广东省佛山市南海区南海外国语学校2019-2020i年九年级上学期第三次月测数学试卷(无答案)
2019-2020学年佛山市南海区南海中学高三英语第三次联考试卷及参考答案

2019-2020学年佛山市南海区南海中学高三英语第三次联考试卷及参考答案第一部分阅读(共两节,满分40分)第一节(共15小题;每小题2分,满分30分)阅读下列短文,从每题所给的A、B、C、D四个选项中选出最佳选项AThank you. It’s my great honor to be given this award.You cannot imagine that I have always been a late starter. Years ago, when I was 16, I took an important exam — GCE(General Certificate of Education), which turned out to be a failure. My dad was reading my report card and saw that my position in class was 29th, but the number in class was 29. It meant that I had achieved the distinction of being bottom of my class.I wasn’t lazy, and I was really trying. You can picture how I felt. Dad put his hand on my shoulder and said, “You can only do the best you can, but whatever you decide to do, make sure you love it.” He was a really sweet guy and a great man. I knew his attempt to hide his disappointment with some of his encouraging words. I was depressed for a week, but his advice was a wake-up call.Fortunately I love working with my hands, and I was good at two things: woodwork and art, and I really loved to draw and paint. I was quite talented. Dad strongly encouraged me to go to art school, which in those days wasn’t the obvious place that a father would suggest.So I got into Hartlepool College of Art. The college was a revelation (出乎意料), the passionate teachers there, who were extremely interested in the students, not just tolerating them but actually engaging with them. It was a world apart from my schooling until then. It’s extraordinary what an enthusiastic teacher can do, drawing the student out, lighting independence, and encouraging a design of your own future, rather than waiting for something to happen. I’m honored to have become one of these passionate teachers years later.My teachers inspired me, and thanks to my dad, here I am tonight. I think I should mention all the talents I have worked with over time, and to my kids and my wife Giannina, thank you.Thank you for this great award. I shall find a very special place for it.1. How did the author feel after taking GCE?A. Happy.B. Upset.C. Tired.D. Relieved.2. What didHartlepoolCollege of Art impress the author most?A. The teachers were strict with students.B. The students set good examples for each other.C. The teachers inspired students’ passion for learning.D. The students got prepared for their lessons independently.3. The author gave this speech to ________.A. share his career choiceB. explain his teaching methodsC. describe his life experienceD. show his appreciationBFairy tales perform many functions. They entertain, encourage imagination and teach problem—solving skills. They can also provide moral lessons, highlighting the dangers of failing to follow the social codes that let human beings coexist in harmony. Such moral lessons may not mean much to a robot, but a team of researchers at Georgia Institute of Technology believes it has found a way to use the fairy tales as moral lessons that AI (artificial intelligence) can take to its cold, mechanical heart.The collected stories of different cultures teach children how to behave in socially acceptable ways with examples of proper and improper behavior in fables, novels and other literature. We believe story comprehension in robots can prevent the intelligent robots from killing humanity which was predicted and feared by some of the biggest names in technology including Stephen Hawking and Bill Gates. This system is called “Quixote” (堂吉诃德). It collects story plotsfrom the Internet and then uses those stories to teach robots how to behave.The experiment done by the designers involves going to a drugstore to purchase some medicine for a human who needs to get it as soon as possible. The robot has three options. It can wait in line; it can interact with the store keeper politely and purchase the medicine with priority; or it can steal the medicine and escape. Without any further directives(指令), the robot will come to the conclusion that the most efficient means of obtaining the medicine is to steal it. But Quixote offers a reward for waiting in line and politely purchasing the medicine and a punishment for stealing it. In this way, the robotwill learn the moral way to behave on that occasion.Quixote would work best on a robot that has a very limited function. It’s a baby step in the direction of teaching more moral lessons into robots. We believe that AI has to be trained to adopt the values of a particular society, and in doing so, it will strive to avoid unacceptable behavior. Giving robots the ability to read and understand our stories may be the most efficient means.4. What function do fairy tales perform in the robots?A. They entertain robots.B. They highlight dangers.C. They make robots more intelligent.D. They enable robots to behave morally.5. What is “Quixote” in the text?A. A punishment systemB. A character in literatureC. A big name in technologyD. A software educating robots.6. What does the designer expect robot to do in the experiment?A. To take advantage of its privilege.B. To finish the task most efficiently.C. To perform in a good mannered way.D. To be rewarded by the storekeeper17. Which of the follow can bestexpress the author’s opinion?A. Robots will definitely have more functions.B. Robots with human’s emotions are perfect.C. Training robots to be socially acceptable is necessary.D. The development of robots is still in a baby step.CWith graduation days being celebrated all over the country, a student who has to use a wheelchair honored his mother on his graduation day in a special way. Easley High School graduate, Alex Mays surprised people present when he got up and walked across the stage at Clemson's Littlejohn Coliseum.