第四章复杂电力系统潮流计算高斯赛德尔法潮流计算
第四章 电力系统潮流计算

第四章 电力系统潮流分析与计算电力系统潮流计算是电力系统稳态运行分析与控制的基础,同时也是安全性分析、稳定性分析电磁暂态分析的基础(稳定性分析和电磁暂态分析需要首先计算初始状态,而初始状态需要进行潮流计算)。
其根本任务是根据给定的运行参数,例如节点的注入功率,计算电网各个节点的电压、相角以及各个支路的有功功率和无功功率的分布及损耗。
潮流计算的本质是求解节点功率方程,系统的节点功率方程是节点电压方程乘以节点电压构成的。
要想计算各个支路的功率潮流,首先根据节点的注入功率计算节点电压,即求解节点功率方程。
节点功率方程是一组高维的非线性代数方程,需要借助数字迭代的计算方法来完成。
简单辐射型网络和环形网络的潮流估算是以单支路的潮流计算为基础的.本章主要介绍电力系统的节点功率方程的形成,潮流计算的数值计算方法,包括高斯迭代法、牛顿拉夫逊法以及PQ 解藕法等。
介绍单电源辐射型网络和双端电源环形网络的潮流估算方法.4—1 潮流计算方程——节点功率方程1。
支路潮流所谓潮流计算就是计算电力系统的功率在各个支路的分布、各个支路的功率损耗以及各个节点的电压和各个支路的电压损耗.由于电力系统可以用等值电路来模拟,从本质上说,电力系统的潮流计算首先是根据各个节点的注入功率求解电力系统各个节点的电压,当各个节点的电压相量已知时,就很容易计算出各个支路的功率损耗和功率分布.假设支路的两个节点分别为k 和l ,支路导纳为kl y ,两个节点的电压已知,分别为kV 和l V ,如图4—1所示。
图4-1 支路功率及其分布那么从节点k 流向节点l 的复功率为(变量上面的“-”表示复共扼):)]([lk kl k kl k kl V V y V I V S -== (4—1) 从节点l 流向节点k 的复功率为:)]([kl kl l lk l lk V V y V I V S -== (4—2) 功率损耗为:2)()(klkl l k kl l k lk kl kl V y V V y V V S S S ∆=--=+=∆ (4—3)因此,潮流计算的第一步是求解节点的电压和相位,根据电路理论,可以采用节点导纳方程求解各个节点的电压。
第4章 复杂电力系统潮流计算

Z E a aa Eb Z ba 0 Z ca
第一节 电力网络方程
另一种表达方式:
1 YL E L I L YL Z L
Y1i Y1n Y2i Y2 n Yii Yin Yni Ynn
第一节 电力网络方程
2)原网络节点 i 和 j 之间增加一条支路
节点导纳矩阵的阶数不变,只是由于节点 i 和 j
之间增加了一条支路导纳 yij 而使节点 i 和 j 之间的互
第一节 电力网络方程
结合图4-1(a)有
Y Y I Y U 1 11 12 13 1 I 2 Y21 Y22 Y23 U 2 0 Y Y Y U 31 32 33 3
第一节 电力网络方程
I Yaa Yab Yac E a a Y E I Y Y ba bb bc b b Yca Ycb Ycc 0 Ic
第一节 电力网络方程
三、节点导纳矩阵的形成和修改
1. 节点导纳矩阵的形成
(3-8)
/I Z ii U i i
0 I j
, i, j 1, , n, i j
(3-9)
/I Z ij U i j
0 I i
, i, j 1, , n,
ji
(3-10)
第一节 电力网络方程
自阻抗在数值上等于仅在节点 i 注入单位 电流而其余节点均不注入电流(即电源均 开路)时,节点 i 的电压。
第四章复杂电力系统潮流计算-高斯-赛德尔法潮流计算

大地电压 U0 0 令
无 Ui 项
Yij yij
Yii
j 0, j i
n
yij ,
节点 i 的自导纳 则
节点 i 和 i 之间的互自导纳
I i YijU j
j 1
n
Yi 1U 1 Yi 2U 2 YiiU i YinU n
1:k
Y11 Y1i Yi 1 Yii Y Y Y ji j1 Yn1 Yni
Y1 j Y1 n Yij Yin Y jj Y jn Ynj Ynn
Y11 Yi 1 Y Y n1 yij 0
Y1i Y1n Yii Yin Yni Ynn Y ji 0
0 Yij i 行 0 Y jj j 行
导纳矩阵阶数增加 1 阶,改变 节点 i 所对应的主对角元及与 节点 j 所对应的行和列即可。
I ij I ij
j
I ik
I ij yij (U i U j ) Ii
i
Ii
k
I il
j 0, j i
n
n
I ij
j 0, j i n
n
yij (U i U j ) yijU j
l
j 0, j i
功率方程
每个节点的复功率为 Si
* * P jQ U I U Y U Si i i i i i ij j * j 1 n
通常将上面的复数方程表示为有功和无功的实数 方程,这样每个节点均可列出两个功率方程式。
4 复杂电力系统潮流的计算机算法

