电化学原理第三章

合集下载

电化学基本原理与应用-第3章

电化学基本原理与应用-第3章

净电荷
α
偶极层
3.2.1 “孤立相”的几种电位
(1)外电位(Ψα)
将试验电荷自无穷远处移至距球面约 10-4~10-5厘米处。在这一过程中可以认为 球体与试验电荷之间的短程力尚未开始作 用。根据电位的定义,此时所做的功为:
W1 = Zie0ψ α
ψ α = W1
Z ie0
球体α的外部电位
试验电荷电量
当试验电荷从相内逸出到相外时,这一过 程所涉及的能量变化(-Wiα)相当于试验电荷从 该相逸出而必须摆脱与该相物质之间的短程 相互作用及越过表面时对表面电势所做的功。 这部分功称为试验电荷在α相的“逸出功”, 显然应满足下列关系式:
−Wiα = μiα + Zi Fχ α
3.2.1 “孤立相”的几种电位
(b)内电位差,又称“伽伐尼(Galvani) 电位差”,定义为φα-φβ。直接接触的两相 间的内电位差,用 αΔβφ 表示。由于表面电 位无法测量,所以该值不能测量。也无法理 论计算。
3.2.2 相间电位差
φα −φ β = (χ α +ψ α ) − (χ β +ψ β ) = (ψ α − ψ β ) + ( χ α − χ β )
(1)相间电位差的种类 两相之间出现“相间电位差”的原因只可
能是界面层中带电粒子或偶极子的非均匀分 布,并形成了界面荷电层。
根据以上关于孤立相电位的讨论不难推 想,所谓α、β两相之间的电位差也因此可 能有各种不同的定义,其中较常用的有下面 三种:
3.2.2 相间电位差
(a) 外电位差,又称“伏打(Volta)电位 差”,定义为ψα-ψβ。直接接触的两相间的 外电位差,用 αΔβψ 表示。两相均为金属 时,为金属接触电位差,可直接测量。

腐蚀电化学原理、方法及应用第3章金属腐蚀动力学

腐蚀电化学原理、方法及应用第3章金属腐蚀动力学

交换电流密度的意义
• i 0数值很大,表明电极上可以通过很大的外 电流,而电极电位改变很小,表明这种电 极反应的可逆性大;
i 0数值很小,说明电极上只要有少量的外电流 通过,就会引起电极电位较大的改变,表明这 种电极反应的可逆性小,
意义:可以根据交换电流密度的大小估计某一 电极的可逆性以及衡量电化学平衡到达的速度。
=Q / StnF =It / StnF = i / nF
V与电流密度的关系
i = nFv
i 的单位: A/m2 ,v 的单位: mol/m2s, F = 96500C/mol
电极上的电流密度与化学反应速度成正比 • 常用电流密度(单位电极截面上通过的电流,SI单
位为Am-2)来表示电化学反应速度的大小。
3.1.3 交换电流密度
• 如果电极上没有净电流通过,电极处于平衡状态, 其电极电位为平衡电位Ee。
O + ne
R
此平衡电位下,阴极反应速度和阳极反应速度相等,
方向相反,即
i i i0
交换电流密度
• 在平衡状态下,同一电极上大小相等、方 向相反的电流密度称为交换电流密度,简 称交换电流,以i0表示。
• 电极的两种状态
1. 平衡状态 电学极参反数应)。处氧于化平方衡向状和态还,原其方电向位的为反平应衡速电度位相E等e(热,其力 大小称为交换电流密度,记为i0。
i0 i i
• 2.极化状态 对电极系统通入外电流,电极反应的平衡状态被打 破叫极,化电电位流偏。离平衡电位Ee达到极化电位E。外电流又
• 对应于腐蚀电位的电流密度称为腐蚀电流密度或 腐蚀电流密度,用符号icorr表示。
• 平衡电极→平衡电位
• 非平衡电极→非平衡电位