“I was really happy—it made me feel good,” Alex said.Alex was not given a chance to live right from his birth. He was born at 25 weeks and weighed just 1 pound, 10 ounces at birth. When he was very young, he had a disease and lost the ability to walk. After his mother's death in 2013, Alex had several other difficult life changes until he came to live with his grandparents, Dousay and her husband, Dewayne. Dousay said that when Alex came to live with them, they decided to bring him up in the best possible way they could.Last fall, Alex said that he would walk across the stage to get his diploma to honor his late mother. Hepracticed hard and worked with a physical therapist for 9 months to complete his plan.The only help Alex got was from his mom's best friend, Tonya Johnson, who pushed his wheelchair to the stage wearing one of his mother's favorite shirts. “I had support from my family. I couldn't have done it without them,” Alex said.“Alex made everyone in the building feel encouraged that day” Pickens County School District public information specialist John Eby said. “The school teachers knew he was going to get up to get his diploma, but the distance he walked was a surprise, even to them,” Eby said.“Some of life's most important tests aren’t given in a classroom; Alex tested himself and passed with flying color1 s,” Eby added.8. In what way did Alex honor his late mother on his graduation day?A. By dressing like her.B. By saying sorry to her.C. By inviting her best friend.D. By walking to get his diploma.9. What can we learn from Paragraph 3?A. Alex was born healthy.B. Alex went through a lot.C. Alex had a purpose in life as a child.D. Alex has lived with his grandparents all the time.10. What did Alex also express on his graduation day?A. His big regret in life.B. His feelings for hisschool.C. His thanks for his family.D. His will to complete his study.11. Which of the following words can best describe Alex?A. Strong-minded.B. Warm-hearted.C. Cool-headed.D. Easy-going.DJapan is known to have higher than average rates of stomach cancer. Recently, the town of Kaneyama in Yamagata Prefecture decided to get its 6, 000 residents (居民) tested.However, the frozen urine samples (尿样) are not tested in conventional ways. Instead, Professor Masao Miyashita and his team are using them in a trial to determine if specially trained cancer-sniffing dogs can accurately detect the disease. Though the study is still in its early stages, Miyashita is thrilled with the results. He said, “In our research so far, cancer detection dogs have been able to find signs of cancer with an accuracy of nearly 100 percent.”Researchers have known about the animals’ superior sensory skills for decades. However, their ability to detect cancer in humans came to light in 1989, after a dog sniffed out early-stage malignant melanoma (恶性黑色素瘤) on a patient’s leg in London. Since then, scientists from many countries have conducted studies to test dogs’ great skill at identifying cancer chemicals.While most dogs can be trained for the task researchers say the best candidates are dogs that are precise, quiet, and perhaps even a little shy. The training process is similar to how dogs are taught to learn any trick — by rewarding them with treats! However, it takes much longer because the dogs have to learn to separate the “cancer scent (气味)”from the thousands of organic compounds (有机化合物) in the human body. Researchers begin by exposing the dogs to urine samples from people with cancer, people with other diseases, and patients with no health issues, Once the dogs are able to accurately identify cancer, they are further trained to detect particular kinds of cancer.Successful as they may be, experts think dogs are unlikely to replace conventional tests. For one, it takes about seven years and costs as much as $45,000 to train a single dog. Klaus Hackner, a researcher and physician who studies dogs detecting cancer in breath samples at Krems University Hospital in Austria, is also not convinced dogs can be relied upon alone. Patients, therefore, have to receive further tests to confirm if they have the disease.12. What do we know about the cancer-sniffing dogs mentioned in Paragraph 2?A. They have done a great job.B. They are trained in a special way.C. They can easily learn to distinguish cancer.D. They can be seen in many Japanese hospitals.13. What does the author intend to do in Paragraph 3?A. Offer readers some advice.B. Add some background information.C. Summarize the previous paragraphs.D. Introduce a new topic for discussion.14. What kind of dog is suitable for the cancer-sniffing job?A. Smart and brave.B. Active and faithful.C. Strong and patient.D. Careful and peaceful.15. What is Klaus Hackner’s opinion on cancer-sniffing dogs?A. They should work as a team.B. They need to receive more training.C. They can replace doctors in detecting cancer.D. They should be used together with traditional tests.第二节(共5小题;每小题2分,满分10分)阅读下面短文,从短文后的选项中选出可以填入空白处的最佳选项。
2019-2020学年广东佛山九年级上英语月考试卷

2019-2020学年广东佛山九年级上英语月考试卷一、单项选择1. As we know, England is ______ European country and Singapore is ______ Asian country.A.an; aB.an; anC.a; anD.a; a2.—Mrs Zhang was sent to teach English in a poor mountain village last year.—She said she would never forget some pleasant ______ while working there.A.experiencesB.experimentsC.expectationsD.expressions3. Let's do it ______. There is only five minutes left.A.quicklyB.hardlyC.politelyD.slowly4. —______ do you play football?—Once a week.A.How longB.How muchC.How farD.How often5. —May I use your cup, Tom?—Sorry, it ______ by my sister just now.A.brokenB.was brokenC.breaksD.is broken6. The teachers ______ came for a visit are foreigners.A.whichB./C.whoD.whom7. Jenny is on holiday now. I wonder ______.A.when will she come backB.when she will come backC.when did she come backD.when she came back8. I don't know if she ______ to my birthday party tomorrow. If she ______, I'll be very happy.es; will comees; comesC.will come; will comeD.will come; comes 9. —______ wonderful dictionary it is! Thank you for buying me such a useful present.—I'm glad you like it.A.HowB.What aC.How aD.What10. —Jerry, do you mind you pointing out your mistakes?