4、高斯-赛德尔法潮流原理,非线性节点电压方程的 、高斯-赛德尔法潮流原理, 潮流原理 高斯-赛德尔迭代形式, 节点向 节点转化的原因 节点向PQ节点转化的 高斯-赛德尔迭代形式,PV节点向 节点转化的原因 方法; 和方法;顿-拉夫 、 - 分解法潮流计算, - 分解法与牛顿 分解法潮流计算 分解法与牛顿- 逊的关系 由牛顿-拉夫逊法导出 关系, 导出P- 分解法用到了 逊的关系,由牛顿-拉夫逊法导出 -Q分解法用到了 几个近似条件, 近似条件的物理意义, - 分解法 几个近似条件,各近似条件的物理意义, P-Q分解法 修正方程式, - 分解法与牛顿 分解法与牛顿- 的修正方程式, P-Q分解法与牛顿-拉夫逊的迭代次 数与解题速度, - 分解法分解法潮流计算求解步骤。 分解法分解法潮流计算求解步骤 数与解题速度, P-Q分解法分解法潮流计算求解步骤。
& & I 2 = −U 4 y 24
Y24 = − y24
20
一、节点电压方程 节点导纳矩阵Y 1、节点导纳矩阵
& U1 & I1
1
&2 U2 y12
y24 y23
& U3 3
节点导纳矩阵中自导纳 和互导纳的确定 4
& I4 + & U4 -
y34 y40
y10 I &
2
y20 & I3
y30
& I3 Y34 = U & & & & 4 ( U 1 =U 2 =U 3 = 0 )
k
互导纳 Yki:当网络中除节点 以外所有 当网络中除节点k以外所有 节点都接地时,从节点i注入网 节点都接地时,从节点 注入网 络的电流同施加于节点k的电压 络的电流同施加于节点 的电压 之比 节点i的电流实际上是自网络流 节点 的电流实际上是自网络流 出并进入地中的电流,所以Y 出并进入地中的电流,所以 ki应 等于节点k 之间导纳的负值 等于节点 、i之间导纳的负值
《电力系统分析》第四章 电力系统潮流的计算机算法

1
I1
I3
3
y12
y23
y20
2 I2
+ -
U
2
第四章 电力系统潮流的计算机算法
二、节点阻抗矩阵的节点电压方程
由YB1 ZB 的两边都左乘 YB,1 可得YB1I B U B ,
而
IB
YBU
,则节点电压方程为
B
ZBIB UB
第四章 电力系统潮流的计算机算法
第二节 等值变压器模型及其应用
Q2 QG2 QL2 Q2 (U , ) Q2 (U1,U 2 ,1, 2 )
第四章 电力系统潮流的计算机算法
二、变量的分类
1而、是负无荷法消控耗制的的有,功故、称无为功不功可率控(变P量L、或QL扰)动取变决量于。用一户般,以因
Y33
y30
y13
y23
y35 K 35
1 K35
K
2 35
y35
y30
y13
y23
1
K
2 35
y35
3
y35
K 35
5
j0.25
1
1
0.1 j0.35 0.08 j0.3
1 1 1.052 j0.015
1.585 j65.975
1 K35
K
第三章讨论简单电力网络的潮流分布计算,理解了与 之相关的各种物理现象。对于复杂电力网络的潮流计算, 一般必须借助电子计算机进行。 运用电子计算机,一般要完成以下步骤:
1、建立电力网络的数学模型 2、确定解算方法 3、制定计算流程和编制计算程序 本章将着重讨论前两项,主要阐述在电力系统潮流的 实际计算中常用的、基本的方法。
电力系统潮流计算方法分析

