电化学原理知识点

合集下载

电化学知识点总结

电化学知识点总结

电化学知识点总结一、电化学基础1. 电化学的基本概念电化学是研究电化学反应的科学,它涉及到电流和电势的关系,以及在电化学反应中的能量转换和催化作用。

电化学反应通常发生在电极上,电化学反应的方向与电流的流动方向相反。

2. 电化学的基本原理电化学的基本原理包括电极反应、电解、电荷传递和能量转换等。

在电池中,通过氧化还原反应产生的电能被转化为化学能,进而转化为电能,从而产生电流。

3. 电化学的基本参数电化学的基本参数包括电压、电流、电解、电极电势、电导率、离子迁移速率等。

这些参数是电化学研究的基础,也是电化学应用的基本原理。

二、电化学反应1. 电化学反应的基本类型电化学反应包括氧化还原反应、电解反应、电化学合成反应等。

氧化还原反应是电化学反应中最常见的一种,它涉及到电子的转移,产生电压和电流。

电解反应是电化学反应中电流通过电解质溶液时发生的反应,通常涉及到离子的迁移和溶液中的化学反应。

电化学合成反应是指利用电能进行化学合成反应,通常包括电极合成和电解合成两种方式。

2. 电化学反应的热力学和动力学电化学反应的热力学和动力学是电化学研究的重要内容。

热力学研究电化学反应的热能转化和热能产生的条件,动力学研究电化学反应的速率和电化学动力学理论。

三、电化学动力学1. 电化学反应速率电化学反应速率是指单位时间内电化学反应所产生的物质的变化量。

电化学反应速率与电流和电压密切相关,它是电化学反应动力学研究的关键之一。

2. 催化作用催化作用是指通过催化剂来提高电化学反应速率的现象。

催化剂可以降低反应的活化能,提高反应速率,通常在电化学反应中有着重要的应用。

3. 双电层理论双电层是电极表面和电解质溶液之间的一个电荷层,它对电化学反应速率有着重要的影响。

双电层理论是电化学研究的重要理论之一,它涉及到电极和电解质溶液中的电位差和电荷分布。

4. 交换电流交换电流是指在电化学反应中与电流方向相反的电流,它是电化学反应速率的一个重要参数,也是电化学动力学研究的重要内容。

电化学原理知识点总结

电化学原理知识点总结

电化学原理知识点总结电化学原理是一门研究电子和离子在电解溶液中的反应性能,以及电解溶液对电导率、电位等影响的重要学科。

它涉及电解质和电解溶液的电离状态,阳极还原氧化物和阴极氧化物的氧化还原反应,以及参与水质电解的水分解反应和络合反应等多方面。

1、电解质的电离状态:电解质的电离状态可以描述它内部的结构,是电化学反应的基础。

它指的是一种特殊化学物质在给定条件下,其在溶液中产生正负离子的程度,由此反映出它能够承受的电位强度。

2、阴极氧化物与阳极还原物的氧化还原反应:阴极氧化物的氧化反应在电解溶液中的氧化反应是一个重要的分支。

阴极氧化物通常会在氧化过程中吸收电子而产生阳极还原物;阳极还原物则会从溶液中吸收电子以完成还原反应。

3、参与水质电解的水分解反应和络合反应:水分解反应是指电解溶液中水分子由于电场的作用拆解成H+离子和OH-离子;而络合反应指水分子在电场作用下通过H+离子和OH-离子的络合,形成H2O分子,从而稳定电解溶液的PH值,而水分解和络合反应又是电解溶液中的电离平衡反应,它们的平衡常数为水离子均衡常数。

4、电解溶液对电位的影响:电解溶液有很强的稳定性,包括电位稳定性,电导率稳定性和pH稳定性。

电位是指溶液中电子流动的势能,即溶质对另一种溶质的表示,电位可以反映溶液的离子浓度,它是电解溶液中电子移动的最基本参数。

5、电解溶液对电导率的影响:电导率是指溶液中电子流动的速率,它是电解溶液中电子移动的第二个基本参数,它可以反映溶液的分解程度和稳定性。

电导率受溶液的离子浓度、电位、电解质等因素的影响,因此,在研究电解溶液的整体性能时,需要仔细考虑这些因素的相互关系。

总之,电化学原理是一门重要的学科,其原理是电子和离子在电解溶液中的反应性能,以及电解溶液对电导率、电位等影响。

它涉及电解质和电解溶液的电离状态,阳极还原氧化物和阴极氧化物的氧化还原反应,以及参与水质电解的水分解反应和络合反应等,为理解电化学反应提供重要的知识与基础。

电化学原理知识点

电化学原理知识点

电化学原理知识点电化学原理第一章绪论两类导体:第一类导体:凡是依靠物体内部自由电子的定向运动而导电的物体,即载流子为自由电子(或空穴)的导体,叫做电子导体,也称第一类导体。

