第1讲 模型全等-手拉手与夹半角—提高班
专题 全等三角形模型——手拉手模型与半角模型(解析版)

全等三角形模型——手拉手模型与半角模型手拉手模型特点:由两个等顶角的等腰三角形所组成,并且顶角的顶点为公共顶点,如图所示结论:(1)△ABD ≌△AEC(2)∠α+∠BOC=180°(3)OA 平分∠BOC变形:1.如图,以ABC D 的边AB ,AC 为边,向外作等边ABD D 和等边ACE D ,连接BE ,CD 相交于点F .(1)求证:DC BE =.(2)求DFE Ð的度数.(3)求证:FA 平分DFE Ð.(4)求证:DF AF BF =+.【分析】(1)根据等边三角形的性质和全等三角形的判定和性质得出DC BE =即可;(2)根据全等三角形的性质和角的关系得出120DFE Ð=°即可;(3)过点A 作AP DC ^于P ,AQ BE ^于Q ,根据三角形面积公式和角平分线的性质解答即可;(4)在DF 上截取DM BF =,连接AM ,根据全等三角形的判定和性质解答即可.【解答】证明:(1)ABD D Q 和ACE D 是等边三角形,AD AB \=,AE AC =,60DAB EAC AEC ACE Ð=Ð=Ð=Ð=°,DAB BAC EAC BAC \Ð+Ð=Ð+Ð,即DAC BAE Ð=Ð,在DAC D 与BAE D 中,AD AB DAC BAE AC AE =ìïÐ=Ðíï=î,()DAC BAE SAS \D @D ,DC BE \=;(2)DAC BAE D @D Q ,ADF ABF \Ð=Ð,AGD FGB Ð=ÐQ ,60BFG DAG \Ð=Ð=°,120DFE \Ð=°;(3)过点A 作AP DC ^于P ,AQ BE ^于Q ,DAC BAE D @D Q ,\1122DAC BAE S DC AP S BE AQ D D =×==×,DC BE =Q ,AP AQ \=,AP DC ^Q ,AQ BE ^,FA \平分DFE Ð;(4)在DF 上截取DM BF =,连接AM ,在ADM D 与ABF D 中,AD AB ADM ABF DM BF =ìïÐ=Ðíï=î,()ADM ABF SAS \D @D ,AM AF \=,DAM BAF Ð=Ð,60DAB Ð=°Q ,60DAM MAG \Ð+Ð=°,60BAF MAG \Ð+Ð=°,即60MAF Ð=°,AMF \D 是等边三角形,MF AF \=,DF DM MF AF BF \=+=+.2.等边ABD D 和等边BCE D 如图所示,连接AE 与CD ,证明:(1)AE DC =;(2)AE 与DC 的夹角为60°;(3)AE 延长线与DC 的交点设为H ,求证:BH 平分AHC Ð.【分析】(1)根据ABD D 和BCE D 都是等边三角形,即可得到()ABE DBC SAS D @D ,进而得出AE DC =;(2)根据全等三角形的性质以及三角形内角和定理,即可得到ADH D 中,60AHD Ð=°,进而得到AE 与DC 的夹角为60°;(3)过B 作BF DC ^于F ,BG AH ^于G ,根据全等三角形的面积相等,即可得到BG BF =,再根据BF DC ^于F ,BG AH ^于G ,可得BH 平分AHC Ð.【解答】证明:(1)ABD D Q 和BCE D 都是等边三角形,AB DB \=,EB CB =,ABD EBC Ð=Ð,ABE DBC \Ð=Ð,在ABE D 和DBC D 中,AB DB ABE DBC EB CB =ìïÐ=Ðíï=î,()ABE DBC SAS \D @D ,AE DC \=;(2)ABE DBC D @D Q ,BAE BDC \Ð=Ð,又120BAE HAD ADB Ð+Ð+Ð=°Q ,120BDC HAD ADB \Ð+Ð+Ð=°,ADH \D 中,18012060AHD Ð=°-°=°,即AE 与DC 的夹角为60°;(3)如图,过B 作BF DC ^于F ,BG AH ^于G ,ABE DBC D @D Q ,ABE DBC S S D D \=,即1122AE BG DC BF ´=´,又AE DC =Q ,BG BF \=,又BF DC ^Q 于F ,BG AH ^于G ,BH \平分AHC Ð.3.(2021春•宁阳县期末)如图两个等腰直角ADC D 与EDG D ,90ADC EDG Ð=Ð=°,连接AG ,CE 交于点H .证明:(1)AG CE =;(2)AG CE ^.【分析】(1)由两个等腰直角ADC D 与EDG D ,可得AD CD =,DG DE =,90ADC GDE Ð=Ð=°,进而得出ADG CDE Ð=Ð,然后由SAS 即可判定ADG CDE D @D ,进而可得结论;(2)根据全等三角形的性质则可证得DAG DCE Ð=Ð,再根据直角三角形的两锐角互余进而证出90CHA Ð=°即可得解.【解答】解:(1)证明:ADC D Q 与EDG D 是等腰直角三角形,AD CD \=,DG DE =,且90ADC GDE Ð=Ð=°,ADC CDG GDE CDG \Ð+Ð=Ð+Ð,即ADG CDE Ð=Ð,在ADG D 与CDE D 中,AD CD ADG CDEDG DE =ìïÐ=Ðíï=î,()ADG CDE SAS \D @D ,AG CE \=;(2)证明:设CD 与AG 相交于点P ,由(1)知,ADG CDE D @D,DAG DCE \Ð=Ð,90ADC Ð=°Q ,90DAG APD \Ð+Ð=°,APD CPH Ð=ÐQ ,90DCE CPH \Ð+Ð=°,90CHP \Ð=°,AG CE \^.4.