电化学原理-吴金平-2012第三章304-1-wu

电化学原理-吴金平-2012第三章304-1-wu
最接近电极表面 的水化阳离子电荷中 心所在的液层称为外 紧密层或外亥姆荷兹 平面(OHP)
OHP
水化程度高, 冲出水化膜、 钻进水偶极 层难! 水偶极层 水化阳离子层
外紧密层结构示意图
b.内紧密层结构(q>0)
特性吸附:内紧密层的离 子吸附称为特性吸附 紧密层厚度:仅为一个 阴离子半径,d=r-
IHP
0 r
x1
1 1 1 = C紧 C水 C 0 r
x2
x1 x2 1 = C紧 0 H2O 0
H2O
x1 1 C紧 0 H 2O
实验结果证明:在荷负电的电极上, 紧密层的
电容与组成双电层的水化阳离子的种类基本无关.
x1 1 C紧 0 H2O
紧密层是带有剩余电荷的两相之间的界面层,厚度不 超过几个埃;而分散层是液相中具有剩余离子电荷及 电位梯度的表面层,稀溶液中及表面电荷密度很小时 分散层厚度可达几百埃。 浓溶液中及表面电荷密度不太小时几乎可以忽视分散 层的存在,即可近似认为分散层中的剩余电荷均集中 在界面层的外表面上。
§3.5 零电荷电位
例:已知某电极的 求此时对应的零标电位
思考:零标电位能否用于热力学计算中的电位标度?
p162
课堂练习:
某电极的微分电容曲线如图2所示,试画出图中1和 2 电位下的双电层结构示意图及电位分布图。
四、
的作用
判断电极表面剩余电荷q的符号和数量
1、可以通过
规律:
例:已知汞在稀的KCl溶液中
2 . 通过零电荷电位可研究电极/溶液界面的许 多重要性质:
双电层电位分布、界面电容、界面张力、 离子的 界面吸附行为、气体在金属表面的附着、溶液对金属 电极的润湿性、电动现象和光电现象等 . 零电荷电位下的极值现象: 界面张力

电化学原理-第3章:电极溶液界面的结构性质-4

电化学原理-第3章:电极溶液界面的结构性质-4
(2)参与建立或改变双电层。由于形成有一定电 极电位的双电层结构,只需要一定数量的电量,故这 部份电流的作用类似于给电容器充电,只在电路中引 起短暂的充电电流。
为了研究界面的结构 和性质,就希望界面 上不发生电极反应, 使外电源输入的全部 电流都用于建立或改 变界面结构和电极电 位,即可等效为图3.1 (b)中的电路。
( ) ' ln a

根据(3.21)或(3.22) 求得该浓度下的离子表 面剩余量 v
(v v ) RT ln a ( ) '
v ( ) ' (v v ) RT ln a
当电极表面带负电时,(曲 线右半部分),正离子表面
1.界面电场对电极反应速度的影响
界面电场是由电极/溶液相间存在的双电层所引起的。
而双电层中符号相反的两个电荷层之间的距离非常小, 因而能给出巨大的场强。 例如 双电层电位差(即电极电位)为1V,而界面两 个电荷层的间距为 108 cm 时,其场强可
达 10 V cm 。
8
已知电极反应是得失电子的反应,也就是有电荷在相 间转移的反应。 巨大的界面电场下,电极反应速度必将发生极大的变 化,甚至某些在其他场合难以发生的化学反应也得以 进行。
特别有意义的是,电极电位可以被人为的,连续的加
以改变,因而可以通过控制电极电位来有效地,连续 地改变电极反应速度。这正是电极反应区别于其他化
学反应的一大优点。
2.电解液性质和电极材料及其表面状态的影响
电解质溶液的组成和浓度,电极材料的物理,化学性质及其 表面状态均能影响电极/溶液界面的结构和性质,从而对电 极反应性质和速度有明显的作用。 例如在同一电极电位下,同一种溶液中,析氢反应
这样,可以把电极电位 改变到所需要的数值, 并可定量分析建立这种 双电层结构所需要的电 量。 这种不发生任何电极反 应的电极体系称为理想 极化电极。