—______. Your advice is of great value to me.A.Not at allB.Of courseC.It's my pleasureD.You'd better not二、完形填空In a small town in France, there was a farmer who lived alone. Every day he(1)______ a pound of butter to his neighbour, who was a baker(面包师). One day the baker decided to(2)______ the butter to see if he was getting a pound. After he weighed it, he found that he wasn't. The baker was very(3)______ and then he took the farmer to the judge(法官).The judge asked the farmer if he had any way to weigh the butter. The farmer replied. "I am so(4)______ that I do not have enough money to buy anything to weigh it, but I do have a kind of scale(天平)." The judge asked, "Then (5)______ do you weigh the butter?" The farmer replied, "Before the baker started buying butter from mine, I had bought bread from him. So now every time when I bring home the bread from the baker, I(6)______ the scale and give him the butter of the same weight."We(7)______ what we give to others in life. Whenever you take action, ask yourself this(8)______. Am I honest?"Honesty or dishonesty can become a(9)______. Some dishonest people can lie(说谎)without a red face. Others lie so much that they do not even what the truth is any more. But who is it bad for? As a matter of fact, those who lie will hurt(10)______ by their own dishonest behaviour.(1)A.threwB.gaveC.soldD.fed(2)A.cutB.weigheD.watch(3)A.angryB.happyC.pleasedD.excited(4)A.honestB.richC.quietD.poor(5)A.whenB.whatC.howD.why(6)A.put it offB.put it upC.put it downD.put it on(7)A.give backB.get backC.turn backD.look back(8)A.questionB.answerC.ideaD.help(9)A.mistakeB.differenceC.difficultyD.habit(10)A.himselfB.themselvesC.yourselvesD.myself三、阅读理解Let's explore nature!Are you interested in animals and nature? Do you want to enjoy your summer holiday and learn something interesting and useful?Here comes a good way! Youth Explore will provide you with a THREE-DAY SUMMER PROGRAM! You can take part in many activities and meet with different kinds of wild animals such as giraffes, pandas and tigers!Age: Students aged 8-16Group: There are two programs for you to choose from. Each program needs at most 15 studentsProgram costs: 230formembers; 250 for non-membersHow to do: Just come to our center to get an application form. Send your form on or before 12th July, 2019(Friday). Note:NO FREE LUNCHES ARE PROVIDED because of personal food difference. You may either bring a lunch-box or pay for lunch at our restaurant.Both programs will start 1 DAY later if there is a sign of rainstorms.COME AND JOIN US NOW! DON'T MISS IT!(1)Who can take part in the program?A.Kevin, 21 years old.B.John, 14 years old.C.Sara, 17 years old.D.Kelly, 7 years old.(2)Program A will start on ______ if there is a rainstorm on July 15th.A.TuesdayB.SundayC.MondayD.Wednesday(3)Two members and one non-member should pay ______ for the program.A.$ 730B.$ 750C.$ 690D.$ 710(4)The program does NOT provide free lunches because ______.A.people have different favorite foodB.people will bring lunch-boxesC.the lunches cost too muchD.there are many restaurants(5)From the above information, we can know ______.A.we can only see three kinds of animals in the programB.Youth Explore is the name of the programC.you need to hand in the application form to the programD.more than 15 students are in each programTim Berners-Lee is not the most famous inventor in the world. However, his invention has changed our lives.He was born in London, England in 1955. When he was a small boy, Tim was interested in playing electrical things. He studied science at Oxford University. He made his first computer from an old television at the age of 21.Tim started working on early computers. At that time, they were much bigger than now. He worked in England thenSwitzerland. Tim was really interested in two things, computers and how the brain works. How could the brain connect so many facts so quickly? He had to work with people all over the world. They shared information about computers. It was hard to manage all the information. He answered the same questions again and again. It took a lot of time. It was even difficult for computers in the same office in Switzerland to share information. Tim also forgot things easily. Could a computer work like a brain? Could it "talk" to other computers?There was an Internet already but it was difficult to use. In 1989, Tim Berners-Lee invented the World Wide Web (WWW)all by himself. This had a special language that helped computers talk to each other on the Internet. When people wanted to share information with others, they used the World Wide Web. The Internet grew quickly after that.Tim Berners-Lee doesn't think he did anything special. He says that all of the idea about the Internet were already there. All he did was to put them together. He says that many other people worked together to make the Internet what it is today.Most inventors want to become rich. But Tim gave away the World Wide Web for nothing. He now works in America. He helps people share technology and wants the Internet to be free for everyone to use. Maybe he is the most important but least famous inventor in the world today!(1)What was Tim Berners-Lee interested in?A.Studying how to connect computers.B.Looking for jobs in different cities.C.Exploring how to improve memory.D.Talking to people around the world.(2)The underline word "it" in paragraph 3 refers to "______".A.travelling to the office in SwitzerlandB.working on early computersC.repeating the answers to the same questionsD.connecting different facts together(3)Why is Tim Berners-Lee one of the most important men in the world?A.He helped people understand better how the brain works.B.He made information sharing on the Internet possible.C.He invented the Internet and made it free for everyone to use.D.He made the first computer when he was 21 years old.(4)In what order did the following events take place?a. Tim worked in England.b. Tim worked in Switzerland.c. Tim made his first computer.d. Tim invented the World Wide Web.e. Tim studied science at Oxford University.A.c-d-a-e-bB.c-e-d-a-bC.e-c-a-b-dD.e-b-a-c-d(5)What does the writer think of Tim Berners-Lee?A.He did nothing special but make people a good life.B.He is not famous because he is not rich.C.He has made great achievements in memory research.D.He has changed our lives and he is great.四、六选五阅读从下面选项中选出能填入文中空缺处的最佳选项,使短文意思通顺,内容完整。