如图,两个等腰Rt ADC D 与Rt EDG D ,连接AG ,CE 交于点H ,连接HD .求证:AHD EHD Ð=Ð.【分析】由“SAS ”可证ADG CDE D @D ,可得AG CE =,ADG CDE S S D D =,由面积公式可得DN DM =,由角平分线的判定定理可得结论.【解答】证明:如图,过点D 作DN AG ^于N ,DM CE ^于M ,90ADC GDE Ð=Ð=°Q ,ADG EDC \Ð=Ð,在ADG D 和CDE D 中,AD CD ADG CDE DG DE =ìïÐ=Ðíï=î,()ADG CDE SAS \D @D ,AG CE \=,ADG CDE S S D D =,\1122AG DN CE DM ´´=´´,DN DM \=,又DN AG ^Q ,DM CE ^,AHD EHD \Ð=Ð.5.如图,两个正方形ABCD 和DEFG ,连接AG 与CE ,二者相交于H .问:(1)求证:ADG CDE D @D .(2)AG 与CE 的关系?并说明理由.(3)求证:HD 平分AHE Ð.【分析】(1)由四边形ABCD 与DEFG 是正方形,可得AD CD =,90ADC GDE Ð=Ð=°,进而得出ADG CDE Ð=Ð,DG DE =,然后由SAS 即可判定ADG CDE D @D ;(2)根据全等三角形的性质则可证得AG CE =,DAG DCE Ð=Ð,进而证出90CHA Ð=°即可;(3)根据全等三角形的性质和三角形的面积解答即可.【解答】(1)证明:Q 四边形ABCD 和四边形DEFG 是正方形,AD CD \=,DG DE =,且90ADC GDE Ð=Ð=°,ADG CDE \Ð=Ð,在ADG D 与CDE D 中,AD CD ADG CDE DG DE =ìïÐ=Ðíï=î,()ADG CDE SAS \D @D ,(2)解:AG CE =,AG CE ^,理由如下:由(1)得:ADG CDE D @D ,AG CE \=,DAG DCE Ð=Ð,DCE CHA DAG ADC Ð+Ð=Ð+ÐQ ,90CHA ADC \Ð=Ð=°,AG CE \^;(3)证明:过点D 作DM AG ^于M ,DN CE ^于N ,如图:ADG CDE D @D Q ,DCE ADG S S D D \=,\1122CE DN AG DM ´´=´´,DM DN \=,MD AG ^Q ,DN CE ^,DH \平分AHE Ð.6.(2021秋•南岗区校级期中)已知:AB AC =,AD AE =,BAC DAE Ð=Ð.(1)如图1,求证:BD CE =;(2)如图2,当60BAC Ð=°时,BD 、CE 交于点P ,连接PA ,求证:PB PC PA -=;(3)如图3,在(2)的条件下,过E 作EH PA ^于H ,在PE 上取点F ,连接FH 并延长至G ,使GH FH =,连接GE ,若2HGE HEG Ð=Ð,求EHF Ð的度数.【分析】(1)证明BAD CAE D @D 即可;(2)作AF BD ^,AG CE ^,截取PH PA =,证明ABF ACG D @D ,可推出60APF APG Ð=Ð=°,从而可证ACH ABP D @D ,进而得证;(3)作HQ CE ^于Q ,作HM GH =交GE 于M ,作MN AE ^于N ,证明HQF ENM D @D ,可推出15AEG Ð=°,进而求得结果.【解答】(1)证明:如图1,BAC DAE Ð=ÐQ ,BAC CAD DAE CAD \Ð+Ð=Ð+Ð,BAD CAE \Ð=Ð,AB AC =Q ,AD AE =,()BAD CAE SAS \D @D ,BD CE \=;(2)证明:如图2,设AC 与PB 交于I ,作AF BD ^于F ,AG CE ^于G ,在PE 上截取PH PA =,90AFB AGC \Ð=Ð=°,由(1)知:BAD CAE D @D ,B C \Ð=Ð,PIC AIB Ð=ÐQ ,60CPF BAC \Ð=Ð=°,AB AC =Q ,()AFB AGC AAS \D @D ,AF AG \=,11(180)(18060)6022APF APG CPF \Ð=Ð=°-Ð=°-°=°,PAH \D 是等边三角形,60AHC \Ð=°,AHC APB \Ð=Ð,()ABP ACH AAS \D @D ,PB CH PC PH PC PA \==+=+,即:PB PC PA -=;(3)解:如图3,作HQ CE ^于Q ,作HM GH =交GE 于M ,作MN AE ^于N ,90HQF MNE \Ð=Ð=°,AMG G Ð=Ð,2G AEG Ð=ÐQ ,2AMG AEG \Ð=Ð,AMG AEG EHM Ð=Ð+ÐQ ,AEG EHM \Ð=Ð,MH ME \=,12EN AN EH \==,GH FH =Q ,ME FH \=,PH HE ^Q ,90PHE \Ð=°,由(2)知:60APF Ð=°,30HEP \Ð=°,12HQ EH \=,HQ NE \=,()HQF ENM HL \D @D ,AEG QHF \Ð=Ð,EHF G AEG Ð=Ð+ÐQ ,3FHE AEG \Ð=Ð,4QHE QHF FHE AEG \Ð=Ð+Ð=Ð,90HQE \Ð=°,30HEP Ð=°,60HQE \Ð=°,460AEG \Ð=°,15AEG \Ð=°,345EHF AEG \Ð=Ð=°.7.