第三章 电化学腐蚀的基本原理

第三章 电化学腐蚀的基本原理

H 2 2 H 2e
O2 2 H 2O 4e 4OH
பைடு நூலகம்
(3)氧化还原电极/惰性金属电极
金属/溶液界面上只有电子可以交换,只有电子可迁越相界面 的一种金属电极。
例如:将Pt臵于FeCl3溶液中,将存在下列反应平衡,并有一定 的电位,被称为氧化还原电位。
Fe3 e Fe2
非平衡电位特点: 电荷平衡,物质不平衡 不满足Nernst关系 只能通过实验获得
Fe Fe 2+ + 2 e ( ia)
2H+ + 2e H2 ( ic)
Fe
Fe 2+
Fe 2+
Fe
H2 2H+
H2
2H+
(*)非平衡电极电位可以是稳定的也可以是不稳定的
3.4 腐蚀过程热力学判据 问题???
宏观腐蚀电池异种金属相接触如电偶腐蚀浓差电池1金属离子浓度不同浓度低电位低容易腐蚀2氧浓度不同氧浓度低电位低更容易腐蚀温差电池如金属所处环境温度不同高温电位低更容易腐蚀4活态钝态腐蚀电池铜铆钉铝板微观腐蚀电池化学成分不均匀组织结构不均匀微观腐蚀电池金属表面的物理状态不均匀金属表面膜的不完整33电极与电极电位电极的概念电子导体金属等与离子导体电解质相互接触并有电子在两相之间迁移而发生氧化还原反应的体系
Mg=Mg2++2e Al=Al3++3e
Ti=Ti2++2e Mn=Mn2++2e
Cr=Cr2++2e Zn=Zn2++2e
Sn=Sn2++2e Pb=Pb2++2e
Fe=Fe3++3e H =2H++2e

电化学原理第三章2014

电化学原理第三章2014
或不足,溶液侧剩余正负离子浓度不同,发生了吸附现象 ,见下图。
d idi qd
00:54:01
离子表面剩余量:界面层存在时离子的摩尔数与无离子双 电层存在时离子的摩尔数之差定义为离子的表面剩余量。
T
(v
v v )RT
ln a
Φ'
(3.21) 可实际应用的求离 子表面剩余量的公
T
(v
v v )RT
若等温等压:Ad nidi 0
等式两面都除以表面积A:d
ni A
d
i
0

ni A
i , d
id i 0
d idi
00:54:01
二、电毛细曲线的微分方程 根据Gibbs等温吸附方程,由热力学可推导出界面张力
与电极电位之间的关系式
d idi qd 3.5
q
(
) i
3.6
层的物质有关,而且与电极电位有关,此界面张力随电极电 位变化的现象叫做电毛细现象。而界面张力与电极电位的关 系曲线叫做电毛细曲线。常用毛细管静电计测取液态金属的 电毛细曲线。
界面张力和曲面附加压力
Ps=2σ/R’=ρgh
ρ:曲表面两边物质的密度差 R’:曲面的曲率半径
σ:界面张力
00:54:01ห้องสมุดไป่ตู้

电极的极化
• 3.电极极化的原因 • 4. 电极反应的等效电路
Cdl
Cdl
Rs
Rct
Rct
00:54:01
电极的极化
• 5.理想极化电极 • 注意:绝对不发生反应的是没有的,所
以绝对理想极化电极也不存在! • 6.理想不极化电极? • 问题:理想不极化电极的等效电路?如

电化学原理第三章

电化学原理第三章
一、概述
第三章
二、电毛细现象 三、双电层的微分电容
电极/溶液界面 四、双电层的结构
的结构和性质 五、零电荷电位 六、电极/溶液界面的吸附现

09:37:26
§3.1 概述
一、 研究电极/溶液界面性质的意义
由于各电极反应都发生在电极/溶液的界面上,故界面结和性质对电极反 应影响很大。
1. 界面电场对电极反应速度的影响 由于双电层极薄,故场强可很大,而电极反应是电荷在相间转移的反
09:37:26
三、离子表面剩余量 构成双电层溶液一侧发生了离子的吸附。金属侧电子过剩
或不足,溶液侧剩余正负离子浓度不同,发生了吸附现象 ,见下图。
09:37:26
离子表面剩余量:界面层存在时离子的摩尔数与无离子双 电层存在时离子的摩尔数之差定义为离子的表面剩余量。
T
(v
v v )RT
ln a
(1) 假设离子与电极间除静电引力外无其它相互作用, 双电层厚度比电极曲线半径小很多,将电极视为平板电极, 粒子在界面电场中服从波尔兹曼分布。
(2) 忽略粒子的体积,假定溶液中离子电荷是连续分布 的(实际上离子具有粒子性,故离子电荷是不连续分布的) 。故可用泊松(Poisson)方程。把剩余电荷的分布与双电层 溶液一侧的电位分布联系起来。电极表面剩余电荷密度q为正 值时,φ>0,随距离x增加,φ值逐渐减小 即: 0
李普曼方程
§3.2 电毛细现象 一、电毛细曲线及其测定
两相间均存在界面张力,电极体系界面张力不仅与界面 层的物质有关,而且与电极电位有关,此界面张力随电极电 位变化的现象叫做电毛细现象。而界面张力与电极电位的关 系曲线叫做电毛细曲线。常用毛细管静电计测取液态金属的 电毛细曲线。