第二类导体:凡是依靠物体内的离子运动而导电的导体叫做离子导体,也称第二类导体。

三个电化学体系:原电池:由外电源提供电能,使电流通过电极,在电极上发生电极反应的装置。

电解池:将电能转化为化学能的电化学体系叫电解电池或电解池。

腐蚀电池:只能导致金属材料破坏而不能对外界做有用功的短路原电池。

阳极:发生氧化反应的电极原电池(-)电解池(+)阴极:发生还原反应的电极原电池(+)电解池(-)电解质分类:定义:溶于溶剂或熔化时形成离子,从而具有导电能力的物质。

分类:1.弱电解质与强电解质—根据电离程度2.缔合式与非缔合式—根据离子在溶液中存在的形态3.可能电解质与真实电解质—根据键合类型 水化数:水化膜中包含的水分子数。

水化膜:离子与水分子相互作用改变了定向取向的水分子性质,受这种相互作用的水分子层称为水化膜。

可分为原水化膜与二级水化膜。

活度与活度系数: 活度:即“有效浓度”。

活度系数:活度与浓度的比值,反映了粒子间相互作用所引起的真实溶液与理想溶液的偏差。

规定:活度等于1的状态为标准态。

对于固态、液态物质和溶剂,这一标准态就是它们的纯物质状态,即规定纯物质的活度等于1。

离子强度I :离子强度定律:在稀溶液范围内,电解质活度与离子强度之间的关系为:iii x αγ=∑=221i i z m I IA ⋅-=±γlog注:上式当溶液浓度小于0.01mol ·dm-3 时才有效。

电导:量度导体导电能力大小的物理量,其值为电阻的倒数。

符号为G ,单位为S ( 1S =1/Ω)。

影响溶液电导的主要因素:(1)离子数量;(2)离子运动速度。

当量电导(率):在两个相距为单位长度的平行板电极之间,放置含有 1 克当量电解质的溶液时,溶液所具有的电导称为当量电导,单位为Ω-1 ·cm2·eq-1。

电化学知识点总结

电化学知识点总结

电化学知识点总结一、原电池课标要求1、把握原电池的工作原理2、娴熟书写电极反响式和电池反响方程式要点精讲1、原电池的工作原理(1)原电池概念:化学能转化为电能的装置,叫做原电池。

若化学反响的过程中有电子转移,我们就可以把这个过程中的电子转移设计成定向的移动,即形成电流。

只有氧化复原反响中的能量变化才能被转化成电能;非氧化复原反响的能量变化不能设计成电池的形式被人类利用,但可以以光能、热能等其他形式的能量被人类应用。

(2)原电池装置的构成①有两种活动性不同的金属(或一种是非金属导体)作电极。

②电极材料均插入电解质溶液中。

③两极相连形成闭合电路。

(3)原电池的工作原理原电池是将一个能自发进展的氧化复原反响的氧化反响和复原反响分别在原电池的负极和正极上发生,从而在外电路中产生电流。

负极发生氧化反响,正极发生复原反响,简易记法:负失氧,正得还。

2、原电池原理的应用(1)依据原电池原理比拟金属活动性强弱①电子由负极流向正极,由活泼金属流向不活泼金属,而电流方向是由正极流向负极,二者是相反的。

②在原电池中,活泼金属作负极,发生氧化反响;不活泼金属作正极,发生复原反响。

③原电池的正极通常有气体生成,或质量增加;负极通常不断溶解,质量削减。

(2)原电池中离子移动的方向①构成原电池后,原电池溶液中的阳离子向原电池的正极移动,溶液中的阴离子向原电池的负极移动;②原电池的外电路电子从负极流向正极,电流从正极流向负极。

注:外电路:电子由负极流向正极,电流由正极流向负极;内电路:阳离子移向正极,阴离子移向负极。

3、原电池正、负极的推断方法:(1)由组成原电池的两极材料推断一般是活泼的金属为负极,活泼性较弱的金属或能导电的非金属为正极。

(2)依据电流方向或电子流淌方向推断。

电流由正极流向负极;电子由负极流向正极。

(3)依据原电池里电解质溶液内离子的流淌方向推断在原电池的电解质溶液内,阳离子移向正极,阴离子移向负极。

(4)依据原电池两极发生的变化来推断原电池的负极失电子发生氧化反响,其正极得电子发生复原反响。

电化学基础知识归纳

电化学基础知识归纳

电化学基础知识一、原电池:将化学能转化为电能的装置。

(一)原电池组成与原理:1、组成条件:①活动性不同的两个电极(常见为金属或石墨); ②将电极插入电解质溶液中; ③两电极间形成闭合电路(两电极接触或导线连接);④能自发发生氧化还原反应。