(2021秋•天河区期末)ABC D 是等边三角形,点D 是AC 边上动点,(030)CBD ααÐ=°<<°,把ABDD 沿BD 对折,得到△A BD ¢.(1)如图1,若15α=°,则CBA Т= .(2)如图2,点P 在BD 延长线上,且DAP DBC αÐ=Ð=.①试探究AP ,BP ,CP 之间是否存在一定数量关系,猜想并说明理由.②若10BP =,CP m =,求CA ¢的长.(用含m 的式子表示)【分析】(1)由ABC D 是等边三角形知,60ABC Ð=°,由15CBD αÐ==°,知A BD ABD ABC α¢Ð=Ð=Ð-,2602CBA A BD ABC ααα¢¢Ð=Ð-=Ð-=°-,代入α值即可;(2)①连接CP ,在BP 上取一点P ¢,使BP AP ¢=,根据SAS 证△BP C APC ¢@D ,得CP CP ¢=,再证CPP ¢D 是等边三角形,即可得出BP AP CP =+;②先证180BCP BCA ¢Ð+Ð=°,即A ¢、C 、P 三点在同一直线上,得出PA PC CA ¢¢=+,根据SAS 证ADP D @△A DP ¢,得出A P AP ¢=,即可求出CA ¢的值.【解答】解:(1)ABC D Q 是等边三角形,60ABC \Ð=°,CBD αÐ=Q ,A BD ABD ABC α¢\Ð=Ð=Ð-,2602CBA A BD ABC ααα¢¢\Ð=Ð-=Ð-=°-,15α=°Q ,6021530CBA ¢\Ð=°-´°=°,故答案为:30°;(2)①BP AP CP =+,理由如下:连接CP ,在BP 上取一点P ¢,使BP AP ¢=,ABC D Q 是等边三角形,60ACB \Ð=°,BC AC =,DAP DBC αÐ=Ð=Q ,\△()BP C APC SAS ¢@D ,CP CP ¢\=,BCP ACP ¢Ð=Ð,60PCP ACP ACP BCP ACP ACB ¢¢¢¢\Ð=Ð+=Ð+Ð=Ð=°,CP CP ¢=Q ,CPP ¢\D 是等边三角形,60CPB \Ð=°,PP CP ¢=,BP BP PP AP CP ¢¢\=+=+,即BP AP CP =+;②如下图,由①知,60BPC Ð=°,180********BCP BPC PBC αα\Ð=°-Ð-Ð=°-°-=°-,由(1)知,602CBA α¢Ð=°-,由折叠知,BA BA ¢=,BA BC =Q ,BA BC ¢\=,11(180)[180(602)]6022BCA CBA αα¢¢\Ð=°-Ð=°-°-=°+,12060180BCP BCA αα¢\Ð+Ð=°-+°+=°,\点A ¢、C 、P 在同一直线上,即PA PC CA ¢¢=+,由折叠知,BA BA ¢=,ADB A DB ¢Ð=Ð,180180ADB A DB ¢\°-Ð=°-Ð,ADP A DP ¢\Ð=Ð,DP DP =Q ,ADP \D @△()A DP SAS ¢,A P AP ¢\=,由①知,BP AP CP =+,10BP =Q ,CP m =,10AP BP CP m \=-=-,10A P AP m ¢\==-,10102CA A P CP m m m ¢¢\=-=--=-.半角模型图形中,往往出现90°套45°的情况,或者120°套60°的情况。
专题01 旋转中的三种全等模型(手拉手、半角、对角互补模型)(解析版)

专题01 旋转中的三种全等模型(手拉手、半角、对角互补模型)本专题重点分析旋转中的三类全等模型(手拉手、半角、对角互补模型),结合各类模型展示旋转中的变与不变,并结合经典例题和专项训练深度分析基本图形和归纳主要步骤,同时规范了解题步骤,提高数学的综合解题能力。
模型1.手拉手模型【模型解读】将两个三角形(或多边形)绕着公共顶点旋转某一角度后能完全重合,则这两个三角形构成手拉手全等,也叫旋转型全等。
其中:公共顶点A记为“头”,每个三角形另两个顶点逆时针顺序数的第一个顶点记为“左手”,第二个顶点记为“右手”。
手拉模型解题思路:SAS型全等(核心在于导角,即等角加(减)公共角)。
1)双等边三角形型条件:△ABC和△DCE均为等边三角形,C为公共点;连接BE,AD交于点F。
结论:①△ACD≌△BCE;②BE=AD;③∠AFM=∠BCM=60°;④CF平分∠BFD。
2)双等腰直角三角形型条件:△ABC和△DCE均为等腰直角三角形,C为公共点;连接BE,AD交于点N。
结论:①△ACD≌△BCE;②BE=AD;③∠ANM=∠BCM=90°;④CN平分∠BND。
3)双等腰三角形型条件:△ABC 和△DCE 均为等腰三角形,C 为公共点;连接BE ,AD 交于点F 。
结论:①△ACD ≌△BCE ;②BE =AD ;③∠ACM =∠BFM ;④CF 平分∠AFD 。
4)双正方形形型条件:△ABCFD 和△CEFG 都是正方形,C 为公共点;连接BG ,ED 交于点N 。
结论:①△△BCG ≌△DCE ;②BG =DE ;③∠BCM =∠DNM=90°;④CN 平分∠BNE 。