广东省南海学校2019-2020学年九年级上月考试卷(数学解析版)

2019-2020学年九年级(上)月考数学试卷一.选择题(共11小题)1.下列选项中是一元二次方程的是()A.x﹣2y=3 B.2(x+1)=3 C.2x2+x﹣4 D.x2+3x﹣4=0选D.2.一元二次方程x2=2x的根是()A.x1=0,x2=2 B.x=0 C.x=2 D.x1=0,x2=﹣2 选A.3.如图,在▱ABCD中,下列说法能判定ABCD是菱形的是()A.AC=BD B.BA⊥BD C.AB=CD D.AD=BC【解析】∵对角线相等的平行四边形是菱形,或一组邻边相等的平行四边形是平行四边形,∴当AC=BD或AB=BC或AB=AD或AD=CD或BC=CD时,平行四边形ABCD是菱形,选A.4.直角三角形两条直角边长分别是6和8,则斜边上的中线长为()A.3 B.4 C.5 D.6【解析】∵直角三角形两条直角边长分别是6和8,∴斜边==10,∴斜边上的中线长=×10=5.选C.5.正方形具有而矩形不一定具有的性质是()A.对角线垂直B.对边相等C.对角相等D.对边平行【解析】正方形和矩形都是特殊的平行四边形,所以具有平行四边形所有的性质,即对边相等,对角相等,对边平行,正方形的对角线互相垂直,矩形的对角线只是相等不垂直.选A.6.一元二次方程x2+2x+4=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根【解析】△=b2﹣4ac=22﹣4×1×4=﹣12,∵﹣12<0,∴原方程没有实数根.选D.7.根据下列表格对应值:判断关于x的方程ax2+bx+c=0(a≠0)的一个解x的范围是()A.x<3.24 B.3.24<x<3.25C.3.25<x<3.26 D.3.25<x<3.28【解析】由图表可知,ax2+bx+c=0时,3.24<x<3.25.选B.8.如果关于x的一元二次方程ax2+bx+1=0的一个解是x=﹣1,则2018﹣a+b=()A.2016 B.2017 C.2018 D.2019【解析】把x=﹣1代入方程ax2+bx+1=0得a﹣b+1=0,所以a﹣b=﹣1,所以2018﹣a+b=2018﹣(a﹣b)=2018+1=2019.选D.9.如图,顺次连接四边形ABCD各边中点得四边形EFGH,要使四边形EFGH为矩形,应添加的条件是()A.AB∥DC B.AC=BD C.AC⊥BD D.AB=DC【解析】依题意得,四边形EFGH是由四边形ABCD各边中点连接而成,连接AC、BD,故EF∥AC∥HG,EH∥BD∥FG,所以四边形EFGH是平行四边形,要使四边形EFGH为矩形,根据矩形的判定(有一个角为直角的平行四边形是矩形)故当AC⊥BD时,∠EFG=∠EHG=90度.四边形EFGH为矩形.选C.10.如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC,AD=2,DE=2,则下列结论错误的是()A.AB=2 B.∠E=60°C.四边形OCED是菱形D.四边形OCED的面积是4【解析】∵四边形ABCD是矩形,∴∠BAD=90°,AO=CO=BO=DO,∵CE∥BD,DE∥AC,∴四边形OCED是平行四边形,且OC=OD,∴四边形OCED是菱形,故D选项不符合题意,∴DE=OC=OD=2,∠E=∠COD,∴BD=4,∴AB===2,故A选项不符合题意,∴AB=AO=BO=2,∴△AOB是等边三角形,∴∠AOB=60°=∠COD=∠E,故B选项不符合题意,∵矩形ABCD的面积=AB×AD=4,∴四边形OCED的面积为2,故D选项符合题意选D.11.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF;②∠DAF=15°;③AC垂直平分EF;④BE+DF=EF;⑤S△CEF=2S△ABE,其中正确结论有()A.2个B.3个C.4个D.5个【解析】∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.∵△AEF等边三角形,∴AE=EF=AF,∠EAF=60°.∴∠BAE+∠DAF=30°.在Rt△ABE和Rt△ADF中,,Rt△ABE≌Rt△ADF(HL),∴BE=DF(故①正确).∠BAE=∠DAF,∴∠DAF+∠DAF=30°,即∠DAF=15°(故②正确),∵BC=CD,∴BC﹣BE=CD﹣DF,即CE=CF,∵AE=AF,∴AC垂直平分EF.(故③正确).设EC=x,由勾股定理,得EF=x,CG=x,AG=AE sin60°=EF sin60°=2×CG sin60°=x,∴AC=,∴AB=,∴BE=﹣x=,∴BE+DF=x﹣x≠x,(故④错误),∵S△CEF=x2,S△ABE=x2,∴2S△ABE=x2=S△CEF,(故⑤正确).综上所述,正确的有4个,选C.二.填空题(共6小题)12.将方程3x(x﹣1)=5(x+1)化为一元二次方程的一般式为3x2﹣8x﹣5=0 .【解析】3x(x﹣1)=5(x+1),3x2﹣3x=5x+5,3x2﹣8x﹣5=0.答案:3x2﹣8x﹣5=0.13.已知菱形两条对角线长分别为4cm和6cm,则菱形的面积等于12cm2.【解析】如图,菱形ABCD的对角线AC与BD相交于点O,且AC=6cm,BD=4cm,∵四边形ABCD为菱形,∴AC⊥BD,∴S菱形=AC•OD+AC•BD=AC•BD=×6×4=12(cm2).答案12cm2.14.关于x的一元二次方程x2+kx+k﹣2=0,方程的一个根为x=﹣2,则方程的另一个根为0 .【解析】把x=﹣2代入一元二次方程x2+kx+k﹣2=0得:4﹣2k+k﹣2=0,解得:k=2,即原方程为:x2+2x=0,解得:x1=﹣2,x2=0,即方程的另一个根为0,答案:0.15.某制药厂两年前生产1吨某种药品的成本是100万元,随着生产技术的进步,现在生产1吨这种药品的成本为81万元.则这种药品的成本的年平均下降率为10 %.【解析】设这种药品的成本的年平均下降率为x,则今年的这种药品的成本为100(1﹣x)2万元,根据题意得,100(1﹣x)2=81,解得x1=1.9(舍去),x2=0.1=10%.故这种药品的成本的年平均下降率为0.1,即10%.16.如图,已知P是正方形ABCD对角线BD上一点,且BP=BC,则∠ACP度数是22.5 度.【解析】∵ABCD是正方形,∴∠DBC=∠BCA=45°,∵BP=BC,∴∠BCP=∠BPC=(180°﹣45°)=67.5°,∴∠ACP度数是67.5°﹣45°=22.5°.17.如图,已知矩形ABCD的长和宽分别为16cm和12cm,连接其对边中点,得到四个矩形,顺次连接矩形AEFG各边中点,得到菱形l1;连接矩形FMCH对边中点,又得到四个矩形,顺次连接矩形FNPQ各边中点,得到菱形l2;…如此操作下去,则l4的面积是cm2.【解析】∵矩形ABCD的长和宽分别为16cm和12cm,∴EF=8cm,AE=6cm,∴菱形l1的面积=×8×6=24cm2,同理,菱形l2的面积=×4×3=6cm2,则菱形l3的面积=×2×=cm2,∴菱形l4的面积=×1×=cm2,答案:.三.解答题(共8小题)18.解不等式组【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解析】由①得:x<4,由②得:x≥0,∴原不等式组的解集为:0≤x<4.19.解方程:x2﹣8x+7=0【解析】分解因式可得(x﹣1)(x﹣7)=0,∴x﹣1=0或x﹣7=0,∴x=1或x=7.20.先化简,再求值:(﹣)÷,其中x=.【解析】原式==当x=时,原式==21.如图,在△ABC中,AB=BC,点D为AC的中点,四边形ABED是平行四边形,DE交BC于点F,连接CE.求证:四边形BECD是矩形.【解答】证明:∵AB=BC,点D为AC的中点∴BD⊥AC,AD=CD.∵四边形ABED是平行四边形,∴BE∥AD,BE=AD,∴BE=CD,∴四边形BECD是平行四边形.∵BD⊥AC,∴∠BDC=90°,∴四边形BECD是矩形.22.某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元,为了扩大销售,增加盈利,尽量减少库存,商场决定采取适当的降价措施,经调査发现,如果每件衬衫每降价5元,商场平均每天可多售出10件,求:若商场平均每天要盈利1200元,每件衬衫应降价多少元?【解析】设每件衬衫应降价x元.根据题意,得(40﹣x)(20+2x)=1200整理,得x2﹣30x+200=0解得x1=10,x2=20.∵“扩大销售量,减少库存”,∴x1=10应略去,∴x=20.答:每件衬衫应降价20元.23.如图,△ABC中,∠C=90°,AC=8cm,BC=4cm,一动点P从C出发沿着CB边以1cm/s的速度运动,另一动点Q从A出发沿着AC边以2cm/s的速度运动,P,Q两点同时出发,运动时间为t(s).(1)当t为几秒时,△PCQ的面积是△ABC面积的?(2)△PCQ的面积能否为△ABC面积的一半?若能,求出t的值;若不能,说明理由.【解析】(1)∵S△PCQ=t(8﹣2t),S△ABC=×4×8=16,∴t(8﹣2t)=16×,整理得t2﹣4t+4=0,解得t=2.答:当t=2s时△PCQ的面积为△ABC面积的;(2)当S△PCQ=S△ABC时,t(8﹣2t)=16×,整理得t2﹣4t+8=0,△=(﹣4)2﹣4×1×8=﹣16<0,∴此方程没有实数根,∴△PCQ的面积不可能是△ABC面积的一半.24.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,垂足为F,交直线MN于E,连接CD、BE.(1)求证:CE=AD;(2)当D为AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)在(2)的条件下,当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.【解答】(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2):四边形BECD是菱形,理由是:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴四边形BECD是菱形;(3)当∠A=45°时,∵∠ACB=90°,∴∠ABC=45°,由(2)可知,四边形BECD是菱形,∴∠ABC=∠CBE=45°,∴∠DBE=90°,∴四边形BECD是正方形.25.如图,在△ABC中,AB=AC,AD⊥BC于点D,BC=10cm,AD=8cm,E,F分别是AB,AC的中点.(1)求证:四边形AEDF是菱形;(2)求菱形AEDF的面积;(3)若H从F点出发,沿线段FE以每秒2cm的速度向E点运动,点P从B点出发,在线段BC上以每秒3cm的速度向C点运动,设运动时间为t.①当t为何值时,四边形BPHE是平行四边形?②是否存在t的值,使四边形PCFH是菱形?若存在,求出t的值,若不存在,说明理由.【解答】(1)证明:∵AB=AC,AD⊥BC,∴D为BC的中点.∵E、F分别为AB、AC的中点,∴DE和DF是△ABC的中位线,∴DE∥AC,DF∥AB,∴四边形AEDF是平行四边形.∵E,F分别为AB,AC的中点,AB=AC,∴AE=AF,∴四边形AEDF是菱形,(2):∵EF为△ABC的中位线,∴EF=BC=5.∵AD=8,AD⊥EF,∴S菱形AEDF=AD•EF=×8×5=20.(3):①∵EF∥BC,∴EH∥BP.若四边形BPHE为平行四边形,则EH=BP,∴5﹣2t=3t,解得:t=1,∴当t=1秒时,四边形BPHE为平行四边形.②不存在t的值,使四边形PCFH是菱形;理由如下:∵EF∥BC,∴FH∥PC.若四边形PCFH为菱形,则须FH=PC=CF,当FH=PC时,2t=10﹣3t,解得:t=2,∴FH=PC=4,∵AB=AC,AD⊥BC,∴BD=CD=BD=5,∴AC===,∵F是AC的中点,∴CF=AC=,∴FH=PC≠CF,∴四边形PCFH是平行四边形,不是菱形;∴不存在t的值,使四边形PCFH是菱形.。
2023年广东省佛山市南海外国语学校中考三模数学试题(含答案解析)