2、电极名称:负极:较活泼的金属(电子流出的一极);正极:较不活泼的金属或能导电的非金属(电子流入的一极)。

3、电极反应特点:负极:氧化反应,失电子; 正极:还原反应,得电子。

4、电子流向:由负极经外电路沿导线流向正极。

注意:电子流向与电流的方向相反。

例如:右图原电池装置,电解质溶液为硫酸铜溶液。

负极Zn :Zn-2e -=Zn 2+ ; 正极Cu :Cu 2+ +2e -=Cu (硫酸铜溶液) 总反应:Cu 2+ +Zn =Cu +Zn 2+盐桥作用:盐桥是装有含KCl 饱和溶液的琼脂溶胶的U 形管,管内溶液的离子可以在其中自由移动。

即提供离子迁移通路,形成闭合电路。

(盐桥是怎样构成原电池中的电池通路呢?左烧杯里Zn 电极失电子成为Zn 2+ 进入溶液中,使得ZnSO 4溶液带正电荷,而右烧杯里Cu 2+ 得电子生成Cu ,由于Cu 2+ 减少,使得CuSO 4溶液带负电荷。

为了使两边烧杯里溶液仍然保持电中性,盐桥中的Cl -向ZnSO 4 溶液迁移,而盐桥中的K + 向CuSO 4 溶液迁移,因此盐桥起了形成闭合电路的作用。

) 拓展:海洋电池:我国首创以铝-空气-海水为能源的新型电池。

海洋电池是以铝合金为负极,网状金属Pt 为正极,海水为电解质溶液,它靠海水中的溶解氧与铝反应源源不断地产生电能。

电极反应式:负极(Al ):Al -3e -=Al 3+ 正极(Pt ):O 2+2H 2O +4e -=4 OH - 总反应方程式:4Al +3O 2+6H 2O =4Al(OH)3(二)分别写出CH4燃料电池在以下环境里,正极、负极反应式、总反应方程式。

1、CH4、O2,以H2SO4溶液为电解质环境;2、CH4、O2,以NaOH溶液为电解质环境;3、CH4、O2,,以固体氧化物为电解质(能传递O2-);二、电解池:把电能转化为化学能的装置。