例1.(2022·黑龙江·中考真题)ABC V 和ADE V 都是等边三角形.(1)将ADE V 绕点A 旋转到图①的位置时,连接BD ,CE 并延长相交于点P (点P 与点A 重合),有PA PB PC +=(或PA PC PB +=)成立;请证明.(2)将ADE V 绕点A 旋转到图②的位置时,连接BD ,CE 相交于点P ,连接PA ,猜想线段PA 、PB 、PC 之间有怎样的数量关系?并加以证明;(3)将ADE V 绕点A 旋转到图③的位置时,连接BD ,CE 相交于点P ,连接PA ,猜想线段PA 、PB 、PC 之间有怎样的数量关系?直接写出结论,不需要证明.【答案】(1)证明见解析 (2)图②结论:PB PA PC =+,证明见解析 (3)图③结论:PA PB PC+=【分析】(1)由△ABC 是等边三角形,得AB =AC ,再因为点P 与点A 重合,所以PB =AB ,PC =AC ,PA =0,即可得出结论;(2)在BP 上截取BF CP =,连接AF ,证明BAD CAE V V ≌(SAS ),得ABD ACE Ð=Ð,再证明CAP BAF ≌△△(SAS ),得CAP BAF Ð=Ð,AF AP =,然后证明AFP V 是等边三角形,得PF AP =,即可得出结论;(3)在CP 上截取CF BP =,连接AF ,证明BAD CAE V V ≌(SAS ),得ABD ACE Ð=Ð,再证明BAP CAF ≌△△(SAS ),得出CAF BAP Ð=Ð,AP AF =,然后证明AFP V 是等边三角形,得PF AP =,即可得出结论:PA PB PF CF PC +=+=.(1)证明:∵△ABC 是等边三角形,∴AB =AC ,∵点P 与点A 重合,∴PB =AB ,PC =AC ,PA =0,∴PA PB PC +=或PA PC PB +=;(2)解:图②结论:PB PA PC=+证明:在BP 上截取BF CP =,连接AF ,∵ABC V 和ADE V 都是等边三角形,∴AB AC =,AD AE =,60BAC DAE Ð=Ð=°∴BAC CAD DAE CAD Ð+Ð=Ð+Ð,∴BAD CAE Ð=Ð,∴BAD CAE V V ≌(SAS ),∴ABD ACE Ð=Ð,∵AC =AB ,CP =BF , ∴CAP BAF ≌△△(SAS ),∴CAP BAF Ð=Ð,AF AP =,∴CAP CAF BAF CAF Ð+Ð=Ð+Ð,∴60FAP BAC Ð=Ð=°,∴AFP V 是等边三角形,∴PF AP =,∴PA PC PF BF PB +=+=;(3)解:图③结论:PA PB PC +=,理由:在CP 上截取CF BP =,连接AF ,∵ABC V 和ADE V 都是等边三角形,∴AB AC =,AD AE =,60BAC DAE Ð=Ð=°∴BAC BAE DAE BAE Ð+Ð=Ð+Ð,∴BAD CAE Ð=Ð,∴BAD CAE V V ≌(SAS ),∴ABD ACE Ð=Ð,∵AB =AC ,BP =CF ,∴BAP CAF ≌△△(SAS ),∴CAF BAP Ð=Ð,AP AF =,∴BAF BAP BAF CAF Ð+Ð=Ð+Ð,∴60FAP BAC Ð=Ð=°,∴AFP V 是等边三角形,∴PF AP =,∴PA PB PF CF PC +=+=,即PA PB PC +=.【点睛】本题考查等边三角形的判定与性质,全等三角形的判定与性质,熟练掌握等边三角形的判定与性质、全等三角形的判定与性质是解题的关键.例2.(2023·湖南·长沙市八年级阶段练习)如图1,在Rt △ABC 中,∠B =90°,AB =BC =4,点D ,E 分别为边AB ,BC 上的中点,且BD =BE .(1)如图2,将△BDE 绕点B 逆时针旋转任意角度α,连接AD ,EC ,则线段EC 与AD 的关系是 ;(2)如图3,DE ∥BC ,连接AE ,判断△EAC 的形状,并求出EC 的长;(3)继续旋转△BDE ,当∠AEC =90°时,请直接写出EC 的长.例3.(2023·黑龙江·虎林市九年级期末)已知Rt △ABC 中,AC =BC ,∠ACB =90°,F 为AB 边的中点,且DF =EF ,∠DFE =90°,D 是BC 上一个动点.如图1,当D 与C 重合时,易证:CD 2+DB 2=2DF 2;(1)当D 不与C 、B 重合时,如图2,CD 、DB 、DF 有怎样的数量关系,请直接写出你的猜想,不需证明.(2)当D 在BC 的延长线上时,如图3,CD 、DB 、DF 有怎样的数量关系,请写出你的猜想,并加以证明.【答案】(1)CD 2+DB 2=2DF 2 ;(2)CD 2+DB 2=2DF 2,证明见解析【分析】(1)由已知得222DE DF =,连接CF ,BE ,证明CDF BEF D @D 得CD =BE ,再证明BDE D 为直角三角形,由勾股定理可得结论;(2)连接CF ,BE ,证明CDF BEF D @D 得CD =BE ,再证明BDE D 为直角三角形,由勾股定理可得结论.