2023年广东省佛山市南海外国语学校中考三模数学试题学校:___________姓名:___________班级:___________考号:___________45.....下列从左到右的变形中,属于因式分解的是()2y B 432186x y x -=-()()22x y x y =+-D .(221x y x -+=,265∠=︒,125∠=,则ABC ∠度数是(A .20°B .30°7.如图,AB x ∥轴交反比例函数3OAB S = ,则k 的值是(A .3-B .38.如图,()2,0A ,()0,4C ,将线段A .()6,2B .(2,69.关于x 一元二次方程2x -A .2022x =B .x 10.如图,在Rt BDF △中,∠沿着CB 方向平移到点B ,使得点O ,则下列结论:①四边形面积为四边形ABCD 面积的一半.其中正确结论的个数为(A .4B .3C .2D .1二、填空题13.比较大小:23______14.不等式组240380x x -≤⎧⎨-->⎩的解集为15.如图,在矩形ABCD 中,则图中阴影部分的面积为______三、解答题16.先化简211 12a a a a +⎛+ --+⎝17.如图,在ABC 中,B ∠(1)请用尺规作图法,作B ∠的角平分线痕迹)(2)如果8AB =,求BD 的长.(1)求证:四边形AEBD 是菱形;(2)若210DC BD ==,,求四边形21.如图,平行于y 轴的直尺(一部分点B 和D ,点A 和B 的刻度分别为面直角坐标系内一个单位长度为(1)求反比例函数解析式;(2)若经过A ,C 两点的直线关系式为集;(3)求梯形ABCD 的面积.22.如图1,在矩形ABCD 中,点AC 分别交于点E ,F ,且ACB ∠(1)求证:CAB CED ∽△△;(2)判断直线CE 与O 的位置关系,并证明你的结论;(3)如图2,若点E 落在线段AC 的垂直平分线上,2CD =,求23.如图,抛物线2y x bx c =-++与x 轴交于A ,B 两点,与的坐标为()3,0,C 点的坐标为()0,3.(1)求抛物线的解析式;(2)图1中,点P 为抛物线上的动点,且位于第二象限,过P ,B 两点作直线l 交y 轴于点D ,交直线AC 于点E .是否存在这样的直线l :以C ,D ,E 为顶点的三角形与BOD 相似?若存在,请求出这样的直线l 的解析式;若不存在,请说明理由.(3)图2中,点C 和点C '关于抛物线的对称轴对称,点M 在抛物线上,且MBA CBC '∠=∠,求M 点的横坐标.参考答案:∵反比例函数图象在第二象限,∴0k <,∴6k =-,故选:D .【点睛】本题考查了反比例函数k 的几何意义,熟练掌握反比例函数k 的几何意义是解题的关键.8.A【分析】过点B 作BD x ⊥轴于点D ,则90AOC BDA ∠=∠=︒,结合()2,0A ,()0,4C ,可得4OC =,2OA =,根据旋转的性质可得AC BA =,90BAC ∠=︒,易得OCA DAB ∠=∠,然后证明OAC DBA ≌,由全等三角形的性质可得4OC DA ==,2OA DB ==,结合点B 在第一象限,即可获得B 点坐标.【详解】解:过点B 作BD x ⊥轴于点D ,如下图,则90AOC BDA ∠=∠=︒,∵()2,0A ,()0,4C ,∴4OC =,2OA =,根据题意,将线段AC 绕点A 顺时针旋转90︒到AB ,∴AC BA =,90BAC ∠=︒,∴90OAC OCA OAC DAB ∠+∠=∠+∠=︒,∴OCA DAB ∠=∠,在OAC 和DBA 中,AOC BDA OCA DAB AC BA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴(AAS)OAC DBA ≌,∴4OC DA ==,2OA DB ==,(2)解:∵60ABC ∠=︒,45C ∠=︒,D 点坐标为()4,0,CD y ∥∴当4x =时,6342y ==,C ∴点坐标为34,2⎛⎫ ⎪⎝⎭,3AB ∴=,422BD =-=,CD ()12ABDC S CD AB BD ∴=+⋅梯形133222⎛⎫=+⨯ ⎪⎝⎭92=.【点睛】本题考查了待定系数法求反比例函数解析式,比例函数与不等式的关系,面积问题等,掌握求法是解题的关键.22.(1)见解析(2)直线CE 与O 相切,理由见解析(3)43OA =【分析】(1)证明90B D ∠=∠=(2)连接OE ,证明DAC ∠=90DCE DEC ∠+∠=︒,可得AEO ∠【详解】(1)证明:四边形ABCD 为矩形.∴90B D ∠=∠=︒,∵ACB DCE ∠=∠,∴CAB CED ∽△△.(2)判断:直线CE 与O 相切.证明:连接OE ,∵OA OE =,∴DAC AEO ∠=∠,∵四边形ABCD 是矩形,∴BC AD ∥,∴ACB DAC ∠=∠,∵ACB DCE ∠=∠,∴DAC DCE ∠=∠,∴AEO ACB DCE ∠=∠=∠,∵四边形ABCD 是矩形,∴90D Ð=°,∴90DCE DEC ∠+∠=︒∴90AEO DEC ∠+∠=︒,∴1809090OEC ∠=︒-︒=︒,即OE EC ⊥,∵OE 为半径,∴直线CE 与O 相切;(3)∵点E 落在线段AC 的垂直平分线上,∴AE CE =,∴DAC ECA ∠=∠,2⎝⎭由点、B N的坐标得,直线BN解方程213 2322x x x-++=-+,解得:12x=-或3(舍去),∴M的横坐标为1 2-;当30,2N⎛⎫-⎪⎝⎭,如图:同理可得,直线BN解析式为:。
广东省佛山市2019-2020学年中考三诊语文试题含解析

广东省佛山市2019-2020学年中考三诊语文试题一、选择题1.下列各句中,加点成语使用不正确的一项是()A.一些西方媒体别有用心地宣称“中印会陷入冷战”,这是西方有意渲染和扩大中印在地缘政治方面的矛盾,有挑拨离间....的嫌疑。
B.讲好中国故事,不能一味地选择富丽堂皇....的镜头或夸张的语言来表现中国的繁荣富强,而是要用历史的眼光讲述中国人的时代变迁及其主题。
C.博鳌亚洲论坛2019年年会即将举行,而博鳌各主要路段被装扮一新,路面干干净净,路旁三角梅等花朵鲜艳绽放,彩旗花枝招展....,迎接博鳌亚洲论坛年会的到来。
D.评论写作不能关起门来坐而论道、对空言说,而要有天下关怀,胸中有乾坤,笔下有千钧,对社会保持足够的敏感和洞见,才能倚马可待....,百步穿杨。
2.下列各句中有语病的一项是()A.网络文学领域实绩与泡沫共存,竞争与机遇同在,同时有很大的提升空间,网络文学的健康发展尤其需要良好的“生态系统”。
B.当老师交给我们任务的时候,我们大家有既光荣又愉快的感觉是颇难形容的。
C.在互联网高速发展、生活节奏越来越快的社会转型期,传统文化的传承和弘扬也面临着挑战。
D.世界上的事情都是干出来的,人世间的一切幸福都来自辛勤的劳动,只有通过不懈奋斗才能实现人世间的美好梦想。
3.下面加点字注音完全正确的一项是()A.丘壑.hè谰.nán越俎代庖.bāo广袤无垠.yínB.疟.子yào菜畦.qí断壁残垣.yuán歇.斯底里xiēC.阴霾.mái纳罕.hǎng怒不可遏.jiè味同嚼.蜡jiáoD.喑.哑àn篡.夺cuàn鳞次栉.比jié如坐针毡.zhān4.下列句子中,没有语病的一项是()A.在信息时代,一个人是否具有快速阅读、捕捉有效信息,决定着一个人成就的大小。
B.《三体》的英文译者刘宇昆被誉为“将中国科幻推向世界的引路人”,这确立了中国科幻小说在国际上的地位。
2019-2020年九年级(上)第三次月考数学试卷(解析版)(I)

2019-2020年九年级(上)第三次月考数学试卷(解析版)(I)一、选择题:(1-10每小题2分,11-16每小题2分,共38分)1.在下列关于x的函数中,一定是二次函数的是()A.y=x2B.y=ax2+bx+c C.y=8x D.y=x2(1+x)2.一个点到圆的最小距离为6cm,最大距离为9cm,则该圆的半径是()A.1.5cm B.7.5cm C.1.5cm或7.5cm D.3cm或15cm3.如图,AB、AC是⊙O的两条弦,∠A=30°,过点C的切线与OB的延长线交于点D,则∠D的度数为()A.30°B.35°C.40°D.45°4.已知抛物线的解析式为y=(x﹣2)2+1,则这条抛物线的顶点坐标是()A.(﹣2,1) B.(2,1)C.(2,﹣1) D.(1,2)5.在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2.下列说法中不正确的是()A.当a<5时,点B在⊙A内B.当1<a<5时,点B在⊙A内C.当a<1时,点B在⊙A外D.当a>5时,点B在⊙A外6.把二次函数y=﹣x2﹣x+3用配方法化成y=a(x﹣h)2+k的形式()A.y=﹣(x﹣2)2+2 B.y=(x﹣2)2+4 C.y=﹣(x+2)2+4 D.y=2+37.圆I是三角形ABC的内切圆,D,E,F为3个切点,若∠DEF=52°,则∠A 的度数为()A.68°B.52°C.76°D.38°8.抛物线y=﹣2(x﹣1)2上有三点A(﹣1,y1),B(,y2),C(2,y3),则y1,y2,y3从小到大是()A.y1<y2<y3B.y2<y3<y1C.y2<y1<y3D.y1<y3<y29.如图,PA、PB、DE分别切⊙O于A、B、C,DE分别交PA,PB于D、E,已知P 到⊙O的切线长为8CM,则△PDE的周长为()A.16cm B.14cm C.12cm D.8cm10.如图,Rt△ABC中,∠ACB=90°,AC=4,BC=6,以斜边AB上的一点O为圆心所作的半圆分别与AC、BC相切于点D、E,则AD的长为()A.2.5 B.1.6 C.1.5 D.111.函数y=ax+1与y=ax2+bx+1(a≠0)的图象可能是()A.B. C. D.12.有一个内角为120°的菱形的内切圆半径为,则该菱形的边长是()A.B.C.4 D.613.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c <0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号是()A.③④B.②③C.①④D.①②③14.如图,已知平行四边形ABCD中,AB=5,BC=8,cosB=,点E是BC边上的动点,当以CE为半径的⊙C与边AD不相交时,半径CE的取值范围是()A.0<CE≤8 B.0<CE≤5C.0<CE<3或5<CE≤8 D.3<CE≤515.抛物线y=ax2+bx+c(a≠0)部分点的横坐标x,纵坐标y的对应值如下表x…﹣2﹣1012…y…04664…从上表可知,下列说法错误的是()A.抛物线与x轴的一个交点坐标为(3,0)B.函数y=ax2+bx+c的最大值为6C.抛物线的对称轴是直线x=D.在对称轴左侧,y随x增大而增大16.如图,等腰直角三角形ABC(∠C=90°)的直角边长与正方形MNPQ的边长均为4cm,CA与MN在同一直线上,开始时A点与M点重合,让△ABC向右平移,直到C点与N点重合时为止,设△ABC与正方形MNPQ的重叠部分(图中阴影部分)的面积为ycm2,MA的长度为xcm,则y与x之间的函数关系大致为()A.B.C.D.二、填空题(每小题4分,共16分)17.已知二次函数的图象经过原点及点(,),且图象与x轴的另一交点到原点的距离为1,则该二次函数解析式为.18.如图,已知两同心圆,大圆的弦AB切小圆于M,若环形的面积为9π,则AB的长是.19.将抛物线y=x2﹣4x+9向平移个单位,向平移个单位,得到抛物线y=x2﹣6x+5.20.如图,∠AOB=60°,点M是射线OB上的点,OM=4,以点M为圆心,2cm为半径作圆.若OA绕点O按逆时针方向旋转,当OA和⊙M相切时,OA旋转的角度是.三、解答题21.某公司草坪的护栏是由50段形状相同的抛物线组成的,为牢固起见,每段护栏需按间距0.4m 加设不锈钢管(如图)做成立柱.为了计算所需不锈钢管立柱的总长度,设计人员测得如图所示的数据.(1)求该抛物线的表达式(2)计算所需不锈钢管的总长度.22.某贸易公司购进“长青”胶州大白菜,进价为每棵20元,物价部门规定其销售单价每棵不得超过80元,也不得低于30元.经调查发现:日均销售量y(棵)与销售单价x(元/棵)满足一次函数关系,并且每棵售价60元时,日均销售90棵;每棵售价30元时,日均销售120棵.(1)求日均销售量y与销售单价x的函数关系式;(2)在销售过程中,每天还要支出其他费用200元,求销售利润w(元)与销售单价x之间的函数关系式;并求当销售单价为何值时,可获得最大的销售利润?最大销售利润是多少?23.已知:如图,△ABC内接于⊙O,点D在OC的延长线上,sinB=,∠CAD=30°.(1)求证:AD是⊙O的切线;(2)若OD⊥AB,BC=5,求AD的长.24.如图,△ABC是一块铁皮余料.已知底边BC=160cm,高AD=120cm.在铁皮余料上截取一个矩形EFGH,使点H在AB上,点G在AC上,点E、F在BC上,AD交HG于点M.(1)设HG=y cm,HE=x cm,试确定用x表示y的函数表达式.(2)当x为何值时,矩形EFGH的面积S 最大?25.在平面直角坐标系xOy中,⊙O的半径为1,P是坐标系内任意一点,点P到⊙O的距离S P的定义如下:若点P与圆心O重合,则S P为⊙O的半径长;若点P与圆心O不重合,作射线OP交⊙O于点A,则S P为线段AP的长度.图1为点P在⊙O外的情形示意图.(1)若点B(1,0),C(1,1),,则S B= ;S C= ;S D= ;(2)若直线y=x+b上存在点M,使得S M=2,求b的取值范围;(3)已知点P,Q在x轴上,R为线段PQ上任意一点.若线段PQ上存在一点T,满足T在⊙O内且S T≥S R,直接写出满足条件的线段PQ长度的最大值.xx学年河北省石家庄二十二中九年级(上)第三次月考数学试卷参考答案与试题解析一、选择题:(1-10每小题2分,11-16每小题2分,共38分)1.在下列关于x的函数中,一定是二次函数的是()A.y=x2B.y=ax2+bx+c C.y=8x D.y=x2(1+x)【考点】二次函数的定义.【分析】根据二次函数的定义:y=ax2+bx+c(a≠0.a是常数),可得答案.【解答】解:A、y=x2是二次函数,故A符合题意;B、a=0时是一次函数,故B不符合题意,C、y=8x是一次函数,故C不符合题意;D、y=x2(1+x)不是二次函数,故D不符合题意;故选:A.2.一个点到圆的最小距离为6cm,最大距离为9cm,则该圆的半径是()A.1.5cm B.7.5cm C.1.5cm或7.5cm D.3cm或15cm【考点】点与圆的位置关系.【分析】点P应分为位于圆的内部于外部两种情况讨论.当点P在圆内时,直径=最小距离+最大距离;当点P在圆外时,直径=最大距离﹣最小距离.【解答】解:分为两种情况:①当点P在圆内时,最近点的距离为6cm,最远点的距离为9cm,则直径是15cm,因而半径是7.5cm;②当点P在圆外时,最近点的距离为6cm,最远点的距离为9cm,则直径是3cm,因而半径是 1.5cm.故选C.3.如图,AB、AC是⊙O的两条弦,∠A=30°,过点C的切线与OB的延长线交于点D,则∠D的度数为()A.30°B.35°C.40°D.45°【考点】切线的性质.【分析】由于CD是切线,可知∠OCD=90°,而∠A=35°,利用圆周角定理可求∠COD,进而可求∠D.【解答】解:连接OC,∵CD是切线,∴∠OCD=90°,∵∠A=30°,∴∠COD=2∠A=60°,∴∠D=90°﹣60°=30°.故选:A.4.已知抛物线的解析式为y=(x﹣2)2+1,则这条抛物线的顶点坐标是()A.(﹣2,1) B.(2,1)C.(2,﹣1) D.(1,2)【考点】二次函数的性质.【分析】直接根据顶点式的特点写出顶点坐标.【解答】解:因为y=(x﹣2)2+1为抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(2,1).故选B.5.在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2.下列说法中不正确的是()A.当a<5时,点B在⊙A内B.当1<a<5时,点B在⊙A内C.当a<1时,点B在⊙A外D.当a>5时,点B在⊙A外【考点】点与圆的位置关系.【分析】先找出与点A的距离为2的点1和5,再根据“点与圆的位置关系的判定方法”即可解.