小波变换在信号处理中的应用(2)

合集下载

小波变换在地震信号处理中的应用指南

小波变换在地震信号处理中的应用指南

小波变换在地震信号处理中的应用指南地震是地球上一种常见的自然现象,也是一种潜在的灾害。

地震信号处理是地震学研究中的重要环节,它可以帮助我们更好地理解地震的发生机制和预测地震的趋势。

而小波变换作为一种强大的信号处理工具,被广泛应用于地震信号处理中。

本文将介绍小波变换在地震信号处理中的应用指南,以帮助读者更好地理解和应用这一方法。

一、小波变换的基本原理小波变换是一种时频分析方法,它将信号分解成不同频率的子信号,同时保留了时间信息。

与傅里叶变换相比,小波变换可以更好地捕捉信号的瞬时特征。

小波变换的基本原理是通过将信号与一组小波基函数进行卷积运算,得到信号在不同尺度上的频谱信息。

常见的小波基函数有Morlet小波、Haar小波等。

二、小波变换在地震信号去噪中的应用地震信号通常伴随着大量的噪声,这些噪声会干扰地震信号的分析和解释。

小波变换可以通过对地震信号进行小波分解和重构,实现对噪声的去除。

具体而言,可以选择适当的小波基函数和尺度,将地震信号分解成不同频率的子信号,然后去除其中的高频噪声,最后再将子信号重构成去噪后的地震信号。

这样可以有效提高地震信号的信噪比,减少误判和误解。

三、小波变换在地震信号特征提取中的应用地震信号中包含丰富的信息,如震级、震源深度、地震波到达时间等。

小波变换可以通过对地震信号进行小波分解,提取不同频率的子信号,进而分析地震信号的频谱特征。

例如,可以通过计算地震信号的能量谱密度、频率谱密度等指标,来研究地震信号的频谱特征。

此外,小波变换还可以提取地震信号的瞬时特征,如瞬时频率、瞬时相位等,从而更好地理解地震信号的动态变化。

四、小波变换在地震信号压缩与重构中的应用地震信号通常具有较高的采样率和较长的时长,对于存储和传输来说是一种挑战。

小波变换可以通过对地震信号进行小波分解和重构,实现对地震信号的压缩。

具体而言,可以选择适当的小波基函数和尺度,将地震信号分解成不同尺度的子信号,然后舍弃部分高频子信号,最后再将子信号重构成压缩后的地震信号。

小波变换及其在信号处理中的应用

小波变换及其在信号处理中的应用

小波变换及其在信号处理中的应用小波变换(Wavelet Transformation),是用来处理时-频局部分析的一种具有多分辨率的信号分析工具。

小波变换涉及到基函数与尺度函数的选择和求解,能够将时间域和频率域相结合,从而得到更加清晰、准确的分析结果。

因此,在信号处理中应用极为广泛。

一、小波变换的原理及基本概念小波变换其实就是把一个时域信号进行分解或重构,在分解中进行多分辨率分析,在重构中实现还原。

在进行小波变换处理时,我们需要先选定一组小波基函数,对原始信号进行一定的变换,从而实现信号的时间-频率分析。

小波基函数被分为一个系列,常见的有Daubechies小波、Haar小波、Coiflets小波、Symlets小波等。

这些小波函数不仅具有平滑性和对称性,而且能够在不同尺度上实现信号的精确分析,可以更加准确的描述信号的局部性质。

二、小波变换在信号处理中的应用小波变换具有很强的局部分析能力,不仅仅可以把时域和频率域联系在一起,还可以对复杂的信号进行分解和重构,从而得出更加准确的分析结果。

因此,在信号处理中,小波变换有着非常广泛的应用,如:1、地震探测地震信号是一个典型的非平稳信号,使用小波变换可以对地震信号进行多分辨率分析和孔径分辨率优化,从而提高地震探测的准确性。

2、医学图像处理在医学图像处理中,小波变换能够使用不同的小波函数对图像进行分解和重构,从而实现图像的去噪、增强、分割等处理,提高图像处理的效果和准确性。

3、音频处理小波变换可以将音频信号进行分解和重构,从而对音频进行时-频局部分析和处理,可用于音频去噪、降噪、分割、信号提取等,提高音频处理的效果和准确性。

4、金融分析小波变换可对金融数据进行分解,实现不同尺度、不同频率、不同时间的分析,提供金融数据的多维度分析,有利于对股市趋势进行判断和预测。

5、图像压缩小波变换能够将图像进行分解,通过去掉一些高频细节信息,实现图像压缩,从而实现图像的存储与传输,提高图像传输的速度和效率。

傅里叶变换与小波变换在信号去噪中的应用

傅里叶变换与小波变换在信号去噪中的应用

傅里叶变换与小波变换在信号去噪中的应用
傅里叶变换和小波变换是研究信号处理的基本技术,在信号去噪中都有应用。

1. 傅里叶变换:傅里叶变换是根据信号的复数表达,首先将时间和频率分离,把一段时间的信号映射到它的频谱上。

在信号处理时,可以利用它分离需要保留的部分信号和多余噪声,具体可以采用以下步骤:
(1)利用傅里叶变换将原始信号变换到频域;
(2)在频域上滤波处理,滤除多余的噪声;
(3)利用傅立叶逆变换将处理后的信号再变换回时域,获得处理后的信号。