【详解】解:(1)CD 2+DB 2=2DF 2证明:∵DF =EF ,∠DFE =90°,∴222DF EF DE += ∴222DE DF = 连接CF ,BE ,如图∵△ABC 是等腰直角三角形,F 为斜边AB 的中点∴CF BF =,CF AB ^,即90CFB Ð=° ∴45FCB FBC Ð=Ð=°,90CFD DFB Ð+Ð=°又90DFB EFB Ð+Ð=° ∴CFD EFB Ð=Ð在CFD D 和BFE D 中CF BF CFD BFE DF EF =ìïÐ=Ðíï=î∴CFD D @BFED ∴CD BE =,45EBF FCB Ð=Ð=° ∴454590DBF EBF Ð+Ð=°+°=° ∴222DB BE DE +=∵CD BE =,222DE DF =∴CD 2+DB 2=2DF 2 ;(2)CD 2+DB 2=2DF 2 证明:连接CF 、BE∵CF =BF ,DF =EF 又∵∠DFC +∠CFE =∠EFB +∠CFB=90°∴∠DFC =∠EFB ∴△DFC ≌△EFB ∴CD =BE ,∠DCF =∠EBF =135°∵∠EBD =∠EBF -∠FBD =135°-45°=90° 在Rt △DBE 中,BE 2+DB 2=DE 2∵ DE 2=2DF 2 ∴ CD 2+DB 2=2DF 2【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、证明三角形全等是解决问题的关键,学会添加常用辅助线,构造全等三角形解决问题.例4.(2022·青海·中考真题)两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来,则形成一组全等的三角形,把具有这个规律的图形称为“手拉手”图形.(1)问题发现:如图1,若ABC V 和ADE V 是顶角相等的等腰三角形,BC ,DE 分别是底边.求证:BD CE =;(2)解决问题:如图2,若ACB △和DCE V 均为等腰直角三角形,90ACB DCE Ð=Ð=°,点A ,D ,E 在同一条直线上,CM 为DCE V 中DE 边上的高,连接BE ,请判断∠AEB 的度数及线段CM ,AE ,BE 之间的数量关系并说明理由.图1 图2【答案】(1)见解析 (2)90DCE Ð=°;2AE AD DE BE CM=+=+【分析】(1)先判断出∠BAD =∠CAE ,进而利用SAS 判断出△BAD ≌△CAE ,即可得出结论;(2)同(1)的方法判断出△BAD ≌△CAE ,得出AD =BE ,∠ADC =∠BEC ,最后用角的差,即可得出结论.【解析】(1)证明:∵ABC V 和ADE V 是顶角相等的等腰三角形,∴AB AC =,AD AE =,BAC DAE Ð=Ð,∴BAC CAD DAE CAD Ð-Ð=Ð-Ð,∴BAD CAE Ð=Ð.在BAD V 和CAE V 中,AB AC BAD CAE AD AE =ìïÐ=Ðíï=î,∴()BAD CAE SAS ≌△△,∴BD CE =.(2)解:90AEB =°∠,2AE BE CM =+,理由如下:由(1)的方法得,≌ACD BCE V V ,∴AD BE =,ADC BEC ÐÐ=,∵CDE △是等腰直角三角形,∴45CDE CED Ð=Ð=°,∴180135ADC CDE Ð=°-Ð=°,∴135BEC ADC Ð=Ð=°,∴1354590AEB BEC CED Ð=Ð-Ð=°-°=°.∵CD CE =,CM DE ^,∴DM ME =.∵90DCE Ð=°,∴DM ME CM ==,∴2DE CM =.∴2AE AD DE BE CM =+=+.【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,等腰三角形,等边三角形,等腰直角三角形的性质,判断出△ACD ≌△BCE 是解本题的关键.3)15°模型2.半角模型【模型解读】半角模型概念:过多边形一个顶点作两条射线,使这两条射线夹角等于该顶角一半思想方法:通过旋转构造全等三角形,实现线段的转化1)正方形半角模型条件:四边形ABCD是正方形,∠ECF=45°;结论:①△BCE≌△DCG;②△CEF≌△CGF;③EF=BE+DF;④D AEF的周长=2AB;⑤CE、CF分别平分∠BEF和∠EFD。
人教版八年级英语 全等句子之手拉手模型和半角模型 专题讲义

人教版八年级英语全等句子之手拉手模
型和半角模型专题讲义
手拉手模型是英语句子中的一种结构模型,也称为“S+V+O”模型。
它由主语、谓语和宾语组成,是最简单的句子结构之一。
手拉手模型的构成如下:
- S(主语):句子的主要承受者或动作执行者。
- V(谓语):句子的动作或状态。
- O(宾语):句子中接受动作的对象或受事者。
例如:I play soccer.(我踢足球。
)
在手拉手模型中,主语和谓语之间采用全角状态,即用中文符号表示。
谓语和宾语之间采用半角状态,即用英文符号表示。
半角模型是英语句子中另一种结构模型,也称为“SVO”模型。
它同样由主语、谓语和宾语组成。
半角模型的构成如下:
- S(主语):句子的主要承受者或动作执行者。
- V(谓语):句子的动作或状态。
- O(宾语):句子中接受动作的对象或受事者。
例如:I play soccer.(我踢足球。
)
在半角模型中,主语和谓语之间,谓语和宾语之间都采用半角状态,即用英文符号表示。
手拉手模型和半角模型是英语句子的两种基本结构模型。
掌握这两种模型有助于理解和构建句子,提升英语写作和口语能力。
以上是关于人教版八年级英语全等句子之手拉手模型和半角模型的专题讲义。
希望对你的学习有所帮助!。
人教版八年级音乐 全等乐谱之手拉手模型和半角模型 专题讲义

人教版八年级音乐全等乐谱之手拉手模型和半角模型专题讲义简介本专题讲义介绍了人教版八年级音乐课程中的全等乐谱之手拉手模型和半角模型。
通过研究这些模型,学生可以更好地理解和演奏音乐。
全等乐谱之手拉手模型全等乐谱是一种音乐符号写法,用于表示乐曲中的相同节奏部分。
手拉手模型是其中的一种形式,通过两只手的互相对应来表示乐谱中的音符。