高考电化学专题复习知识点总结完美版

高考电化学专题复习知识点总结完美版

一、原电池的工作原理装置特点:化学能转化为电能;①、两个活泼性不同的电极;形成条件:②、电解质溶液一般与活泼性强的电极发生氧化还原反应;原③、形成闭合回路或在溶液中接触电④、建立在自发进行的氧化还原反应基础之上池负极:用还原性较强的物质作负极,负极向外电路提供电子;发生氧化反应; 原基本概念:正极:用氧化性较强的物质正极,正极从外电路得到电子,发生还原反应;理电极反应方程式:电极反应、总反应;氧化反应负极铜锌原电池正极还原反应反应原理 Zn-2e-=Zn2+ 2H++2e-=2H2↑电解质溶液二、常见的电池种类电极反应:负极锌筒Zn-2e-=Zn2+正极石墨2NH4++2e-=2NH3+H2↑①普通锌——锰干电池总反应:Zn+2NH4+=Zn2++2NH3+H2↑干电池:电解质溶液:糊状的NH4Cl特点:电量小,放电过程易发生气涨和溶液②碱性锌——锰干电池电极反应:负极锌筒Zn-2e- +2OH- =ZnOH2正极石墨2e-+2H2O +2MnO2= 2OH-+2MnOOH 氢氧化氧锰总反应:2 H2O+Zn+2MnO2= ZnOH2+2MnOOH溶解不断电极:负极由锌改锌粉反应面积增大,放电电流增加;使用寿命提高 电解液:由中性变为碱性离子导电性好;正极PbO 2 PbO 2+SO 42-+4H ++2e -=PbSO 4+2H 2O 负极Pb Pb+SO 42--2e -=PbSO 4总反应:PbO 2+Pb+2H SO 4 2PbSO 4+2H 2O电解液:cm 3~cm 3的H 2SO 4 溶液特点:电压稳定, 废弃电池污染环境 Ⅰ、镍——镉Ni ——Cd 可充电电池;其它 负极材料:Cd ;正极材料:涂有NiO 2,电解质:KOH 溶液NiO 2+Cd+2H 2O NiOH 2+ CdOH 2Ⅱ、银锌蓄电池正极壳填充Ag 2O 和石墨,负极盖填充锌汞合金,电解质溶液KOH;反应式为: 2Ag+ZnOH 2 ﹦ Zn+Ag 2O+H 2锂亚硫酰氯电池Li-SOCl 2:8Li+3SOCl 2 = 6LiCl+Li 2SO 3+2S锂电池 用途:质轻、高能比能量高、高工作效率、高稳定电压、工作温度宽、高使用寿命,广泛应用于军事和航空领域; ①、燃料电池与普通电池的区别不是把还原剂、氧化剂物质全部贮藏在电池内,而是工作时不断从外界输入,同时燃 料 电极反应产物不断排出电池;放电 充电放电放电` 充电 放电`充电放电`电池②、原料:除氢气和氧气外,也可以是CH4、煤气、燃料、空气、氯气等氧化剂;③、氢氧燃料电池:总反应:O2+2H2=2H2O 特点:转化率高,持续使用,无污染;2.氢氧燃料电池反应汇总:介质电池反应2H2 +O2= 2H2O酸性负极 2H2- 4e- = 4H+正极O2 + 4H+ + 4e-= 4H2O中性负极 2H2- 4e- = 4H+正极O2 + 2H2O + 4e-= 4OH-碱性负极2H2 +4OH-- 4e- = 4H2O正极O2 + 2H2O + 4e-= 4OH-3.固体氢氧燃料电池:固体电解质介质电池反应: 2H2 +O2= 2H2O负极2H2 - 4e- +2O2-= 2H2O正极O2+ 4e-= 2O2-负极 2H2- 4e- = 4H+正极O2 + 4H+ + 4e-= 2H2O4.甲烷新型燃料电池以两根金属铂片插入KOH溶液中作电极,又在两极上分别通入甲烷和氧气;电极反应为:负极:CH4+ 10OH --8e-= CO32- + 7H2O正极:2O2+ 4H2O +8e-= 8OH -电池总反应:CH 4+ 2O 2 + 2KOH = K 2CO 3 + 3 H 2O分析溶液的pH 变化;C 4H 10、空气燃料电池、电解质为熔融K 2CO 3, 用稀土金属材料作电极具有催化作用负极:2C 4H 10 -52e- + 26CO32-- = 34 CO 2+ 10H 2O 正极:13O 2 +52e- + 26CO 2 =26CO3 2-电池总反应:2C 4H 10+ 13O 2 = 8CO 2 + 10 H 2O 5.铝——空气燃料电池海水: 负极:4Al -12e- = 4Al 3+ 正极:3O 2 +12e- + 6H 2O =12OH - 电池总反应:4Al +3O 2 +6H 2O = 4AlOH 3 三、原电池的主要应用:1.利用原电池原理设计新型化学电池;2.改变化学反应速率,如实验室用粗锌与硫酸反应制取氢气;3.进行金属活动性强弱比较;4.电化学保护法,即将金属作为原电池的正极而受到保护;如在铁器表面镀锌;5.