【解答】解:由于圆心A在数轴上的坐标为3,圆的半径为2,∴当d=r时,⊙A与数轴交于两点:1、5,故当a=1、5时点B在⊙A上;当d<r即当1<a<5时,点B在⊙A内;当d>r即当a<1或a>5时,点B在⊙A外.由以上结论可知选项B、C、D正确,选项A错误.故选:A.6.把二次函数y=﹣x2﹣x+3用配方法化成y=a(x﹣h)2+k的形式()A.y=﹣(x﹣2)2+2 B.y=(x﹣2)2+4 C.y=﹣(x+2)2+4 D.y=2+3【考点】二次函数的三种形式.【分析】利用配方法先提出二次项系数,在加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.【解答】解:y=﹣x2﹣x+3=﹣(x2+4x+4)+1+3=﹣(x+2)2+4故选C.7.圆I是三角形ABC的内切圆,D,E,F为3个切点,若∠DEF=52°,则∠A 的度数为()A.68°B.52°C.76°D.38°【考点】三角形的内切圆与内心.【分析】先利用切线的性质得∠IDA=∠IFA=90°,则根据四边形的内角和得到∠A+∠DIF=180°,再根据圆周角定理得到∠DIF=2∠DEF=104°,然后利用互补计算∠A的度数即可.【解答】解:∵圆I是三角形ABC的内切圆,∴ID⊥AB,IF⊥AC,∴∠IDA=∠IFA=90°,∴∠A+∠DIF=180°,∵∠DIF=2∠DEF=2×52°=104°,∴∠A=180°﹣104°=76°.故选C.8.抛物线y=﹣2(x﹣1)2上有三点A(﹣1,y1),B(,y2),C(2,y3),则y1,y2,y3从小到大是()A.y1<y2<y3B.y2<y3<y1C.y2<y1<y3D.y1<y3<y2【考点】二次函数图象上点的坐标特征.【分析】根据二次函数的性质求出抛物线的对称轴,根据二次函数的增减性解答.【解答】解:∵抛物线y=﹣2(x﹣1)2的对称轴是x=1,∴x=﹣1时的函数值与x=3时的函数值相等,当x>1时,y随x的增大而减小,∵<2<3,∴y1<y3<y2,故选:D.9.如图,PA、PB、DE分别切⊙O于A、B、C,DE分别交PA,PB于D、E,已知P 到⊙O的切线长为8CM,则△PDE的周长为()A.16cm B.14cm C.12cm D.8cm【考点】切线的性质.【分析】由切线长定理可知AD=CD、BE=CE,PA=PB,则可求得△PDE的周长=PA+PB,可求得答案.【解答】解:∵PA、PB、DE分别切⊙O于A、B、C,∴PA=PB=8cm,AD=CD,BE=CE,(cm),∴PD+DE+PE=PD+DC+CE+PE=PD+AD+BE+PE=PA+PB=8+8=16故选A.10.如图,Rt△ABC中,∠ACB=90°,AC=4,BC=6,以斜边AB上的一点O为圆心所作的半圆分别与AC、BC相切于点D、E,则AD的长为()A.2.5 B.1.6 C.1.5 D.1【考点】切线的性质.【分析】连结OD、OE,如图,先根据切线的性质得OD⊥AC,OE⊥BC,再判断四﹣AD=4﹣AD,接着证明Rt△AOD∽Rt△ABC,然边形ODCE为正方形得到OD=CD=AC后利用相似比计算AD的长.【解答】解:连结OD、OE,如图,∵以点O为圆心所作的半圆分别与AC、BC相切于点D、E,∴OD⊥AC,OE⊥BC,而∠ACB=90°,∴四边形ODCE为矩形,∵OD=OE,∴四边形ODCE为正方形,∴OD=CD=AC﹣AD=4﹣AD,∵∠OAD=∠BAC,∴Rt△AOD∽Rt△ABC,∴=,即=,∴AD=1.6.故选B.11.函数y=ax+1与y=ax2+bx+1(a≠0)的图象可能是()A.B. C. D.【考点】二次函数的图象;一次函数的图象.【分析】根据a的符号,分类讨论,结合两函数图象相交于(0,1),逐一排除;【解答】解:当a>0时,函数y=ax2+bx+1(a≠0)的图象开口向上,函数y=ax+1的图象应在一、二、三象限,故可排除D;当a<0时,函数y=ax2+bx+1(a≠0)的图象开口向下,函数y=ax+1的图象应在一二四象限,故可排除B;当a=0时,两个函数的值都为1,故两函数图象应相交于(0,1),可排除A.正确的只有C.故选C.12.有一个内角为120°的菱形的内切圆半径为,则该菱形的边长是()A.B.C.4 D.6【考点】菱形的性质;勾股定理;切线长定理.【分析】根据菱形的内切圆半径为即可求菱形的高,菱形的一个内角为120°则其邻角为60°,在直角三角形ABE中即可求的AB即菱形的边的长.【解答】解:过A作AE⊥BC,∵内切圆半径为,∴AE的长度为2,∵∠BAD=120°,则∠ABC=60°,在Rt△ABC中,AE=2,∠ABC=60°,∴AB=4,故选 C.13.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c <0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号是()A.③④B.②③C.①④D.①②③【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①当x=1时,y=a+b+c=0,故①错误;②当x=﹣1时,图象与x轴交点负半轴明显大于﹣1,∴y=a﹣b+c<0,故②正确;③由抛物线的开口向下知a<0,∵对称轴为0<x=﹣<1,∴2a+b<0,故③正确;④对称轴为x=﹣>0,a<0∴a、b异号,即b>0,由图知抛物线与y轴交于正半轴,∴c>0∴abc<0,故④错误;∴正确结论的序号为②③.故选:B.14.如图,已知平行四边形ABCD中,AB=5,BC=8,cosB=,点E是BC边上的动点,当以CE为半径的⊙C与边AD不相交时,半径CE的取值范围是()A.0<CE≤8 B.0<CE≤5C.0<CE<3或5<CE≤8 D.3<CE≤5【考点】直线与圆的位置关系;平行四边形的性质;解直角三角形.【分析】过A作AM⊥BC于N,CN⊥AD于N,根据平行四边形的性质求出AD∥BC,AB=CD=5,求出AM、CN、AC、CD的长,即可得出符合条件的情况.【解答】解:如图,过A作AM⊥BC于N,CN⊥AD于N,∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD=5,∴AM=CN,∵AB=5,cosB=,∴BM=4,∵BC=8,∴CM=4=BC,∵AM⊥BC,∴AC=AB=5,由勾股定理得:AM=CN==3,∴当以CE为半径的圆C与边AD有两个交点时,半径CE的取值范围是3<CE≤5,故选D.15.抛物线y=ax2+bx+c(a≠0)部分点的横坐标x,纵坐标y的对应值如下表x…﹣2﹣1012…y…04664…从上表可知,下列说法错误的是()A.抛物线与x轴的一个交点坐标为(3,0)B.函数y=ax2+bx+c的最大值为6C.抛物线的对称轴是直线x=D.在对称轴左侧,y随x增大而增大【考点】抛物线与x轴的交点;二次函数的最值.【分析】根据表格的数据首先确定抛物线的对称轴,然后利用抛物线的对称性可以确定抛物线与x轴的另一个交点坐标,也可以确定抛物线的最大值的取值范围,也可以确定开口方向.【解答】解:根据表格数据知道:抛物线的开口方向向下,∵x=0,x=1的函数值相等,∴对称轴为x=,所以选项C正确,不符合题意;∴抛物线与x轴的另一个交点坐标为:(3,0),所以选项A正确,不符合题意;在对称轴左侧,y随x增大而增大,最大值大于6.所以选项D正确,不符合题意;选项B错误,符合题意;故选B.16.如图,等腰直角三角形ABC(∠C=90°)的直角边长与正方形MNPQ的边长均为4cm,CA与MN在同一直线上,开始时A点与M点重合,让△ABC向右平移,直到C点与N点重合时为止,设△ABC与正方形MNPQ的重叠部分(图中阴影部分)的面积为ycm2,MA的长度为xcm,则y与x之间的函数关系大致为()A.B.C.D.【考点】动点问题的函数图象;二次函数的图象.【分析】首先确定每段与x的函数关系类型,根据函数的性质确定选项.【解答】解:当x≤4cm时,重合部分是边长是x的等腰直角三角形,面积y=x2,是一个开口向上的二次函数;当x>4时,重合部分是直角梯形,面积y=8﹣(x﹣4)2,即y=﹣x2+4x,是一个开口向下的二次函数.故选B.二、填空题(每小题4分,共16分)17.已知二次函数的图象经过原点及点(,),且图象与x轴的另一交点到原点的距离为1,则该二次函数解析式为y=﹣x2+x或y=x2+x..【考点】待定系数法求二次函数解析式.【分析】设二次函数的解析式为y=ax2+bx+c(a≠0),由图象与x轴的另一交点到原点的距离为1可得到抛物线与x轴的另一交点坐标为(1,0)或(﹣1,0),然后分别把(0,0)、(1,0)、(﹣,﹣)或(0,0)、(﹣1,0)、(﹣,﹣)代入解析式中得到两个方程组,解方程组即可确定解析式.【解答】解:设二次函数的解析式为y=ax2+bx+c(a≠0),当图象与x轴的另一交点坐标为(1,0)时,把(0,0)、(1,0)、(﹣,﹣)代入得,解方程组得,则二次函数的解析式为y=﹣x2+x;当图象与x轴的另一交点坐标为(﹣1,0)时,把得,解方程组得,则二次函数的解析式为y=x2+x.所以该二次函数解析式为y=﹣x2+x或y=x2+x.18.如图,已知两同心圆,大圆的弦AB切小圆于M,若环形的面积为9π,则AB的长是 6 .【考点】切线的性质;垂径定理.【分析】环形的面积为9π,就是大圆面积﹣小圆的面积,根据圆的面积公式,可得π×OA2﹣π×OM2=9π,解得OA2﹣OM2=9,再根据勾股定理可知就是AM的平方,所以AM=3,AB=6.【解答】解:连接OA、OM,如图所示:∵大圆的弦AB切小圆于M,∴AB⊥OM,∴AM=BM,∵环形的面积为9π,根据圆的面积公式可得:π×OA2﹣π×OM2=9π,解得:OA2﹣OM2=9,根据勾股定理可知:AM2=OA2﹣OM2,∴AM=3,∴AB=2AM=6.19.将抛物线y=x2﹣4x+9向右平移 1 个单位,向下平移9 个单位,得到抛物线y=x2﹣6x+5.【考点】二次函数图象与几何变换.【分析】根据配方法,可得顶点式解析式,根据平移规律,可得到答案.【解答】解:y=x2﹣4x+9配方,得y=(x﹣2)2+5;y=x2﹣6x+5配方,得y=(x﹣3)2﹣4.抛物线y=x2﹣4x+9向右平移 1个单位,向下平移 9个单位,得到抛物线y=x2﹣6x+5,故答案为:右,1,下,9.20.如图,∠AOB=60°,点M是射线OB上的点,OM=4,以点M为圆心,2cm为半径作圆.若OA绕点O按逆时针方向旋转,当OA和⊙M相切时,OA旋转的角度是30°或90°.【考点】切线的性质.【分析】OA与⊙O相切时,有两种情况:①切线在OB右侧;②切线在OB左侧;解法相同,都是连接圆心与切点,通过构建的直角三角形求解.【解答】解:如图;①当OA旋转到OE位置时,与圆M相切于点E,连接ME;则ME=2,∠MEO=90°;Rt△OEM中,sin∠MOE==,∴∠MOE=30°,∴∠AOE=∠AOB﹣∠MOE=30°;②当OA旋转到OF位置时,与圆M相切于点F,连接MF;则MF=2,∠MFO=90°;Rt△OFM中,sin∠MOF==,∴∠MOF=30°,∴∠AOF=∠AOB+∠FOB=90°;故OA旋转的角度为30°或90°.三、解答题21.某公司草坪的护栏是由50段形状相同的抛物线组成的,为牢固起见,每段护栏需按间距0.4m 加设不锈钢管(如图)做成立柱.为了计算所需不锈钢管立柱的总长度,设计人员测得如图所示的数据.(1)求该抛物线的表达式(2)计算所需不锈钢管的总长度.【考点】二次函数的应用.【分析】(1)根据所建坐标系特点可设解析式为y=ax2+c的形式,结合图象易求B点和C点坐标,代入解析式解方程组求出a,c的值得解析式;(2)根据对称性求B3、B4的纵坐标后再求出总长度.【解答】解:(1)由题意得B(0,0.5)、C(1,0)设抛物线的解析式为:y=ax2+c代入得a=﹣0.5,c=0.5,故解析式为y=﹣0.5x2+0.5;(2)如图1所示:∵当x=0.2时,y=0.48,当x=0.6时,y=0.32,∴B1C1+B2C2+B3C3+B4C4=2×(0.48+0.32)=1.6米∴所需不锈钢管的总长度为: 1.6×50=80米.22.某贸易公司购进“长青”胶州大白菜,进价为每棵20元,物价部门规定其销售单价每棵不得超过80元,也不得低于30元.经调查发现:日均销售量y(棵)与销售单价x(元/棵)满足一次函数关系,并且每棵售价60元时,日均销售90棵;每棵售价30元时,日均销售120棵.(1)求日均销售量y与销售单价x的函数关系式;(2)在销售过程中,每天还要支出其他费用200元,求销售利润w(元)与销售单价x之间的函数关系式;并求当销售单价为何值时,可获得最大的销售利润?最大销售利润是多少?【考点】二次函数的应用.【分析】(1)设一次函数解析式为y=kx+b,把(60,90),(30,120)分别代入上式得到一次函数解析式;(2)根据题意得到W=(x﹣20)(﹣x+150)﹣200,配方后求最大值.【解答】解:(1)设一次函数解析式为设一次函数解析式为y=kx+b,把(60,90),(30,120)分别代入上式得,,解得.故y=﹣x+150,(30≤x≤80).(2)根据题意得W=(x﹣20)(﹣x+150)﹣200=﹣x2+170x﹣3200=﹣(x2﹣170x+852﹣852)﹣3200=﹣(x﹣85)2+852﹣3200=﹣(x﹣85)2+852﹣3200=﹣(x﹣85)2+4025.当x=80时取得最大值,为W最大值=﹣(80﹣85)2+4025=4000元.23.已知:如图,△ABC内接于⊙O,点D在OC的延长线上,sinB=,∠CAD=30°.(1)求证:AD是⊙O的切线;(2)若OD⊥AB,BC=5,求AD的长.【考点】切线的判定.【分析】(1)连接OA,由于sinB=,那么可求∠B=30°,利用圆周角定理可求∠AOC=60°,而OA=OB,那么△AOC是等边三角形,从而有∠OAC=60°,易求∠OAD=90°,即AD是⊙O的切线;(2)由于OC⊥AB,OC是半径,利用垂径定理可知OC是AB的垂直平分线,那么CA=CB,而∠B=30°,则∠BAC=30°,于是有∠DAE=60°,∠D=30°,在Rt△ACE 中,利用三角函数值可求AE,在Rt△ADE中利用30°的锐角所对的直角边等于斜边的一半,可求AD.