学生可以使用双手来模拟演奏全等乐谱中的乐谱部分,从而更好地理解音符之间的关系和演奏技巧。
半角模型半角模型是全等乐谱的另一种形式,它使用简化的音符符号来表示乐谱中的音符。
相比于手拉手模型,半角模型更为简洁,适合初学者理解和演奏音乐。
学生可以通过研究半角模型,快速掌握简单乐曲的演奏方法。
研究目标与意义研究全等乐谱之手拉手模型和半角模型有以下目标和意义:1. 帮助学生理解和记忆音乐中的乐谱符号和节奏。
2. 提高学生对音乐的感知和表现能力。
3. 培养学生的音乐练惯和团队合作意识。
教学方法和步骤教学全等乐谱之手拉手模型和半角模型可采用以下步骤:1. 教师简要介绍全等乐谱之手拉手模型和半角模型的概念和作用。
2. 将乐谱示例投影或分发给学生,让他们观察并理解手拉手模型和半角模型的符号表示。
3. 教师指导学生根据手拉手模型和半角模型,模拟演奏简单的乐曲。
4. 学生进行个人练,并在小组内互相演奏,加强团队合作和交流。
5. 教师进行集体演奏指导和评价,帮助学生改进演奏技巧。
课后拓展学生可以通过以下方式进行课后拓展:1. 自主研究更多全等乐谱的其他形式和应用场景。
2. 尝试演奏更复杂的乐曲,提升音乐技巧和演奏能力。
3. 参加学校或社区的音乐活动,展示所学的全等乐谱演奏技巧。
通过学习全等乐谱之手拉手模型和半角模型,学生可以更好地理解和演奏音乐,培养音乐练习习惯和团队合作意识,提高音乐表现能力。
此专题讲义将为学生在音乐学习中提供有益的指导和实践。
八年级数学多边形之手拉手模型和半角模型 专题讲义

八年级数学多边形之手拉手模型和半角模
型专题讲义
一、手拉手模型
1. 理解手拉手模型
手拉手模型是多边形的一种折纸模型,常用于辅助理解和记忆多边形的性质。
通过将多边形沿一条边折叠后,将该边两端的顶点对齐,可以得到手拉手模型。
2. 制作手拉手模型
制作手拉手模型的具体步骤如下:
1. 将多边形沿一条边折叠。
2. 将该边两端的顶点对齐。
3. 将折线处剪开。
3. 应用手拉手模型
手拉手模型可用于辅助证明多边形的性质。
例如,证明凸多边
形的内角和公式,可以用手拉手模型将多边形分割成若干个三角形,再计算各个三角形的内角和。
二、半角模型
1. 理解半角模型
半角模型是多边形的一种立体模型,常用于辅助理解和记忆多
边形的性质。
通过将多边形沿一条边折叠后,将两条邻边上的点对齐,可以得到半角模型。
2. 制作半角模型
制作半角模型的具体步骤如下:
1. 将多边形沿一条边折叠。
2. 将两条邻边上的点对齐。
3. 将折线处剪开。
3. 应用半角模型
半角模型可用于辅助证明多边形的性质,特别是相邻内角互补
的性质。
例如,证明正多边形的内角和公式,可以用半角模型将正
多边形分割成若干个等腰三角形,再计算各个等腰三角形的内角和。
人教版八年级政治 全等制度之手拉手模型和半角模型 专题讲义

人教版八年级政治全等制度之手拉手模型和半角模型专题讲义本文档是关于人教版八年级政治课程中的全等制度之手拉手模型和半角模型的专题讲义。
下面将介绍这两种模型的定义、特点以及在教学中的作用。
一、全等制度之手拉手模型全等制度之手拉手模型是指在全等制度下,各个机关、部门、群团、个人之间形成了紧密的联系,彼此合作、相互协调,形成了合力,实现了全等制度的良好运行。
特点:- 合作协调:各个机关、部门、群团、个人之间通过沟通和协作,形成了紧密的联系,在工作中相互支持、协同合作,实现了工作的高效执行。
- 信息共享:全等制度之手拉手模型强调信息的共享与流通,通过及时传递相关信息,各方能够更好地了解并适应全等制度下的要求。
- 监督自律:各个机关、部门、群团、个人相互监督,自觉遵守全等制度的规定和要求,确保全等制度的有效运行和实施。
作用:- 提升效率:全等制度之手拉手模型可以促进各个机关、部门、群团、个人之间的合作与沟通,提供了高效率的工作平台,有利于任务的完成和目标的实现。
- 加强协同:通过全等制度之手拉手模型,不同部门之间能够充分协调合作,形成合力,共同应对各种问题和挑战。
- 推动发展:全等制度之手拉手模型能够促进信息共享和资源整合,提高组织的综合竞争力,进一步推动社会的发展和进步。
二、半角模型半角模型是在全等制度下,各个机关、部门、群团、个人之间的权力关系是相对平衡的,没有出现明显的主次关系,相互之间的权限和地位相对平等。
特点:- 权力平衡:半角模型中,各个机关、部门、群团、个人的权力地位相对平衡,不存在绝对的统治和被统治关系。
- 互相制衡:各个机关、部门、群团、个人之间通过相互制衡来按照全等制度的要求进行工作,相互约束,避免权力过度集中和滥用。
- 团结合作:半角模型注重团结和合作,通过互相支持和协作,实现共同的目标和任务。
作用:- 保障权益:半角模型能够确保各个机关、部门、群团、个人的权益得到平等的保护和尊重,在合法权益方面起到保障作用。
八年级数学直角三角形之手拉手模型和半角模型 专题讲义

八年级数学直角三角形之手拉手模型和半角模型专题讲义引言直角三角形是初中数学中的重要概念,其中手拉手模型和半角模型是两种常见的解题方法。
本讲义将重点介绍这两种方法及其应用。
手拉手模型手拉手模型又称拇指定理,是由勾股学派刘徽发现的。
其基本思想是,直角三角形两个锐角的正切值相乘等于1。
我们可以用手指的姿势模拟这个过程:将拇指和食指分别竖直和水平伸出,拇指代表一个锐角的正切值,食指代表另一个锐角的正切值,那么当两根手指合并时所得的掌心面积就代表直角边上的长度,也就是拇指和食指的正切值之积。