解释某些化学现象 四、金属的腐蚀与防护腐蚀概念:金属或合金与周围接触到的气体或液体进行化学反应而腐蚀损耗的过程;概述: 腐蚀危害:腐蚀的本质:M-ne -→M n+氧化反应分类:化学腐蚀金属与接触到的物质直接发生化学反应而引起的腐蚀、电化腐蚀电化学腐蚀定义:因发生原电池反应,而使金属腐蚀的形式; 负极Fe :Fe-2e -=Fe 2+; 吸氧腐蚀: 正极C :O 2+2H 2O+4e -=4OH - 总反应:2Fe+O 2+2H 2O=FeOH 2后继反应:4FeOH 2 +O 2 +2H 2O =4FeOH 3钢铁的腐蚀 2FeOH 3====Fe 2O 3 +3H 2O负极Fe :Fe-2e -=Fe 2+;析氢腐蚀: 正极C :2H ++2e -=H 2↑总反应: Fe+2H +=Fe 2++H 2↑影响腐蚀的因素:金属本性、介质;金属的防护: ①、改变金属的内部组织结构;保护方法: ②、在金属表面覆盖保护层;③、电化学保护法牺牲阳极的阴极保护法电解池原理 一、 电解池基础定义:使电流通过电解质溶液而在阴阳两极引起氧化还原反应的过程; 装置特点:电能转化为化学能;①、与电源本连的两个电极;形成条件 ②、电解质溶液或熔化的电解质③、形成闭合回路;金属的腐蚀与防护电极 阳极:与直流电源正极相连的叫阳极;概念 阴极:与直流电源负极相连的叫阴极;电极反应:原理:谁还原性或氧化性强谁先放电发生氧化还原反应离子放电顺序: 阳极:阴离子还原性 S 2->I ->Br ->Cl ->OH ->SO 42-含氧酸根>F -阴极:阳离子氧化性 Ag +>Fe 3+>Cu 2+>Pb 2+>Sn 2+>Fe 2+>Zn 2+>H +>Al 3+>Mg 2+>Na +电子流向 e - e-氧化反应 阳极 阴极 还原反应反应原理:4OH --4e -=2H 2O +O 2 Cu 2++2e -=Cu 电解质溶液电解结果:在两极上有新物质生成;总反应:2CuSO 4+ 2H 2O= 2Cu+2H 2SO 4+O 2↑ 二、 电解池原理粗铜板作阳极,与直流电源正极相连; ①、装置 纯铜作阴极,与直流电源负极相连;用CuSO 4 加一定量H 2SO 4作电解液; 阴极:Cu 2++2e -=Cu电解精炼铜 阳极:Cu-2e -=Cu 2+、Zn-2e -=Zn 2+②、原理: Ni-2e -=Ni 2+阳极泥:含Ag 、Au 等贵重金属; 电解液:溶液中CuSO 4浓度基本不变③、电解铜的特点:纯度高、导电性好;移向阴离子移向 阳离子电解池原理①、概念:利用电解原理在某些金属的表面镀上一薄层其它金属或合金的过程;②、方法:镀层金属与电源正极相连作阳极; 将待镀金属与电源负极相连作阴极;电镀: 用含镀层金属离子的电解质溶液配成电镀液;③、原理:阳极 Cu-2e -=Cu 2+ ;Cu 2++2e -=Cu ④、装置 如图⑤、电镀工业:镀件预处理→电镀液添加剂→装置:现象 ①、阴极上有气泡;②、阳极有刺激性气体产,能使湿润的淀粉KI 变蓝;电解食盐水 ③、阴极区附近溶液变红,有碱生成通电前: NaCl =Na ++Cl - H 2O H ++OH -原理 阴极Fe:Na +,H +移向阴极;2H ++2e -=H 2↑还原反应 通电后: 阳极C :Cl -、OH -移向阳极;2Cl --2e -=Cl 2↑氧化反应总反应:2NaCl +2H 2O 2NaOH +Cl 2↑+H 2↑阳极、阴极、离子交换膜、电解槽、导电铜棒等 ①、组成:阳极:金属钛网涂有钌氧化物;阴极:碳钢网涂有Ni 涂层阳离子交换膜:只允许阳离子通过,阻止阴离子和空气通过;电解的应氯碱工业 电解离子交换膜法制烧碱②、装置:食盐 湿氯气 氯气 ③生成流程: 淡盐水 氢气 NaOH 溶液 → NaOH 固体精制食盐水 + — 纯水含少量NaOH 粗盐水含泥沙、Cu 2+、Mg 2+、Ba 2+、SO 42-等阳离子交换树脂:除Cu 2+、Mg 2+等 加BaCl 2,Ba 2++SO 42-=BaSO 4↓④、粗盐水精制: 加Na 2CO 3:Ca 2++CO 32-=CaCO 3↓;Ba 2++CO 32-=BaCO 3↓加NaOH :Mg 2++2OH -=MgOH 2↓;Fe 3++3OH -=FeOH 3↓三、电解实例及规律电解液 溶质类别 电解总反应式相当于电解溶液pH NaOH 溶液 强碱 2H 2O电解2H 2↑+O 2↑水升高 H 2SO 4溶液 含氧酸 降低 Na 2SO 4溶液 活泼金属的含氧酸盐 不 变 两极混合液 CuCl 2溶液 不活泼金属的无氧酸盐 CuCl 2 电解Cu+Cl 2↑ 电解质本身接近7HCl 溶液无氧酸2HCl电解H 2↑+Cl 2↑升高NaCl 溶液 活泼金属的无氧酸盐2NaCl+2H 2O 电解H 2+2NaOH+Cl 2↑ om电解质与水升高。

