角平分线定理
角平分线的性质定理及其逆定理

角平分线的性质定理及其逆定理定理一、角平分线的性质定理及其逆定理1.角平分线的性质定理:角平分线上的点到这个角的两边的距离相等。
2.角平分线的逆定理:在角的内部,且到角的两边距离相等的点,在这个角的平分线上。
不难发现,定理1的条件是定理2的结论,同时它的结论又是定理2的条件,它们互为逆定理。
定理1说明了角平分线上点的纯粹性,即:只要是角平分线上的点,它到此角两边一定等距离,而无一例外;定理2反映了角平分线的完备性,即只要是到角两边距离相等的点,都一定在角平分线上,而绝不会漏掉一个。
在实际应用中,前者用来证明线段相等,后者用来证明角相等或证明点在一个角的平分线上。
用数学语言可表示如下:例题一:(1)∵OC平分∠AOB,点P在射线OC上,PD⊥OA于D,PE⊥OB于E∴PD=PE(定理1)(2)∵PD⊥OA,PE⊥OB,PD=PE∴OC平分∠AOB(定理2)例题二:如图,△ABC的ㄥB平分线BD与ㄥC的外角的平分线CE相较于点P。
求证:点P到三边AB、BC、CA所在直线的距离相等。
从P点向边AB做垂线,垂足为F,向BC边作垂线,垂足为G,向AC边作垂线,垂足为H因为BD是角ABC的角平分线所以PF=PG因为CE是角ACB的外角平分线所以PH=PG所以PF=PG=PH即,点P到三这AB,BC,CA所在直线的距离相等从P点向边AB做垂线,垂足为F,向BC边作垂线,垂足为G,向AC边作垂线,垂足为H因为BD是角ABC的角平分线所以PF=PG因为CE是角ACB的外角平分线所以PH=PG所以PF=PG=PH即,点P到三这AB,BC,CA所在直线的距离相等这题对吗?。
角平分线三个定理

角平分线三个定理全文共四篇示例,供读者参考第一篇示例:角平分线三个定理是几何学中非常重要的定理之一,它们可以帮助我们更好地理解和运用角平分线的性质。
本文将详细介绍这三个定理的含义和推理过程。
第一个定理是角平分线定理。
所谓角平分线定理指的是:如果一条直线将一个角分成两个大小相等的角,那么这条直线就是这个角的平分线。
换句话说,如果一条直线BD分割一个角ABC,且∠ABD≌∠CBD,则BD就是∠ABC的平分线。
证明这个定理的方法比较简单,可以通过相似三角形或等角相等辅助线的方法进行。
通过这三个定理,我们可以更深入地了解角平分线的性质,进而应用到解决各种与角平分线相关的几何问题中。
熟练掌握和灵活运用这三个定理对于提高我们的几何学水平至关重要。
希望通过本文的介绍,读者们能够更好地理解和掌握角平分线的性质,从而在学习和工作中取得更好的成绩。
愿大家在几何学的道路上不断进步,探索出更多有趣的数学定理和问题!第二篇示例:角平分线三个定理是解析几何中非常重要的定理,对于角平分线的性质进行了深入的研究和总结。
在平面几何中,角平分线是连接一个角的两边中点的线段,将这个角分成两个相等的角。
下面我们来详细介绍一下角平分线的三个定理。
第一个角平分线定理是角平分线定理,它的表述如下:若一条线段从一个角内的顶点引出,又将这个角分成两个相等的小角。
这个定理是解析几何中最基本的定理之一,也是很多其他定理的基础。
通过角平分线定理,我们可以得出许多结论和推论,解决很多关于角平分线的问题。
第二个角平分线定理是角平分线的长度比定理,它的表述如下:如果一条角平分线把一个角分成两个相等的小角,则这条角平分线上的一点到角的两边的距离分别等于这两条边的比值。
这个定理在解决角平分线长度问题时非常有用,能够帮助我们准确计算角平分线的长度。
通过这三个角平分线定理,我们可以更好地理解和运用角平分线的性质,解决各种与角平分线相关的问题。
在解析几何的学习中,掌握这些定理能够提高我们的解题能力和几何思维,帮助我们更好地理解平面几何知识,为进一步学习提供良好的基础。
三角形角平分线的三个定理证明