电化学原理-吴金平-2012第三章306-1-wu

电化学原理-吴金平-2012第三章306-1-wu

例:脂肪醇
在Zn电极上,强烈吸附 在Cd电极上,微弱吸附
在Ag电极上,完全不吸附 原因:
①金属-活性粒子间相互作用不同。
②金属表面的亲水性不同。
当金属-活性粒子间相互作用差别不大时: 一般,电极的亲水性越强,有机分子的吸附越弱
(3)电极材料对吸附的影响
当金属-活性粒子间相互作用差别不大时: 一般,电极的亲水性越强,有机分子的吸附越弱。
[例2] 根据下图所给的实验数据,你能得出该电极体 系界面吸附现象的哪些信息?图中曲线1为汞在 0.5mol/kg NaSO4溶液中测出的曲线,曲线2为汞在 0.5mol/kg NaSO4+C7H15OH溶液中测出的曲线。
[解] 将 0.5mol/kg NaSO4溶液看作不含表面活性物质的溶液,对 应的曲线分别为两个图中的线1。 信息1: 对比电毛细曲线1和曲线2可知,在NaSO4溶液中加入 C7H15OH后,电极界面张力下降。这表明C7H15OH是表面活 性物质,在电极表面发生了特性吸附。
应用:3、估算电极表面 的吸附覆盖度θ
当电极表面被部分覆盖时:
Cθ=0
Cd
Cθ=1
1-未加入有机表面活性剂 2-达到饱和吸附覆盖 3-未达到饱和吸附覆盖
已知,在 附近吸附电位范围内
当电极表面被部分覆盖时:
θ
C θ=1 qθ=1
1-θ
Cθ=0 qθ=0
Cθ=0
Cd
Cθ=1
1-未加入有机表面活性剂 2-达到饱和吸附覆盖 3-未达到饱和吸附覆盖
3、不同晶面位点吸附性不同 4、氢吸附具有可逆性
氢吸附的双电层和电位分布
H是强还原剂,形成 吸附键后电子有向 金属转移的趋势, 在一定程度上使氢 原子带正电,金属 表面带负电,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

q ( ) i
3.6
µ i为i物质化学位,因理想溶液无化学反应发生,故溶液中 组成不变。µ i不变, 此为Lippman(李普曼)公式,q为电极表 面剩余电荷密度,单位为c/cm2,Φ单位为V,ó 为J/cm2
10:58:14
若电极表面剩余电荷为零,即无离子双电层存在时,q=0则 òδ/òΦ=0,对应于图3.3最高点, 无电荷排斥作用,界面张力最大; 此时的电极电位称为零电荷电位,常用符号Φ0表示。
C
o r
l
式中:εO为真空中的介电常数,εr为实物相的相对介电常数。 L两电容器平行板之间距离,常用单位cm;C为电容常用单位为 μF/cm2.
10:58:14
界面双电层并非完全恒定值,而随电极电位变化。故利用微分形 式来定义界面双电层的电容,称微分电容,即
dq Cd dQ
(3.24)
x
(3) 将双电层溶液一侧的电位分布与电极表面剩余电荷 密度联系起来。以便更明确地描述分散层结构的特点。
10:58:14
根据高斯定理, 因荷电粒子有一定体积。剩余电荷靠近电极表 面最小距离为 d,在 x=d 处 φ=φ1。由于从 x=0 到 x=d 的区域 内不存在剩余电荷。φ与X关系线性。
GCS的模型的双电层方程式 对 Z-Z 价型电解质,分散层电位差的数值( φ1)和电极表面 电荷密度(q),溶液浓度(C)之间的关系式为:
10:58:14
电毛细曲线近似有最高点的抛物线,因汞/溶液界面存在 双电层,由于电极界面同一侧带相同电荷,相互排斥作用 力图使界面扩大。与界面张力使界面缩小相反,故带电界 面张力比不带电时小。
10:58:14
二、电毛细曲线的微分方程 根据Gibbs等温吸附方程,由热力学可推导出界面张力 与电极电位之间的关系式 dÓ = -ΣΓidμi-qdφ 3.5
10:58:14
电毛细曲线 微分电容
q i
(3.6)
李普曼方程
Cd
dq d
积分电容
q Ci o