根据手拉手模型,我们可以很方便地求解直角三角形中所有角和边的长度。
例如,已知直角三角形斜边长度为5,一个锐角的正切值为1/2,那么另一个锐角的正切值就为2,直角边上的长度也就是2×1/2=1。
因此,该直角三角形的三个角分别为30°、60°和90°,另外两条边长分别为1和√3。
半角模型半角模型是一种更加直观的解法,其基本思想是将直角三角形内的一条角平分为两个角,使其变为两个相似三角形。
具体方法是,连一条从直角顶点出发经过斜边中点的直线,将直角三角形分为两个全等的直角三角形,然后根据正弦、余弦和正切的定义计算各个角的值和三条边的长度。
半角模型的优点在于能够直观地理解三角形内各条边和角的关系,并且不依赖特定的公式和计算器。
但是它也有缺点,即对于较为复杂的三角函数运算,可能需要更多的时间和细心的推导。
应用实例手拉手模型和半角模型在初中数学中都有广泛的应用,例如:- 求解直角三角形内的各个角度和边长;- 利用正弦、余弦和正切计算斜率、角度、距离等物理量;- 确定平行线、垂线、角平分线等几何关系;- 求解三角函数方程和不等式等。
结论手拉手模型和半角模型是初中数学教学中常用的解题方法,它们能够帮助学生加深对直角三角形及其三角函数的理解,培养数学思维和解决实际问题的能力。
但是,应当注意避免机械使用公式和方法,要灵活运用不同的思路和技巧,提高数学素养和创造力。
全等三角形之手拉手模型与半角模型

全等三角形之手拉手模型与半角模型.docx全等三角形全等三角形是指两个三角形的所有对应边和对应角都相等。
在几何学中,我们可以通过手拉手模型和半角模型来证明两个三角形是否全等。
手拉手模型是一种直观的证明方法,它利用手指来模拟三角形的边和角度。
首先,我们将两个三角形的一个顶点对齐,然后将手指放在对应的边上,同时保持手指的角度相同。
如果我们可以通过这种方式将两个三角形完全重合,那么它们就是全等三角形。
半角模型则是一种更加精确的证明方法,它利用三角形的半角来判断它们是否全等。
在两个三角形的一个顶点处,我们将两个角度分别平分为两个半角,然后将半角对应的边对齐。
如果我们可以通过这种方式将两个三角形完全重合,那么它们就是全等三角形。
总之,全等三角形是几何学中非常重要的概念,它们具有相同的形状和大小。
通过手拉手模型和半角模型,我们可以轻松地判断两个三角形是否全等。
1.手拉手模型1.1 定义手拉手模型是一种解决三角形问题的方法,它利用三角形内部的相似三角形来求解。
1.2 任意等腰三角形下的手拉手模型在任意等腰三角形ABC中,连接AB和AC的中点D和E,连接BE和CD,交点为F。
则三角形DEF与三角形ABC 相似,且比例为1:4.1.3 等边三角形下的手拉手模型在等边三角形ABC中,连接AB和AC的中点D和E,连接BE和CD,交点为F。
则三角形DEF与三角形ABC相似,且比例为1:3.1.4 等腰直角三角形下的手拉手模型在等腰直角三角形ABC中,连接AB和AC的中点D和E,连接BE和CD,交点为F。
则三角形DEF与三角形ABC 相似,且比例为1:2.1.5 例题已知等腰直角三角形ABC中,AB=AC=4,BC=4√2,点D为BC的中点,连接AD和BD,交点为E。
求AE的长度。
解:连接BE和CD,交点为F。
由手拉手模型可知,三角形DEF与三角形ABC相似,且比例为1:2.因此,DE=2,EF=2√2,AF=2+2√2.又因为三角形ADE为直角三角形,所以AE=√(AD²+DE²)=2√5.答案为2√5.2.半角模型2.1 定义半角模型是一种解决三角形问题的方法,它利用三角形内部的半角来求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学
成长手册
【导入】C 为线段AE 上一动点(点C 不与点A 、E 重合),在AE 同侧分别作正三角形ABC
和正三角形CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ 证明以下八个结论: ①AD =BE ②PQ //AE ③AP =BQ ④60∠=︒AOB ⑤PCQ △为等边三角形 ⑥OC 平分AOE ∠ ⑦OA OB OC =+ ⑧OE OC OD =+
O
Q
P
E
D C
B
A
全等模型—手拉手与夹半角
模块一 “手拉手”模型
【例1】平面上三个正三角形ACF ,ABD ,BCE 两两共只有一个顶点,求证:EC=DF ,ED=CF .
F
E
D B
C
A
【巩固】已知:如图,ABC ∆、CDE ∆、EHK ∆都是等边三角形,且A 、D 、K 共线,AD DK =.求证:HBD ∆也是等边三角形.
E
K
H
C
D
B
A
【例2】如图,在△ABC 外面作正方形ABEF 与ACGH ,AD 为△ABC 的高,其反向延长线交FH 于M ,
求证:(1)BH CF =; (2)MF MH =
M E
F
H
G
D C
B
A
【巩固】(1)如图,点M 为正三角形ABD 的边AB 所在直线上的任意一点(点B 除外),作60DMN ∠=︒,射线MN 与DBA ∠外角的平分线交于点N ,DM 与MN 有怎样的数量关系?
(2)如图,点M 为正方形ABCD 的边AB 上任意一点,MN DM ⊥且与ABC ∠外角的平分线交于点N ,MD 与MN 有怎样的数量关系?
【例3】已知,在ABC ∆中,ACB ∠为锐角,D 是射线BC 上一动点(D 与C 不重合),以AD 为一边向右侧作等边ADE ∆(C 与E 不重合),连接CE .