三角形角平分线的三个定理证明今天我们来聊聊三角形的角平分线,不知道大家有没有听过这个名字?别着急,别皱眉头,咱们今天就用轻松的方式聊聊它的三个定理。
嗯,对了,别一听到“定理”就想着这些东西都很难。
其实说白了,就是一些数学小规律,咱们捋顺了,分分钟能掌握!三角形的角平分线,就好比一个人站在三角形的顶点,把顶点的角一分为二,这两部分就叫做“角平分线”。
所以说,角平分线其实就是把角给“平分”了。
就像咱们吃饭的时候,大家都吃的差不多,没谁吃得特别多,也没谁吃得特别少,吃到最后大家都差不多,能吃个七八分饱。
这就是角平分线的第一步,它把角“分得很均匀”。
好啦,咱们先来看看第一个定理——角平分线定理。
这个定理说的是:在一个三角形里,如果你把其中一个角分成两个相等的角,那么角平分线就会把对边分成两段,比例就和另外两个边的长度成正比。
说起来可能有点绕,不过理解一下其实很简单。
比如说你有一个三角形,角A被角平分线分成了两个相等的角,接着角平分线碰到了对边BC,这时候,角平分线把对边BC分成了两段——一段叫做BD,一段叫做DC。
于是,BD和DC的比例就跟AB和AC的比例一样。
所以,简单来说,角平分线把对边分得“恰如其分”,好像是两个好朋友,他们不争不抢,分得刚刚好。
怎么说呢?简直就是“分蛋糕分得不多不少”。
这个定理,其实很直白,理解起来就像你吃一块蛋糕,吃到自己的一块,剩下的也给大家分得差不多,公平又公正。
接下来我们来说第二个定理,角平分线的外角定理。
听着名字可能有点“高大上”,但说白了就是,三角形外面的某些角也能有它的分法。
这里的关键点是,三角形的一条角平分线延伸到外面,它和外面的对边之间有一个特殊的关系。
你看,假如角平分线从角A出发,穿过三角形的外边,这时候,外面这个角的大小恰好等于它与角平分线的内角的加和的一半。
也就是说,它跟内部的角平分线内外的配合得当,像是一对搭档,互相配合,默契十足。
所以,这个定理就像我们常说的“知己知彼,百战不殆”,内外呼应,整体协作,效果好到飞起。
任意三角形角平分线定理

任意三角形角平分线定理1. 角平分线的概念在我们学习几何的时候,三角形总是让人又爱又恨。
嘿,别急!今天我们要聊的是一个非常有趣的概念——角平分线。
简单来说,角平分线就是把一个角一分为二的线段,像是把一块大蛋糕切成两半,既公平又美味。
想象一下,你的朋友问你:“嘿,能不能给我一块大蛋糕的好处?”你就可以拿着刀,轻轻一划,两块蛋糕就诞生了,大家都有份,甜蜜无比。
说到这儿,大家应该能明白,角平分线的作用其实就像是在几何世界里分蛋糕一样,能帮助我们更好地理解三角形的性质。
1.1 角平分线的性质好啦,角平分线可不止是把角切开那么简单,它还有个神奇的属性。
你知道吗?在三角形中,角平分线不仅能分割角度,还能帮助我们找出与三角形边的关系。
这就像是你和朋友在玩“你说我猜”的游戏,猜对了,就能得到奖励。
而这个奖励,就是我们所说的比例关系:角平分线把对边分成的两部分与其他两边的长度成比例。
这简直就是几何界的“黄金法则”啊,任何时候用上都能让你倍儿有面子。
1.2 角平分线定理的公式说到这里,大家肯定很好奇,这个神奇的比例到底是什么?别担心,我来告诉你。
设想一下,三角形的顶点是A,底边是BC,D是角平分线与BC的交点。
根据角平分线定理,AD/DB = AC/AB。
这就像是在说,“嘿,AC和AB这两个边的长度比例,就是你在对边上分出来的那两段的长度比例。
”简直太有趣了,像在玩拼图游戏,一不小心就拼出了新花样!2. 角平分线的应用那么,这个角平分线定理到底有什么用呢?首先,我们来聊聊日常生活中的应用。
比如说,你在装修房子,想在墙上挂画,如何找到最完美的位置?没错,角平分线就可以帮助你找到那个理想的挂画位置,让画的左右对称,看起来美观大方,像是家里的小艺术品。
而在学校里,几何题中的角平分线也是常客,帮助我们解锁更多问题。
2.1 解决实际问题再举个例子,你跟朋友去游乐场,想找到最短的排队时间。
聪明的你可以用角平分线来判断哪些游乐设施的排队情况更有利。
三角形角平分线的全部定理

三角形角平分线的全部定理
内角平分线定理指出,三角形内一角的平分线所分对边成比例。
换句话说,如果在三角形内部的一个角上作平分线,那么这条平分
线将三角形的对边分成的两部分的比例相等。
外角平分线定理指出,三角形外一角的平分线所分对边成比例。
换句话说,如果在三角形外部的一个角上作平分线,那么这条平分
线将三角形的对边分成的两部分的比例相等。
角平分线定理指出,如果在三角形的一个内角上作平分线,那
么这条平分线将这个内角分成两个相等的角。
这些定理在解决三角形内角平分线、外角平分线和角平分线的
相关问题时非常有用。
它们可以被用来证明三角形内部或外部的角
平分线所分对边的比例关系,或者用来证明两个角相等的问题。
这
些定理在几何学中有着广泛的应用,并且对于理解和解决三角形相
关的问题非常重要。
角平分线比例定理

