高点A 时的速度为v A ,在A 点受到圆轨道的压力为N 。

物块沿圆轨道上滑B 到A 的过程中由动能定理得:2211222
A mg r mv mv -⋅=- 物块运动到圆轨道的最高点A 时,由牛顿第二定律得:r
v m mg N A 2=+ 由以上两式代入数据解得: N =20N
由牛顿第三定律可知,物块运动到圆轨道的最高点A 时,对圆轨道的压力大小N A =N =20N
训练7:20381mv M m E ⎪⎭⎫ ⎝⎛
-=∆ g
h M mv s 20=。

相关文档
最新文档