电化学原理知识点(完整资料).doc

电化学原理知识点(完整资料).doc

【最新整理,下载后即可编辑】电化学原理第一章 绪论 两类导体: 第一类导体:凡是依靠物体内部自由电子的定向运动而导电的物体,即载流子为自由电子(或空穴)的导体,叫做电子导体,也称第一类导体。

第二类导体:凡是依靠物体内的离子运动而导电的导体叫做离子导体,也称第二类导体。

三个电化学体系:原电池:由外电源提供电能,使电流通过电极,在电极上发生电极反应的装置。

电解池:将电能转化为化学能的电化学体系叫电解电池或电解池。

腐蚀电池:只能导致金属材料破坏而不能对外界做有用功的短路原电池。

阳极:发生氧化反应的电极 原电池(-)电解池(+) 阴极:发生还原反应的电极 原电池(+)电解池(-) 电解质分类:定义:溶于溶剂或熔化时形成离子,从而具有导电能力的物质。

分类:1.弱电解质与强电解质—根据电离程度2.缔合式与非缔合式—根据离子在溶液中存在的形态3.可能电解质与真实电解质—根据键合类型 水化数:水化膜中包含的水分子数。

水化膜:离子与水分子相互作用改变了定向取向的水分子性质,受这种相互作用的水分子层称为水化膜。

可分为原水化膜与二级水化膜。

活度与活度系数: 活度:即“有效浓度”。

活度系数:活度与浓度的比值,反映了粒子间相互作用所引起的真实溶液与理想溶液的偏差。

ii i x αγ=规定:活度等于1的状态为标准态。

对于固态、液态物质和溶剂,这一标准态就是它们的纯物质状态,即规定纯物质的活度等于1。

离子强度I :离子强度定律:在稀溶液范围内,电解质活度与离子强度之间的关系为:注:上式当溶液浓度小于0.01mol ·dm-3 时才有效。

电导:量度导体导电能力大小的物理量,其值为电阻的倒数。

符号为G ,单位为S ( 1S =1/Ω)。

影响溶液电导的主要因素:(1)离子数量;(2)离子运动速度。

当量电导(率):在两个相距为单位长度的平行板电极之间,放置含有1 克当量电解质的溶液时,溶液所具有的电导称为当量电导,单位为Ω-1 ·cm2·eq-1。

电化学知识点完整版

电化学知识点完整版

原电池和电解池561.电化腐蚀:发生原电池反应,有电流产生(1)吸氧腐蚀负极:Fe-2e-==Fe2+正极:O2+4e-+2H2O==4OH-总式:2Fe+O2+2H2O==2Fe(OH)24Fe(OH)2+O2+2H2O==4Fe(OH)32Fe(OH)3==Fe2O3+3H2O(2)析氢腐蚀:CO 2+H2O H2CO3H++HCO3-负极:Fe -2e-==Fe2+正极:2H+ + 2e-==H2↑总式:Fe + 2CO2 + 2H2O = Fe(HCO3)2 + H2↑Fe(HCO3)2水解、空气氧化、风吹日晒得Fe2O3。

2.金属的防护⑴改变金属的内部组织结构。

合金钢中含有合金元素,使组织结构发生变化,耐腐蚀。

如:不锈钢。

⑵在金属表面覆盖保护层。

常见方式有:涂油脂、油漆或覆盖搪瓷、塑料等;使表面生成致密氧化膜;在表面镀一层有自我保护作用的另一种金属。

⑶电化学保护法①外加电源的阴极保护法:接上外加直流电源构成电解池,被保护的金属作阴极。

②牺牲阳极的阴极保护法:外加负极材料,构成原电池,被保护的金属作正极3。

常见实用电池的种类和特点⑴干电池(属于一次电池)①结构:锌筒、填满MnO2的石墨、溶有NH4Cl的糊状物。

②电极反应负极:Zn-2e-=Zn2+正极:2NH4++2e-=2NH3+H2NH3和H2被Zn2+、MnO2吸收:MnO2+H2=MnO+H2O,Zn2++4NH3=Zn(NH3)42+⑵铅蓄电池(属于二次电池、可充电电池)①结构:铅板、填满PbO2的铅板、稀H2SO4。

②A.放电反应负极:Pb-2e-+ SO42- = PbSO4正极:PbO2 +2e-+4H+ + SO42- = PbSO4 + 2H2OB.充电反应阴极:PbSO4 +2e-= Pb+ SO42-阳极:PbSO4 -2e- + 2H2O = PbO2 +4H+ + SO42-2PbSO4 + 2H2O===总式:Pb + PbO2 + 2H2SO4放电充电注意:放电和充电是完全相反的过程,放电作原电池,充电作电解池。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电化学原理第一章绪论两类导体:第一类导体:凡是依靠物体内部自由电子的定向运动而导电的物体,即载流子为自由电子(或空穴)的导体,叫做电子导体,也称第一类导体。

第二类导体:凡是依靠物体内的离子运动而导电的导体叫做离子导体,也称第二类导体。

三个电化学体系:原电池:由外电源提供电能,使电流通过电极,在电极上发生电极反应的装置。

电解池:将电能转化为化学能的电化学体系叫电解电池或电解池。

腐蚀电池:只能导致金属材料破坏而不能对外界做有用功的短路原电池。

阳极:发生氧化反应的电极原电池(-)电解池(+)阴极:发生还原反应的电极原电池(+)电解池(-)电解质分类:定义:溶于溶剂或熔化时形成离子,从而具有导电能力的物质。

分类:1.弱电解质与强电解质—根据电离程度2.缔合式与非缔合式—根据离子在溶液中存在的形态3.可能电解质与真实电解质—根据键合类型水化数:水化膜中包含的水分子数。

水化膜:离子与水分子相互作用改变了定向取向的水分子性质,受这种相互作用的水分子层称为水化膜。

可分为原水化膜与二级水化膜。

活度与活度系数:活度:即“有效浓度”。

活度系数:活度与浓度的比值,反映了粒子间相互作用所引起的真实溶液与理想溶液的偏差。

规定:活度等于1的状态为标准态。

对于固态、液态物质和溶剂,这一标准态就是它们的纯物质状态,即规定纯物质的活度等于1。

离子强度I : 离子强度定律:在稀溶液范围内,电解质活度与离子强度之间的关系为:注:上式当溶液浓度小于0.01mol ·dm-3 时才有效。

电导:量度导体导电能力大小的物理量,其值为电阻的倒数。

符号为G ,单位为S ( 1S=1/Ω)。

影响溶液电导的主要因素:(1)离子数量;(2)离子运动速度。

当量电导(率):在两个相距为单位长度的平行板电极之间,放置含有1 克当量电解质的溶液时,溶液所具有的电导称为当量电导,单位为Ω-1 ·cm2·eq-1。

与 K 的关系:与 的关系:当λ趋于一个极限值时,称为无限稀释溶液当量电导或极限当量电导。

离子独立移动定律:当溶液无限稀释时,可以完全忽略离子间的相互作用,此时离子的运动是独立的,这时电解质溶液的当量电导等于电解质全部电离后所产生的离子当量电导之和:同一离子在任何无限稀溶液中极限当量电导值不变!离子淌度:单位场强(V/cm )下的离子迁移速度,又称离子绝对运动速度。