角平分线比例定理
角平分线比例定理是:从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线。
角平分线成比例定理是数学中的一种定理,该定理指出三角形内角平分线分对边所得的两条线段和这个角的两边对应成比例。
角平分线定理1:是描述角平分线上的点到角两边距离定量关系的定理,也可看作是角平分线的性质。
角平分线定理2:是将角平分线放到三角形中研究得出的线段等比例关系的定理,由它以及相关公式还可以推导出三角形内角平分线长与各线段间的定量关系。
直角三角形 角平分线定理

直角三角形角平分线定理
直角三角形的角平分线定理是指:在一个直角三角形中,如果从直角顶点引一条线段,将对角线分成两段,那么这条线段所在的直线就是这个直角顶点的两个相邻角的平分线。
具体来说,设一个直角三角形ABC,其中∠C=90度,AD为BC的中线,DE是AC的垂线,则AD是∠A和∠B的平分线,即∠CAD=∠BAD=∠A/2,∠CBD=∠ABD=∠B/2。
这个定理的证明可以利用几何知识进行证明,例如相似三角形、角度和定理等。
但简单来说,我们可以利用三角函数的定义,根据正弦、余弦、正切等函数来计算证明。
总之,直角三角形的角平分线定理在几何学中有着重要的应用价值,可以帮助我们更好地理解和应用三角形的相关知识。
初中三角形角平分线定理

初中三角形角平分线定理
三角形角平分线定理:三角形内角平分线所对边所得的两条线段和这个角的两边对应成比例。
定理证明:
在ΔABC中,有角平分线AD,过点D作边AB,AC的内错角平分线,交于点E。
过点D作边AB,AC的角平分线,交于点F。
过点D作边AB,AC的垂线,交于点G。
由角平分线引出角内、外两条线,再利用角的对称性画出另外两边。
由于角平分线定理可以说明角平分线上点到角两边距离相等,所以问题转化为证明两个三角形全等,证明三角形全等常用边角边、角边角、HL 定理。
定理应用:
遇到角平分线,可构造等腰三角形,用等腰三角形的性质来解决问题。
可过角平分线上一点作垂直构造全等三角形,用ASA来证明等腰三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
角平分线定理
角平分线的定义:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线。
■ 三角形的角平分线定义:三角形顶点到其内角的角平分线交对边的点连的一条线段,叫三角形的角平分线。
【注】三角形的角平分线不是角的平分线,是线段。
角的平分线是射线。
■拓展:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等!(即内心)。
■定理1:在角平分线上的任意一点到这个角的两边距离相等。
■逆定理:在一个角的内部(包括顶点),且到这个角的两边距离相等的点在这个角的角平分线上。
■定理2:三角形一个角的平分线分对边所成的两条线段与这个角的两邻边对应成比例,
如:在△ABC中,BD平分∠ABC,则AD:DC=AB:BC
提供四种证明方法:
已知,如图,AM为△ABC的角平分线,求证AB/AC=MB/MC
已知和证明1图
证明:方法1:(面积法)
S△ABM=(1/2)·AB·AM·sin∠BAM,
S△ACM=(1/2)·AC·AM·sin∠CAM,
∴S△ABM:S△ACM=AB:AC
又△ABM和△ACM是等高三角形,面积的比等于底的比,
证明2图
即三角形ABM面积S:三角形ACM面积S=BM:CM ∴AB/AC=MB/MC
方法2(相似形)
过C作CN‖AB交AM的延长线于N
则△ABM∽△NCM
∴AB/NC=BM/CM
又可证明∠CAN=∠ANC
∴AC=CN
∴AB/AC=MB/MC
证明3图方法3(相似形)
过M作MN‖AB交AC于N
则△ABC∽△NMC,
∴AB/AC=MN/NC,AN/NC=BM/MC
又可证明∠CAM=∠AMN
∴AN=MN
∴AB/AC=AN/NC
∴AB/AC=MB/MC
方法4(正弦定理)
作三角形的外接圆,AM交圆于D,
由正弦定理,得,
证明4图
AB/sin∠BMA=BM/sin∠BAM,
∴AC/sin∠CMA=CM/sin∠CAM
又∠BAM=∠CAM,∠BMA+∠AMC=180°
sin∠BAM=sin∠CAM,sin∠BMA=sin∠AMC, ∴AB/AC=MB/MC。