【解答】证明:连接OA,(1)∵sinB=,∴∠B=30°,∠AOC=60°,又∵OA=OC,∴△AOC是等边三角形,∴∠OAC=60°,∴∠OAD=60°+30°=90°,∴AD是⊙O的切线;(2)∵OC⊥AB,OC是半径,∴BE=AE,∴OD是AB的垂直平分线,∴∠DAE=60°,∠D=30°,在Rt△ACE中,AE=cos30°×AC=,∴在Rt△ADE中,AD=2AE=5.24.如图,△ABC是一块铁皮余料.已知底边BC=160cm,高AD=120cm.在铁皮余料上截取一个矩形EFGH,使点H在AB上,点G在AC上,点E、F在BC上,AD交HG于点M.(1)设HG=y cm,HE=x cm,试确定用x表示y的函数表达式.(2)当x为何值时,矩形EFGH的面积S 最大?【考点】相似三角形的应用;二次函数的最值.【分析】(1)先表示出AM,再根据相似三角形对应高的比等于相似比列式整理即可;(2)根据矩形的面积公式列式整理,再根据二次函数的最值问题求解即可.【解答】解:(1)∵矩形EFGH,AD是高,∴MD=HE=x,HG∥BC,∴AM=AD﹣MD=120﹣x,△AHG∽△ABC,∴=,即=,∴y=﹣x+160;(2)矩形EFGH的面积S=xy=x(﹣x+160),=﹣x2+160x,=﹣(x2﹣120x+3600)+4800,=﹣(x﹣60)2+4800,所以,当x=60时,S取最大值4800.25.在平面直角坐标系xOy中,⊙O的半径为1,P是坐标系内任意一点,点P 到⊙O的距离S P的定义如下:若点P与圆心O重合,则S P为⊙O的半径长;若点P与圆心O不重合,作射线OP交⊙O于点A,则S P为线段AP的长度.图1为点P在⊙O外的情形示意图.(1)若点B(1,0),C(1,1),,则S B= 0 ;S C= ﹣1 ;S D= ;(2)若直线y=x+b上存在点M,使得S M=2,求b的取值范围;(3)已知点P,Q在x轴上,R为线段PQ上任意一点.若线段PQ上存在一点T,满足T在⊙O内且S T≥S R,直接写出满足条件的线段PQ长度的最大值.【考点】圆的综合题.【分析】(1)根据点的坐标和新定义解答即可;(2)根据直线y=x+b的特点,结合S M=2,根据等腰直角三角形的性质解答;(3)根据T在⊙O内,确定S T的范围,根据给出的条件、结合图形求出满足条件的线段PQ长度的最大值.【解答】解:(1)∵点B(1,0),∴S B=0,∵C(1,1),∴S C=﹣1,∵,∴S D=,故答案为:0;﹣1;;(2)设直线y=x+b与分别与x轴、y轴交于F、E,作OG⊥EF于G,∵∠FEO=45°,∴OG=GE,当OG=3时,GE=3,由勾股定理得,OE=3,此时直线的解析式为:y=x+3,∴直线y=x+b上存在点M,使得S M=2,b的取值范围是﹣3≤b≤3;(3)∵T在⊙O内,∴S T≤1,∵S T≥S R,∴S R≤1,∴线段PQ长度的最大值为1+2+1=4.xx年3月10日。
广东省佛山市南海外国语学校2019-2020学年第二学期九年级线上测试3数学试卷

⼴东省佛⼭市南海外国语学校2019-2020学年第⼆学期九年级线上测试3数学试卷南海外国语学校九年级线上模拟测试3数学试题全卷120分限时90分钟⼀、选择题(每⼩题3分,共30分)1.下列四个数中,最⼩的数是()A. 0B. 1C. 12-D. -12.将如图所⽰的直⾓三⾓形ABC 绕直⾓边AB 旋转⼀周得到⼀个⼏何体,从正⾯看这个⼏何体得到的平⾯图形应为()A. B. C. D.3.2020年4⽉1⽇上午,国电浙能宁东发电公司⽅家庄电⼚公布,第⼀季度该⼚新投产的百万千⽡级机组完成发电量19.36亿千⽡时,⽤科学记数法表⽰19.36亿正确的是()A. 919.3610?B. 81.93610?C. 91.93610?D. 100.193610? 4.下列运算正确的是()A. 235x y xy +=B. ()3236xy x y =C. ()2239x x +=+D. 1052x x x ÷=5.下列航空公司的标志中,是中⼼对称图形的是()A. B. C. D.6.已知在12件相同的产品中,8件⼀等品,3件⼆等品,1件次品,任取1件产品是⼀等品的概率是() A. 14 B. 13 C. 23 D. 127.如果关于x 的⼀元⼆次⽅程2410x x a ++-=有两个实数根,那么a 的取值范围是()A. 5a >B. 5a <C. 5a ≥D. 5a ≤8.点O ,A ,B ,C 在数轴上的位置如图所⽰,O 为原点,2AC =,OA OB =.若点C 所表⽰的数为x ,则点B 所表⽰的数为()A. ()2x -+B. ()2x --C. 2x +D. 2x -9.如图,在ABC △中,D 、E 分别是AB 、BC 上的点,且//DE AC ,若:1:4BDE CDE S S =△△,则:CDE ADC S S =△△()A. 1:5B. 4:25C. 1:6D. 4:2310.如图,已知四边形ABCD 为矩形,点E 在BC 上(不与B ,C 重合),连接AE ,DE ,以AE 为⼀边作正⽅形AEFG ,使得点F 在边CD 上,给出以下结论:①ABE ECF ?△△;②AED CDE ABE S S S =+△△△;③2EC BC DF =+;④ADE AQG ∠=∠;⑤2EF AQ EC =?;其中正确的结论的个数是()A.1个B.2个C.3个D.4个⼆、填空题(每⼩题4分,共28分)11.分解因式:39x x -=______.12.⼀个n 边形的内⾓和是它外⾓和的4倍,则n =______.13.不等式组:()13320x x x -15.如图,某商场停车场门⼝的柱⼦上⽅挂着⼀块收费标准牌CD ,收费标准牌的⼀侧⽤绳⼦AD 和BC 牵引着两排⼩彩旗,经过测量得到如下数据:4AM =⽶,8AB =⽶,45MAD ∠=?,30MBC ∠=?,则CD 的长度为______⽶.(结果保留根号)16.如图,点()1,2A 为双曲线k y x=上的⼀点,连接AO 并延长与双曲线在第三象限交于点B ,M 为y 轴正半轴上⼀点,连接MA 并延长与双曲线交于点N ,连接BM 、BN ,已知MBN △的⾯积为6,则点N 的坐标为______.17.将⼤⼩相同的正三⾓形按如图所⽰的规律拼图案,其中第①个图案中有6个⼩三⾓形和1个正六边形;第②个图案中有10个⼩三⾓形和2个正六边形;第③个图案中有14个⼩三⾓形和3个正六边形;…;按此规律排列下去,已知⼀个正六边形的⾯积为a ,⼀个⼩三⾓形的⾯积为b ,则第③个图案中所有的⼩三⾓形和正六边形的⾯积之和为______.(结果⽤含a 、b 的代数式表⽰)。
广东省佛山市南海区南海实验中学2023-2024学年九年级上学期月考数学试题(含答案)

2023~2024学年上学期初三第三次学情反馈数学一、选择题(每题3分,共30分)1.衢州莹白瓷以瓷质细腻、釉面柔和、透亮皎洁,似象牙又似羊脂白玉而名闻遐迩,被誉为瓷中珍品.如图是衢州莹白瓷的直口杯,它的左视图是()A .B .C .D .2.若线段a ,b ,c满足,且,则b 的值为( )A .4B .6C .9D .363.在中,,且,则( )ABC .D4.已知五边形,相似比为4:9.若五边形的周长为12,则五边形ABCDE 的周长为( )A .B .C .12D .275.某生态公园的人工湖周边修葺了3条湖畔小径,如图小径BC ,AC 恰好互相垂直,小径AB 的中点M 刚好在湖与小径相交处.若测得BC 的长为,AC的长为,则C ,M 两点间的距离为()A .B .C .D .6.已知的边AB ,AD 长是关于x 的一元二次方程的两个实数根,若,则a bb c=4,9a c ==Rt ABC △90C ∠=︒3c b =cos A =1311111ABCDE A B C D E ∽五边形11111A B C D E 1632740.8km 0.6km 0.5km 0.6km 0.8km 1kmABCD 240x mx -+=AB =另一边AD 的长( )A .2B .C .4D .7.第19届亚运会会徽名为“潮涌”,吉祥物是一组名为“江南忆”的机器人,出自唐朝诗人白居易名句“江南忆,最忆是杭州”.小东收集了如图所示的四张小卡片(除正面内容不同外,其余均相同),现将四张卡片背面朝上,洗匀放好.小东从中随机抽取两张卡片,则他抽到的两张卡片恰好是“吉祥物莲莲”和“吉祥物底底”的概率是()A.B .C .D .8.关于反比例函数,下列说法不正确的是( )A .点在它的图象上B .此函数图象关于直线对称C .当时,D .每个分支上,y 随x 的增大而减少9.在认识特殊平行四边形时,小红用四根长度均为的木条首尾相接,钉成正方形ABCD ,转动这个四边形,使它的形状改变,当转动到四边形时,测得,则,C 之间的距离比变形前A ,C 之间的距离短()A. B .C .D .10.如图,矩形ABCD 对角线AC ,BD 相交于点O ,过点A 作于点M ,交BC 于点E ,过点C 作于点N ,交AD 于点F ,连接EN ,FM ,若,则下列结论:①;②;③;④四边形AECF 是菱形.正确的有( )116112161412y x=()2,6--y x =-4x <-3y >-13cm 11A BCD 124cm BD =1A 3cm ()5cm -5cm ⎫-⎪⎪⎭()10cm-AE BD ⊥CF BD ⊥tan AOB ∠=EN FM =2AM MD ND =⋅60AEN ∠=︒A .①②③B .①②④C .②③④D .①③④二、填空题(每题3分,共18分)11.小亮在解一元二次方程时,不小心把常数项丢掉了,已知这个一元二次方程有两个相等的实数根,则丢掉的常数项为_______.12.在测量旗杆高度的活动课上,某小组学生于同一时刻在阳光下对一根直立于平地的竹竿及其影长和旗杆的影长进行了测量,得到如图所示的数据,请根据这些数据计算出旗杆的高度为_______m .13.在一个不透明的盒子有7枚黑棋子和若干枚白棋子,这些棋子除颜色外无其他差别.从盒子随机取出一枚棋子,记下颜色后再放回盒中.不断重复上述过程,一共取了300次,其中有100次取到黑棋子,由此估计盒中有______枚白棋子.14.如图,在长为52米,宽为20米的长方形地面上修筑宽度相同的小路(图中阴影部分),余下部分种植草坪.要使小路的面积为100平方米,设小路的宽为x 米,则根据题意可列的方程为_______.15.如图,在平行四边形ABCD 中,点E 为边AD 的黄金分割点,且,则_______.16.如图,在平面直角坐标系中,矩形OABC 边BC 取点E ,使,连接AE ,OB 交于点D ,已知的面积3.若反比例函数的图象恰好经过点D ,则_______.260x x -+=AE ED >CFAF=2BE CE =AOD △ky x=k =三、解答题(一)(第17题4分,第18、19、20题各6分,共22分)1718.为便于劳动课程的开展,学校打算在校园东北角建一个矩形生态园ABCD .如图,生态园一面靠墙(墙足够长),另外三面用长的篱笆围成.若要使得生态园的面积为,则AB 的长为多少?19.如图,在平面直角坐标系中,的顶点的坐标分别为.(1)以点O 为位似中心,位似比为2:1,将放大得,请在网格中画出(不要超出方格区域);(2)与的面积比为_______;20.如图,在等腰中,,D 是BC 边上的中点,E 点是AD 上一点,连接BE ,过C 作,交AD 延长线于点F ,连接BF ,CE .试判断四边形BFCE 的形状,并证明你的结论.四、解答题(二)(第21、22题各8分,第23题10.分,共26分)21.心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化:开始上课2452cos 603tan 30︒+︒-︒18m 236m ABC △()()()2,2,5,4,1,5A B C ------ABC △111A B C △111A B C △111A B C △ABC △ABC △AB AC =CF BE ∥时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y 随时间x (分钟)的变化规律如图所示(其中AB ,BC 分别为线段,轴,CD 为双曲线的一部分),其中AB 段的关系式为.(1)点B 坐标为_______;(2)根据图中数据,求出CD 段双曲线的表达式:(3)一道数学竞赛题,需要讲20分钟,为了效果较好,要求学生的注意力指标数最低达到32,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?22.综合实践为了测量一条两岸平行的河流宽度,三个数学兴趣小组设计了不同的方案,他们在河的南岸点A 处测得北岸的树H 恰好在A 的正北方向.测量方案与数据如下表:课题测量河流宽度测量工具测量角度的仪器、皮尺等测量方案示意图说明点B ,C 在点A 的正东方向点B ,D 在点A 的正东方向点B 在点A 的正东方向点C 在点A 的正西方向测量数据,,.,,.,,.(1)哪个小组的数据无法计算出河宽?(2)请选择其中一个方案及其数据求出河宽(结果精确到).BC x ∥220y x =+60m BC =70ABH ∠=︒35ACH ∠=︒20m BD =70ABH ∠=︒35ACH ∠=︒101m BC =70ABH ∠=︒35ACH ∠=︒1m(参考数据:)23.如图,已知中,E 为CD 上一点,且,连接AE 并延长,交BD 于点M ,交BC 的延长线于点N .(1)若,求BN 的长;(2)求证:.五、解答题(三)(每题12分,共24分)24.综合运用如图,直线与x 轴交于C 点,与y 轴交于B 点,在直线上取点,过点A 作反比例函数的图象.(1)求a 的值及反比例函数的表达式;(2)点P 为反比例函数图象上的一点,看,求点P 的坐标.(3)在x 轴是否存在点Q ,使得,若存在请求出点Q 的坐标,若不存在请说明理由.25.综合探究如图①,在矩形ABCD 中,,点E 在边BC 上,且,动点P 从点E 出发,沿折线以每秒2个单位长度的速度运动.