o
Cd
微分电容曲线
q Cdd
o
双电层基本结构
紧密层和分散层
1Байду номын сангаас:58:14
1 1 1 Cd C紧 C分
§3.2 电毛细现象 一、电毛细曲线及其测定 两相间均存在界面张力,电极体系界面张力不仅与界面 层的物质有关,而且与电极电位有关,此界面张力随电极电 位变化的现象叫做电毛细现象。而界面张力与电极电位的关 系曲线叫做电毛细曲线。常用毛细管静电计测取液态金属的 电毛细曲线。
§3.4 双电层结构
一、 电极/溶液界面的基本结构 静电作用使相反电荷靠近,倾向于紧贴电极表面排列,图 3.11。而热运动使带电粒子倾向于均匀分布,使剩余电荷不能紧 贴电极表面分布,有一定扩散性,形成扩散层。二者相互作用使 不同条件下电极体系中,双电层由紧密层和分散层两部分组成。
10:58:14
金属/溶液界面剩余电荷与电位的分布的溶液一侧
离子表面剩余量步骤如下: ( 1) ( 2) 曲线 ( 3)
(3.21) 可实际应用的求离 子表面剩余量的公 (3.22) 式
测量不同浓度电解质溶液的电毛细曲线б-φ关系曲线 从各条电毛细曲线上取同一相对电位下的б值。做б~lna±关系 根据б~lna±关系曲线,求出某一浓度下的斜率
即由3.21和3.22求得该浓度下的离子表面剩余量。
q dq
o
q
o C d d


(3.36)
故可计算从零电荷电位φO到某一电位φ之间的平均电容值Ci
q 1 Ci o o


o

Cd d
(3.37)
即Ci为积分电容,由(3.27)可看出微分电容与积分电容的关系。
10:58:14
10:58:14
一、 微分电容曲线
因Φ0时,q = 0, 以此作边界条件代入上式。则

10:58:14

0
Cd d
(3.30)
电极电位为Φ时的q值相当于图3.10中的阴影部分。
与电毛细现象曲线求q值相比。微分电容更精确和灵敏。前者用积 分函数,后者用微分函数。Cd=dq/dQ
但二者相互联系。因需用电毛细曲线法确定零电荷电位。
10:58:14
d 为紧贴电极表面排列的水化离子的电荷中心与电极表面的 距离,也为离子电荷能接近表面的最小距离。紧密层厚度为d, 若假定d内介电常数为恒定值。则该层内电位分布是线性变化的。 从x=d到溶液中远处剩余电荷为零的双电层部分即为分散层。其 电位分布是非线性变化的。
10:58:14
距离电极表面d处的平均电位称φ1电位。它在不同结构紧 密层中d大小不同,所以φ1电位为距离电极表面d处,即离子 电荷能接近电极表面的最小距离处的平均电位。或紧密层与 分散层交界处平均电位。 若φa表示整个双电层电位,则紧密层电位差为φa-φ1, 分散层电位差为 φ1,φa及 φ1是相对溶液深处的电位(规定为 零)。
把3.42代入3.41得 1 F a 1 8CRT 0 R sinh 1 C紧 2 RT
10:58:14
离子表面剩余量:界面层存在时离子的摩尔数与无离子双 电层存在时离子的摩尔数之差定义为离子的表面剩余量。
v T (v v ) RT ln a
Φ' v T (v v ) RT ln a '
理想极化电极:不发生任何电极反应的体系。 与其它理想体系类似, 只有相对的理想体系,电极电位处于 特定范围及特殊电场下,可满足理想极化电极的条件。 绝对的理想极化电极是不存在的。只有在一定的电极电位范 围内,某些真实的电极体系可以满足理想极化电极的条件。
如:汞和高纯氯化钾组成的体系。 2Hg Hg22++2e 电位 >0.1V K+ +e K 电位<-1.6V 该电极在0.1V~ -1.6V范围内,没有电极反应发生,可作为理 想极化电极。
10:58:14
二、理想极化电极
电极/溶液界面:是两相间一界面层,指与任何一相基体性 质均不同的相间过渡区。 界面结构:主要指在这一过渡区域中剩余电荷和电位的分 布以及它们与电极电位的关系。 界面性质:主要指界面层的物理化学性质,主要是电性质 。 研究界面结构的基本方法:通常测量某些重要的,反映界 面性质的参数(如界面张力、微分电容、电极表面剩余电荷 密度等)及其与电极电位的函数关系。把实验结果与理论推 算出的模型相比较,若接近,则模型有一定正确性。但前提 条件是选一个适合界面研究的电极体系。
一、概述
第三章 三、双电层的微分电容 电极/溶液界面 四、双电层的结构 五、零电荷电位 的结构和性质 六、电极/溶液界面的吸附现