离子迁移数:某种离子迁移的电量在溶液中各种离子迁移的总电量中所占的百分数。

或第二章 电化学热力学相间:两相界面上不同于基体性质的过度层。

相间电位:两相接触时,在两相界面层中存在的电位差。

ii i xαγ=∑=221i i z m I IA ⋅-=±γlog LAG κ=KV=λNcNc k1000=λ-++=000λλλ产生电位差的原因:荷电粒子(含偶极子)的非均匀分布 。

形成相间电位的可能情形:1.剩余电荷层:带电粒子在两相间的转移或利用外电源向界面两侧充电 ;2.吸附双电层:阴、阳离子在界面层中吸附量不同,使界面与相本体中出现等值反号电荷 ;3.偶极子层:极性分子在界面溶液一侧定向排列 ;4.金属表面电位:金属表面因各种 短程力作用而形成的表面电位差。

相间电位的类型: 外电位差(伏打电位差):内电位差(伽尔伐尼电位差):电化学位差:电化学位:绝对电位:金属(电子导电相)与溶液(离子导电相)之间的内电位差。

例:若电极材料不变, 不变;若令 不变,则:相对(电极)电位:研究电极与参比电极组成的原电池电动势称为该电极的相对(电极)电位 ,用 ψ 表示。

AB ψψ-A B φφ-AB ---μμ()χψμφμμ++=+=-nF nF ZnCu Cu S S Zn E φφφ∆+∆+∆=RM φ∆RS φ∆()SM E φ∆∆=∆符号规定:研究电极在原电池中发生还原反应 :研究电极在原电池中发生氧化反应:氢标电位:标准氢电极作参比电极时测得的电极相对电位。

如:Pt|H2,H+||Ag2+|Ag液体接界电位:相互接触的两个组成不同或浓度不同的电解质溶液之间存在的相间电位。

产生的原因:各种离子具有不同的迁移速率而引起。

盐桥:饱和KCl 溶液中加入3%琼脂。

作用:由于K+、Cl-的扩散速度接近,液体接界电位可以保持恒定。

电池进行可逆变化必须具备两个条件:1.电池中的化学变化是可逆的,即物质的变化是可逆的;2.电池中能量的转化是可逆的,即电能或化学能不转变为热能而散失。

原电池电动势:原电池短路时的端电压(即两电极相对电位差)。

注意:只有可逆电池有E ,电池不可逆时只能测到V 。

基本关系式: 注:只适用于可逆电池, 表示可以做的最大有用功(电功)。

Nernst 方程: (标准状态下的电动势) 对反应: 的含义:标准状态下的平衡电位电极的分类: 1.可逆电池阳离子(第一类)可逆: 金属在含有该金属离子的可溶性盐溶液中所组成的电极。

阴离子(第二类)可逆:金属插入其难溶盐和与该难溶盐具有相同阴离子的可溶性盐溶液中。

或氧化还原可逆电极:铂或其它惰性金属插入同一元素的两种不同价态离子溶液中,如:0>ϕ0<ϕV799.0=ϕ-+-=ϕϕE nFEG -=∆G∆-∏∏+=,生反ννααln 0nFRTE E K nF RT E ln 0=Rne O ⇔+0ϕ++=n MnFRT αϕϕln 0()-A MAn M ,固nn M M Pt ,1-气体电极:气体吸附在铂或其它惰性金属表面与溶液中相应的离子进行氧化还原反应并达到平衡,如:2.不可逆电极第一类不可逆电极:金属在不含该金属离子的溶液中形成的电极。

如:第二类不可逆电极:标准单位较正的金属在能生成该金属难溶盐或氧化物的溶液中形成的电极。

如:第三类不可逆电极:金属浸入含有某种氧化剂的溶液中形成的电极。

如:不可逆气体电极:一些具有较低氢过电位的金属在水溶液中,尤其在酸中,形成的电极。

如:影响电极电位的因素:1.电极的本性2.金属表面的状态3.金属的机械变形和内应力4.溶液的PH 值5.溶液中氧化剂的存在6.溶液中络合剂存在7.溶剂的影响第三章 电极/溶液界面的结构与性质理想极化电极:在一定电位范围内,有电量通过时不发生电化学反应的电极体系称为理想极化电极。