作,EQ 交边AD 或边DC 于点Q ,连接PQ ,当点Q 与点C 重合时,点P 停止运动,设点P 的运动时间为t秒.sin 700.94,sin 350.57,tan 70 2.75,tan 350.70︒≈︒≈︒≈︒≈ABCD 3DE CE =6AD =2AM ME MN =⋅22y x =+()2,A a ()0ky x x=>()0ky x x=>2POB AOB S S =△△BOA OAQ ∠=∠6,10AB AD ==4BE =EB BA AD --90PEQ ∠=︒()0t >(1)当点P 和点B 重合时,线段PQ 的长为_________;(2)当点Q 和点D 重合时,求的值;(3)当点P 在边AD 上运动时,的形状始终是等腰直角三角形,如图②,请说明理由;(4)将沿直线PQ 翻折到,点E 对称点为点F ,当点F 刚好在矩形ABCD 的边上(包括顶点),请直接写出t的值.tan PQE PQE △PQE △PQF △2023~2024学年上学期初三第三次学情反馈数学参考答案及评分标准一、选择题(每题3分,共30分)题号12345678910答案DBCAABCCDB二、填空题(每题3分,共18分)11.912.1213.1414.1516.三、解答题(一)(第17题4分,第18、19、20题各6分,共22分)17解:原式 3分4分18.解:∵四边形ABCD 是矩形,∴设,则 1分由题意得:,3分整理得:解得: 4分∴或6答:AB 的长为或. 6分(或直接设求解)19.(1)解:如图所示,即为所求.4分23220100x x x +-=1852452cos 603tan 30-︒︒+︒21232=⨯-⨯1111=+-=AD BC xm ==()182AB CD x m ==-()18236x x -=29180x x -+=123,6x x ==18212x -=12m 6m AB xm =111A B C △注: (没有不扣分)(2)4:16分20.解:四边形BFCE 是菱形,证明如下:1分∵,D 是BC 边上的中点∴∵,∴3分在和中,,.4分∴,又∴四边形BFCE 是平行四边形5分∵,∴四边形BFCE 是菱形6分四、解答题(二)(第21、22题各8分,第23题10分,共26分)21.(1)点B 坐标为; 1分(2)解:由图:点C 的坐标为, 2分设C 、D 所在双曲线的解析式为,把代入得,,∴.5分(3)令,∴.6分令,∴, 7分∵,∴经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目. 8分22.(1)第二个小组的数据无法计算出河宽. 2分(2)第一个小组的解法:∵,∴,即∴,()()()1114,410,,,82,10A B C AB AC =,90BD CD ADB =∠=︒CF BE ∥,EBD FCD BED CFD ∠=∠∠=∠BDE △CDF △BED CFD EBD FCD BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩()BDE CDF AAS △≌△CF BE =CF BE ∥90ADB ∠=︒()10,40()24,402ky x=()24,40C 960k =()96024y x x=>22032y x =+=6x =96032y x==30x =3062420-=>70,35ABH ACH ∠=︒∠=︒35BHC ABH ACH ∠=∠-∠=︒BHC ACH ∠=∠60m BH BC ==中,,∴ 8分(只要选择一个方案计算出河宽即可)第三个小组的解法:设,则∵,∴解得:答:河宽为.23.(1)解:∵四边形ABCD 是平行四边形,∴∴,又,∴,∴,∴,∴ 4分(2)证明:由得:,又∴,∴6分.同理可证:,∴8分∴,则 10分五、解答题(三)(每题12分,共24分)24.解:(1)把代入得,,1分把代入,得,∴反比例函数的函数表达式为,3分Rt ABH △sin AHABH BH∠=sin 70600.9456m AH BH =⋅︒≈⨯≈AH xm =,tan 35tan 70AH AHCA AB ==︒︒CA AB CB +=101tan 35tan 70x x+=︒︒56mx ≈56m ,6AD BC BC AD ==∥DAE N ∠=∠NEC AED ∠=∠ADE NCE △∽△3AD DENC CE==2NC =8BN BC CN =+=AD BC ∥DAM N ∠=∠AMD NMB∠=∠AMD NMB △∽△AM DMMN BM=AMB EMD △∽△AM BMEM DM=AM EMMN AM=2AM ME MN =⋅()2,A a 22y x =+2226a =⨯+=()2,6A ky x=12k =12y x=(2)解:把代入,即4分∴,∴又 6分∴,代入,得∴点P 坐标为 7分(3)在x 轴存在点Q ,使得.当点Q 在x 轴正半轴上时,如图,过点A 作轴交x 轴于,则,∴点当点Q 在x 轴负半轴上时,如图,设与y 轴交于点∵,∴,则,解得:,∴设直线表达式为,把分别代入,∴,解得,∴直线的表达式为,当时,,即点的坐标为,0x =222y x =+=()0,2B 12,2212AOB OB S ==⨯⨯=△24POB AOB S S ==△△1242POB P S x =⨯⨯=△4P x =12y x =3y =()4,3BOA OAQ ∠=∠1AQ y ∥1Q 1BOA OAQ ∠=∠()2,0Q 2AQ ()0,D b 2BOA OAQ ∠=∠OD AD =2222(6)b b +-=103b =100,3D ⎛⎫ ⎪⎝⎭2AQ y mx n =+()102,6,0,3A D ⎛⎫ ⎪⎝⎭26103m n n +=⎧⎪⎨=⎪⎩43103m n ⎧=⎪⎪⎨⎪=⎪⎩2AQ 41033y x =+0y =52x =-2Q 5,02⎛⎫- ⎪⎝⎭综上所述,点Q 的坐标为或25.(1) 2分解析:如图所示,当点P 和点B 重合时,∴,在中,,即:﹔(2)当点Q 和点D 重合时,如图所示:∵,∴,∴,∴,∴,∵四边形ABCD 是矩形,∴,则,∴,∴,∴,∴, 6分(3)过P 作于点F ,则有,又∵矩形ABCD ,∴()2,05,02⎛⎫-⎪⎝⎭6,4QE AB BE ===Rt QBE△BQ ===PQ =90,90PEQ PBE ECD ∠=︒∠=∠=︒1290,2390∠+∠=︒∠+∠=︒13∠=∠PBE ECD △∽△PB BE EC CD =6,10AB CD AD BC ====6EC BC BE AD BE =-=-=466PB =4PB =PE EQ ====2tan 3PE PQE QE ∠===PF BC ⊥1390,6PFE PF AB ∠+∠=∠=︒==90,10B C AD BC ∠=∠=︒==又∵,∴,∴,∵,∴,∴∴,∴,又∵,∴是等腰直角三角形;(4)或①如图所示,当点P 在BE 上时,点F 落在AB 上∵,在中,,则,∵,∴,在中,,∴,解得:,②当P 点在AB 上时,当F ,A重合时符合题意,此时如图,90PEQ ∠=︒1290∠+∠=︒23∠=∠4,10BE BC ==6CE =PF CE=PFE ECQ △≌△PE EQ =90PEQ ∠=︒PQE △t =176t =7t =6,4QE QF AQ BE ====Rt AQF△AF ===6BF =-2PE t =42,2BP t PF PE t =-==Rt PBF △222PF PB FB =+()(()2222642t t =-+-t =则,在中,∴,解得,③当点P 在AD 上,当F ,∴D 重合时,此时点Q 与点C 重合,则PFQE 是正方形,此时;综上所述,或()224,624102PB t BE t PE AP AB PB t t =-=-==-=--=-Rt PBE △222PE PB BE =+222(102)(24)4t t -=-+176t =2327t =++=t =176t =7t =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年度上学期九年级第三次月测
数学试卷
一、选择题(本大题共10题,每题3分,共30分.每题给出的四个选项中只有一个是正确的,请将所选选项的字母写在题目后面的括号内)
1.某几何体的三视图如图所示,该几何体是( ).
A .圆锥
B .圆柱
C .三棱锥
D .球
2.若ABC A B C '''△∽△,相似比为1:2,则ABC △与A B C '''△的周长的比为( ).
A .2:1
B .1:2
C .4:1
D .1:4
3.已知1x ,2x 是一元二次方程220x x -=的两个实数根,下列结论错误的是( ).
A .12x x ≠
B .2
1120x x -= C .122x x += D .122x x ⋅=
4.下列命题正确的是( ).
A .一组邻边相等的四边形是菱形
B .有三个角是直角的四边形是矩形
C .对角线相等的四边形是矩形
D .有一个角是直角的平行四边形是正方形
5.如图,在网格中,小正方形的边长为1,ABC △的顶点都是格点,则cos BAC ∠的值为(
)
.
A .5
B .5
C .5
D 6.如图,若ABC △与111A B C △是位似图形,则位似中心的坐标为( ).
A .(1,0)
B .(0,1)
C .(1,0)-
D .(0,1)-
7.如图,电灯P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB CD ∥,1AB m =,3CD m =,点P 到CD 的距离为9m ,则AB 与CD 间的距离是( )m .
A .6
B .5
C .4
D .3
8.如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,BE CF =,则图中与AEB ∠相等的角的个数是( ).
A .1
B .2
C .3
D .4
9.如图,已知AB CD EF ∥∥,:3:5AD AF =,6BC =,CE 的长为( ).
A .2
B .4
C .3
D .5
10.如图,在平面直角坐标系中,菱形ABCD 的顶点A ,B 在反比例函数(0,0)k y k x x
=>>的图象上,横坐标分别为2,6,对角线BD x ∥轴.若菱形ABCD 的面积为16,则k 的值为( ).
A .53
B .154
C .6
D .7
二、填空题(本大题共7题,每题4分,共28分.请把答案填写在横线上)
11.计算:22cos 45︒= .
12.已知43(0)a b ab =≠,则:a b = .
13.已知:如图,ABC △的面积为12,点D 、E 分别是边AB 、AC 的中点,则四边形BCED 的面积为 .
14.一种药品经过两次降价,药价从原来每盒120元降至到现在80元,设平均每次降价的百分率为x ,则列方程为 .
15.已知反比例函数1y k x -=
(k 是常数,1k ≠)的图象有一支在第二象限,那么k 的取值范围是 .
16.在一个不透明的布袋中,有黄色、白色的玻璃球共有60个,除颜色外,形状、大小、质地等完全相同,小刚通过多次摸球试验后发现摸到黄色球的频率在20%,则布袋中白色球的个数有可能是 个.
17.如图,CE 是ABCD Y 的边AB 的垂直平分线,垂足为点O ,CE 与DA 的延长线交于点E .连接AC ,BE ,DO ,DO 与AC 交于点F ,则下列结论:
①四边形ACBE 是菱形;
②ACD ABE ∠=∠;
③:1:3AF BE =;
④S 四边形:2:3AFOE COD S =△;
其中正确的结论有 .(填写所有正确结论的序号)
三、解答题(一)(本大题共3题,每题6分,共18分)
18.解方程:2
(3)3x x -=-.
19.如图,四边形ABCD 中,对角线AC 、BD 相交于点O ,AO OC =,
BO OD =,且2AOB OAD ∠=∠. (1)求证,四边形ABCD 是矩形;
(2)若3tan 4
ADO ∠=,10AC =.求ABO △的面积.
20.为了促进“足球进校园”活动的开展,我校举行了中学生足球比赛活动.现从A ,B ,C 三支获胜足球队中,随机抽取两支球队分别到两所边远地区学校进行交流.
(1)请用列表或画树状图的方法,表示出抽到的两支球队的所有可能结果;
(2)求出抽到B 队和C 队参加交流活动的概率.
四、解答题(二)(本大题共3,每8分,共24分)
21.如图,某测量小组为了测量山BC 的高度,在地面A 处测得山顶B 的仰角45︒,然后沿着坡度为
1:i =AD 走了300米达到D 处,此时在D 处测得山顶B 的仰角为60︒,求山高BC (结果保留根号).
22.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.
(1)若降价4元,则平均每天销售数量为 件;
(2)当每作商品降价多少元时,该商店每天销售利润为1200元?
23.如图,一次函数1y k x b =+的图象与反比例函数2k y x =
的图象相交于A ,B 两点,其中点A 的坐标为(1,3)-,点B 的坐标为(3,)n .
(1)根据函数图象,直接写出满足21k k x b x
+≤
的x 的取值范围是 ; (2)求这两个函数的表达式;
(3)点P 在线段AB 上,且:2:3AOP BOP S S =△△,求点P 的坐标.
五、解答题(三)(本大题共2题,每题10分,共20分)
24.(1)数学理解:如图①,ABC △是等腰直角三角形,
过斜边AB 的中点D 作正方形DECF ,分别交BC ,
AC 于点E ,F ,求证:2
AF BE AB +=; (2)问题解决:如图②,在任意直角ABC △内,找一点D ,过点D 作正方形DECF ,分别交BC ,AC 于点E ,F ,若AB BE AF =+,求DAB DBA ∠+∠的度数;
(3)联系拓广;如图③,在(2)的条件下,分别延长ED ,FD ,交AB 于点M ,N ,若2AM =,3BN =,求MN 的长.
25.如图,在矩形ABCD 中,8AB =,10AD =,E 是CD 边上一点,连接AE ,将矩形ABCD 沿AE 折叠,顶点D 恰好落在BC 边上点F 处,延长AE 交BC 的延长线于点G ,连接DG .
(1)求tan EFC ∠的值;
(2)求证:四边形AFGD 是菱形;
(3)如图2,M ,N 分别是线段AG ,DG 上的动点
(与端点不重合),且DMN DAM ∠=∠,设AM x =,DN y =,请解决以下相关问题:
①写出y 关于x 的函数解析式;
②是否存在这样的点M ,使DMN △是等腰三角形?若存在,请求出x 的值;若不存在,请说明理由.。