电力系统潮流计算方法分析1.黎曼法是最简单和最直接的计算方法。
该方法直接利用电力系统的基本方程式,即功率平衡方程式和节点电压方程式来计算潮流分布。
然而,黎曼法需要利用复杂的矩阵方程式来解决系统中节点电压的计算,计算量大且计算速度较慢,对大型复杂系统不适用。
2.高斯-赛德尔法是一种迭代法,将电网中的节电清设置为未知数,并采用全局迭代求解。
该方法通过迭代计算不断逼近潮流分布,直到满足系统中所有节点的电压和功率平衡方程为止。
高斯-赛德尔法具有迭代次数多、耗时较长的缺点,但计算稳定可靠,对于小型系统具有较好的适用性。
3.牛顿-拉夫逊法是一种基于牛顿迭代思想的高效潮流计算方法。
该方法通过利用电力系统中的雅可比矩阵,将潮流计算问题转化为解非线性方程组的问题。
牛顿-拉夫逊法的迭代速度和稳定性较高,适用于大型复杂系统的潮流计算。
综上所述,电力系统潮流计算方法可以选择黎曼法、高斯-赛德尔法和牛顿-拉夫逊法等不同的算法进行计算。
选择合适的计算方法应根据系统的规模、复杂度以及计算时间要求来综合考虑。
实际应用中,通常会根据具体情况采用不同的方法进行潮流计算,以获得准确和高效的结果。
同时,随着电力系统的发展和智能化技术的应用,也出现了一些基于机器学习和深度学习的潮流计算方法。
这些方法利用大数据和智能算法,通过学习和分析系统历史数据,能够更好地预测和计算系统潮流分布,提高计算效率和准确性。
这些方法在未来的电力系统潮流计算中具有潜力和广阔的应用前景。
总结起来,电力系统潮流计算是电力系统分析和规划的重要工作,不同的计算方法有不同的优劣势,合理选择计算方法对于准确评估系统稳定性和可靠性至关重要。
随着技术的进步和应用的发展,电力系统潮流计算方法也在不断演化和改进,以满足电力系统智能化和可持续发展的需求。
高斯赛德尔法潮流计算

3
& =S & −S &′ ∆S 12 12 12
其它支路相同求法。
迭代结束
& ( k +1) − U & (k ) ≤ ε U 2 2
( k + 1) (k ) & & U3 − U3 ≤ ε
ห้องสมุดไป่ตู้
求各支路输入功率、输出功率、功率损失。
1
& S 12
y12
&′ S 12
2
y13
y23
∗ ∗ & & & & & & S12 = U1 I 12 = U1 y12 (U1 − U 2 ) ∗ ∗ & & & & & & ′ S12 = U 2 I 12 = U 2 y12 (U1 − U 2 )
节点电压 发电机注入功率 & MW Mvar U 1.05+j0.0 ? ? 1.03 20 ? 0 0 ?
i
负荷 MW Mvar 0 0 50 20 60 25
分析:
由已知条件可知:节点1为平衡节点,节点2 为PV节点,节点3为PQ节点。
解:(1)形成节点导纳矩阵
y23 = 1/ Z 23 = 1.667 − j5.0
& = 1.05∠0o ,U & = 1.03∠0o ,U & = 1.0∠0o 设U 1 2 3
(0) & (0) ∑ Y 2 j U j ) =Im(U Q2 2 j =1 3 ∗ ∗ (0)
=Im[1.03∠0o × (−1.25 − j 3.73) × 1.05∠0o + 1.03∠0o × (2.9167 + j8.75) × 1.03∠0o + 1.03∠0o × (−1.6667 − j 5.0) × 1.0∠0o ] = 0.07766
4 复杂电力系统潮流分布计算

1. 直观易得
2. 稀疏矩阵 3. 对称矩阵
对角元:等于该节点所连导纳的总和 非对角元Yij:等于连接节点 i、j支路 导纳的负值
三、节点导纳矩阵的修改
不同的运行状态,(如不同结线方式下的运行状况、变压器的
投切或变比的调整等)
改变一个支路的参数或它的投切只影响该
支路两端节点的自导纳和它们之间的互导纳,因
. . . . . . . . . . .
.
.
.
.
.
.
一、节点电压方程
I 1 ( y 10 y12 y 13 ) U 1 y 12 U 2 y 13 U 3 Y 11 U 1 Y 12 U 2 Y 13 U 3 I 2 y 21 U 1 ( y 20 y 21 y 23 ) U 2 y 23 U 3 Y 21 U 1 Y 22 U 2 Y 23 U 3 0 y 31 U 1 y 32 U 2 ( y 30 y 31 y 32 ) U 3 Y 31 U 1 Y 32 U 2 Y 33 U 3
开式网络网还可以,而闭式网络则太复杂 寻找新的方法—潮流计算机算法
基本要求:本章着重介绍运用电子计算机计
算电力系统潮流分布的方法。它是复杂电力系统
稳态和暂态运行的基础。
运用计算机计算的步骤,一般包括建立数学
模型,确定解算方法,制定框图和编制程序,本
章着重前两步。
潮流计算机算法的思路
请计算机计算,就应该让计算机记住电网,
两个变压器模型的对比
Г型等值电路 每个支路参数物理意义 体现电压变换 有 不能
π
型等值电路 无 能
要进行参数变比的归算吗? 适用于
要 手算