比较:理想极化电极是在一定条件下电极上不发生电极反应的电极,通电时电极反应速度跟不上电子运动速度,不存在去极化作用,流入电极的电荷全部在电极表面不断积累,只起到改变电极电位,即改变双电层结构的作用,如滴汞电极。

反之,如果电极反应速度很大,以至于去极化作用于极化作用接近于平衡,有电流通过时电极电位几乎不变化,即电极不出现极化现象,就是理想不极化电极,如电流密度很小时的饱和甘汞电极。

零电荷电位 :电极表面剩余电荷为零时的电极电位 。

与 不同原因:剩余电荷的存在不是形成相间电位的唯一原因。

零标电位:相对于零电荷电位的相对电极电位,以零电荷电位作为零点的电位标度。

吸附:某物质的分子、原子或离子在界面富集(正吸附)或贫乏(负吸附)的现象。

()()++H H H P H Pt α22,220ln 2HHP F RT++=αϕϕ溶液的无能溶解+n M M M NaOHCu 3HNOFe 0ϕ0ϕ0=∆ϕ分类:静电吸附; 非特性吸附;特性吸附(物理吸附+化学吸附)。

电毛细现象:界面张力б随电极电位变化的现象。

电毛细曲线:界面张力与电极电位的关系曲线 。

微分电容:引起电位微小变化时所需引入电极表面的电量,也表征了界面在电极电位发生微小变化时所具备的贮存电荷的能力。

电毛细曲线及微分电容曲线研究界面性质和结构的优缺点比较:(仅供参考) (1)电毛细曲线法的主要应用:判断电极表面带电状况(符号);求电极表面剩余电荷密度q ;求离子表面剩余量 。

(2)微分电容曲线的主要应用:利用 判断q 正负;研究界面吸附 ;求q 、 :(3)用微分电容法求q 值比电毛细曲线法更为精确和灵敏,电毛细曲线的直接测量只能在液态金属(汞、镓等)电极上进行,微分电容还可以在固体电极上直接进行。

应用微分电容发往往需要应用电毛细曲线法确定零电荷电位。

斯特恩模型:电极/溶液界面的双电层由紧密层和分散层两部分组成。

电位分布特点:紧密层——线性分布 分散层——曲线分布电位:离子电荷能接近电极表面的最小距离处的平均电位。

紧密层结构对Stern 模型的两点重要修正:水偶极子定向及对结构的影响(“电极水化”) 短程作用引起的吸附(特性吸附)。

无离子特性吸附 :OHP :距离电极表面为d 的液层,即最接近电极表面的水化阳离子电荷中心所在液iΓ0ϕi C 1ψ()11ψψϕϕϕϕ+-=a a =+分紧层称为外紧密层或外Helmholtz 平面。

有离子特性吸附 :IHP :阴离子电荷中心所在的液层称为内紧密层平面或内Helmholtz 平面。

“电极/溶液”界面模型概要(总结):由于界面两侧存在剩余电荷(电子及离子电荷)所引起的界面双电层包括紧密层和分散层两部分;分散层是由于离子电荷的热运动引起的,其结构(厚度、 电势分布等)只与温度、电解质浓度(包括价型)及分散层中的剩余电荷密度有关,而与离子的个别特性无关; 紧密层的性质决定于界面层的结构,特别是两相中剩余电荷能相互接近的程度; 能在电极表面“特性吸附”的阴离子往往在电极表面上“超载吸附”。

此时界面结构及其中电势分布具有“三电层”形式。

特性吸附:无机阴离子的特性吸附对 的影响:使界面张力下降;使 负移。

有机分子的特性吸附对 的影响:使 下降;出现电容峰。

第四章 电极过程概述极化:有电流通过时,电极电位偏离平衡电位的现象 过电位:在一定电流密度下,电极电位与平衡电位的差值极化值:有电流通过时的电极电位(极化电位)与静止电位的差值 极化曲线:过电位(或电极电位)随电流密度变化的关系曲线。

极化度:极化曲线上某一点的斜率。

极化图:把表征电极过程特征的阴极极化曲线和阳极极化曲线画在同一个坐标系中,这样组成的曲线图叫极化图。

电极过程的基本历程: 1.液相传质步骤2.前置的表面转化步骤 简称前置转化ϕσ~()0max ϕσϕ~d C d C3.电子转移步骤或称电化学反应步骤4.随后的表面转化步骤简称随后转化5.新相生成步骤或反应后的液相传质步骤速度控制步骤:串连的各反应步骤中反应速度最慢的步骤。

浓差极化:液相传质步骤成为控制步骤时引起的电极极化。

电化学极化:由于电化学反应迟缓而控制电极过程所引起的电极极化。

准平衡态:当电极反应以一定速度的进行时,非控制步骤的平衡态几乎未破坏的状态。

液相传质的三种方式:电迁移:电解质溶液中的带电粒子在电场作用下沿着一定的方向移动。

对流:一部分溶液与另一部分溶液之间的相对流动。

相关文档
最新文档