(1)若ABC ∆为等边三角形,当点D 在线段BC 上时(如图1所示),则直线BD 与直线CE 所夹锐角为__________度;
(2)若ABC ∆为等边三角形,当点D 在线段BC 的延长线上时(如图2所示),你在⑴中得到的结论是否仍然成立?请说明理由;
(3)若ABC ∆不是等边三角形,且BC AC >(如图3所示).试探究当点D 在线段BC 上时, ACB ∠满足什么条件时,能使(1)中的结论成立,并说明理由.
图1
F
E
D C
B
A
图2
B
C
D
F
A
E
图3
B
C
F
A
,∠B=90°,将一块等腰直角三角板的直角顶点O放在斜【巩固】在Rt△ABC中,AB BC
边AC上,将三角板绕点O旋转.
(1)当点O为AC中点时,
①如图1,三角板的两直角边分别交AB,BC于E、F两点,连接EF,猜想
线段AE、CF与EF之间存在的等量关系(无需证明);
②如图2,三角板的两直角边分别交AB,BC延长线于E、F两点,连接EF,
判断①中的猜想是否成立.若成立,请证明;若不成立,请说明理由;
【导入】(1)已知:正方形ABCD 中,45MAN ∠=︒,MAN ∠绕点A 顺时针旋转,它的两边分别交线段CB DC 、于点M N 、.求证BM DN MN +=.
N
M
D C
B
A
(2)已知:正方形ABCD 中,,M N 、分别是线段BC 、CD 边上一点,且BM DN MN +=.求证45MAN ∠=︒.
N
M
D C
B
A
【例1】如图,在四边形ABCD 中,180∠+∠=︒B ADC ,AB AD =,E 、F 分别是边BC 、CD 延长线上的点,且1
2
EAF BAD =∠∠,求证:EF BE FD =-
模块二 “夹半角”模型
【巩固】 等边ABC ∆的两边AB ,AC 所在直线上分别有两点M N D ,
,为ABC ∆外一点,且60MDN ∠=︒,120BDC ∠=︒,BD CD =,探究:当点M N ,
分别在直线AB AC ,上移动时,BM BN MN ,
,之间的数量关系及AMN ∆的周长Q 与等边ABC ∆的周长L 的关系. (1)如图①,当点M N ,
在边AB AC ,上,且DM DN =时,BM NC MN ,,之间的数量关系式_________;此时
Q
L
=__________ (2)如图②,当点M N ,
在边AB AC ,上,且DM DN ≠时,猜想(1)问的两个结论还成立吗?写出你的猜想并加以证明;
图①
M N
D C
B
A
图②
M
N
D C
B
A
【2016-2017青山区月考】如图1,Rt ABC ∆≌Rt EDF ∆,ACB F ∠=∠=90°,30A E ∠=∠=. EDF ∆绕着边AB 的中点D 旋转,DE ,DF 分别交线段AC 于点M ,K .
(1)观察:①如图2、图3,当0CDF ∠=或60时,AM CK + ______MK (填“>”,“<”或“=”).
②如图4,当∠CDF =30时,AM CK + ______MK (只填“>”或“<”).
(2)猜想:如图1,当0<∠CDF <60时,AM CK + ______MK ,证明你所得到的结论.
K
M
F D
C
B
A
E
(F,K)
M
E
D
B
A
C
图1 图2
(M)
K
E
F
D
B A C
M K E
F D
B A
C
图3 图4
【题1】如图,正方形EFGH 的顶点E 在正方形ABCD 的中心,且两个正方形的边长都为4,则阴影部分面积为 ( )
A. 2
B. 4
C. 6
D. 8
H G
F E D C
B
A
【题2】如图,以正方形的边AB 为斜边在正方形内作直角三角形ABE ,90AEB ∠=︒,AC 、BD 交于O .已知AE 、BE 的长分别为3cm 、5cm ,求三角形OBE ∆的面积.
E
O D
C
B
A
【题3】如图,已知等边△ABC ,P 在AC 延长线上一点,以P A 为边作等边△APE ,EC 延长线交BP 于M ,连结AM ,求证:BP = CE ;
【题4】已知:如图,△ABC 和△ECD 都是等腰直角三角形,∠ACB=∠DCE=90°,D 为AB 边上一点,求∠EAC 的度数.
A
B
C
P
M
E
【题5】如图,在平面直角坐标系中,点O 为坐标原点,△ABC 的三点坐标分别为A (0,5),B (-5,0),C (2,0),BD ⊥AC 于D 且交y 轴于E ,连接CE . (1)求△ABC 的面积; (2)求
AE
OE
的值及△ACE 的面积.
【题5】E 、F 分别是正方形ABCD 的边BC 、CD 上的点,且45EAF =︒∠,AH EF ⊥,H 为垂足,求证:
AH AB =.
C
H
F E
D B
A
【题6】条件:正方形ABCD ,M 在CB 延长线上,N 在DC 延长线上,45MAN ∠=︒.
结论:MN DN BM =-
A
B
M
C H
N
D
【题7】如图,在平面直角坐标系中,点B的坐标为(2,2),点A为y轴正半轴上一动点,过B点作BC ⊥AB交x轴的正半轴于点C。
(1)求证:BA=BC;
(2)当点A运动时,OA+OC的值是否发生变化,若不变,求其值;若发生变化,求变化范围
【题8】在△ABC中,∠ACB为锐角,动点D(异于点B)在射线BC上,连接AD,以AD为边在AD的右侧作正方形ADEF,连接CF.
(1)若AB=AC,∠BAC=90°那么
①如图一,当点D在线段BC上时,线段CF与BD之间的位置、大小关系是_________ (直接写出结论)
②如图二,当点D在线段BC的延长上时,①中的结论是否仍然成立?请说明理由.
(2)若AB≠AC,∠BAC≠90°.点D在线段BC上,那么当∠ACB等于多少度时?线段CF与BD之间的位置关系仍然成立.请画出相应图形,并说明理由.。