二、电毛细现象
10:58:14
§3.1 概述
一、 研究电极/溶液界面性质的意义 由于各电极反应都发生在电极/溶液的界面上,故界面结和性质对电极反 应影响很大。 1. 界面电场对电极反应速度的影响 由于双电层极薄,故场强可很大,而电极反应是电荷在相间转移的反 应,故在巨大的界面电场下,电极反应速度也将发生极大的变化,可实 现一些普通化学反应无法实现的反应,并且可通过改变电极电位改变反 应速度。 2. 电解质性质和电极材料及其表面状态的影响 这些性质对电极-溶液界面结构和性质均能产生很大影响,故需进一 步了解电极-溶液界面性质,才能达到有效控制电极反应性质和反应速 度的目的。
10:58:14
( ) ' ln a
§3.3 双电层的微分电容
一、 双电层的电容 界面剩余电荷的变化将引起界面双电层电位差改变,因而电极/溶 液界面具有贮存电荷的能力,即具有电容的特性。
理想极化电极可作为平板电容器处理,即把电极/溶液界面的两个 剩余电荷层比拟成电容器的两个平行板,由物理学知,该电容器 的电容值为一常数,即
Cd为微分电容,表示引起电极电位微小变化时所需引入电极表面 的电量。相反,也表明界面上电极电位发生微小变化(扰动)时 所具备的贮存电荷的能力。 由微分电容定义和李普曼方程,由电毛细曲线很易求得微分电容 值
因 所以
10:58:14
q 2 Cd 2
(3.25)
可根据电毛细曲线确定零电荷电位φO,从而可利用式(3.24)求得 任-电极电位下的电极表面剩余电荷密度q,即
10:58:14
直流电通过一个电极时,可能起到以下两种作用: (1)参与电极反应而被消耗掉。这部分电流相当于 通过一个负载电阻而被消耗。 (2)参与建立或改变双电层。这部分电流的作用类 似于给电容器充电,只在电路中引起短暂的充电 电流。
(a)电极体系的等效电路
10:58:14
(b)理想极化电极的等效电路
电极表面剩余电苛较少时,即零电荷电位附近,微分电容随电极 电位变化较明显。电荷密度增大时,电容值也趋于稳定值,进而 出现电容值不随电位变化的所谓“平台”区。在q>0的左半部曲 线对应的平台区 Cd值约为32~40μF/cm2, 右半部(q<0),平台区 对应的Cd值约为16~20μF/cm2, 表明由阴离子和阳离子组成的双电 层在结构上的差别。
由图3.9知,微分电容随电极电位和溶液浓度变化。电位相同时。 随浓度增大。微分电容值也增大,表明此时双电层有效厚度减小 ,即两个剩余电荷层之间的有效距离减小。即随着浓度变化、双 电层结构也会变化。
10:58:14
在稀溶液中,微分电容曲线将出现最小值(图3.9中曲线1~3)。 溶液越稀。最小值越明显。随溶液浓度增加。最小值逐渐消失。 实验证明。出现微分电容最小值的电位就是同一电极体系电毛细 曲线最高点所对应的电位。即零电荷电位把微分电容曲线分成了 两部分。左半部(φ>φO)电极表面剩余电荷密度q为正值。右半 部(φ<φO)的电极表面剩余电荷q为负值。
相关文档
最新文档