2. 小波变换:小波变换是研究信号处理的重要技术,与傅里叶变换类似,它可以把时间和频率分离,把一段时间的信号映射到它的小波变换频谱上。

特别是它可以满足时空局部性,把一段时间内不同时间段和不同频率段的信号分离,提高频谱分析的精度,这在信号去噪方面特别有用。

另外,它还有把信号去噪后的特点:对离散的非定时噪声的去除效果比傅里叶变换的去除效果好。

若想实现信号去噪,可以按照以下步骤:
(1)将原始信号变换到频域,可以采用傅里叶变换或者小波变换;
(2)在频域上滤波处理,滤除多余的噪声;
(3)将处理后的信号再变换回时域,特别是对于小波变换,可以利用它把信号去噪后的特点:对离散的非定时噪声的去除效果比傅里叶变换的去除效果好。

小波分析在信号处理中的应用

小波分析在信号处理中的应用

小波分析在信号处理中的应用小波分析是一种基于数学理论的信号处理技术,具有在时频域上分析信号的优势。

在信号处理领域中,小波分析被广泛应用于信号压缩、噪声消除、特征提取、模式识别等方面。

本文将从小波分析的基本原理、算法实现以及在信号处理中的具体应用等方面进行探讨。

小波分析原理小波分析是一种基于时间频率局部性原理的信号分析方法,其核心思想是通过选取不同尺度和位置的小波基函数对信号进行分解和重构。

小波基函数是一组完备且正交的函数集,能够很好地反映信号在时域和频域上的特征。

通过对信号进行小波分解,可以得到不同频率下的信号特征,从而更好地理解和处理信号。

小波分析算法实现小波分析的常见算法包括离散小波变换(DWT)和连续小波变换(CWT)。

其中,DWT通过迭代地对信号进行低通和高通滤波,实现信号的多尺度分解;而CWT则是通过对信号和小波基函数进行连续变换,得到信号的时频表示。

这两种算法各有特点,适用于不同的信号处理任务。

小波分析在信号处理领域中有着广泛的应用,其中之一是信号压缩。

通过小波变换,可以将信号分解为不同频率成分,然后根据能量分布情况对部分频率成分进行舍弃,实现有效的信号压缩。

此外,小波分析还可以用于噪声消除。

在信号受到噪声干扰时,通过小波域的阈值处理可以去除部分噪声成分,提高信噪比,从而提升信号质量。

另外,小波分析还可以应用于特征提取和模式识别。

通过分析信号在小波域的特征,可以提取出具有区分性的特征参数,用于信号分类和识别。

在图像处理、语音识别、生物医学等领域中,小波分析都发挥着重要作用。

总结小波分析作为一种有效的信号处理技术,在实际应用中取得了显著的成果。

通过对信号的时频特征进行分析,小波分析能够提供更全面、更准确的信号信息,为信号处理领域的研究和应用带来了新的思路和方法。

在未来的发展中,小波分析有望进一步拓展应用领域,为更多领域的研究和实践提供支持和帮助。

论述小波分析及其在信号处理中的应用

论述小波分析及其在信号处理中的应用

论述小波分析及其在信号处理中的应用小波分析是一种数学工具,用于在时域和频域中对信号进行分析。

它可以将信号分解成具有不同频率和时间尺度的小波函数,从而更好地捕捉信号的局部特征和变化。

小波分析在信号处理中有广泛的应用,以下是一些主要的应用领域:1. 信号压缩:小波分析可以提供一种有效的信号压缩方法。

通过对信号进行小波变换并根据重要性剪切或量化小波系数,可以实现高效的信号压缩,同时保留主要的信号特征。

2. 图像处理:小波分析在图像处理中有重要的应用。

通过对图像进行小波变换,可以将其分解成具有不同频率和时间尺度的小波系数,从而实现图像的去噪、边缘检测、纹理分析等。

3. 语音和音频处理:小波分析可以用于语音和音频信号的分析和处理。

通过小波变换,可以提取音频信号的频谱特征,实现音频的降噪、特征提取、语音识别等。

4. 生物医学信号处理:小波分析在生物医学信号处理中有广泛的应用。

例如,通过小波分析可以对脑电图(EEG)和心电图(ECG)等生物医学信号进行时频分析,以实现对心脑信号特征的提取和异常检测。

5. 数据压缩:小波分析在数据压缩中也有应用。

通过对数据进行小波变换,并且根据小波系数的重要性进行压缩,可以实现对大量数据的高效存储和传输。

6. 模式识别:小波分析可以用于模式识别和分类问题。

通过对数据进行小波变换,可以提取重要的特征并进行模式匹配和分类,用于图像识别、人脸识别等应用。

综上所述,小波分析在信号处理中有广泛的应用,可以用于信号压缩、图像处理、语音和音频处理、生物医学信号处理、数据压缩和模式识别等领域。

它提供了一种强大的工具,用于捕捉信号的局部特征和变化,从而推动了许多相关学科的发展。

小波变换在信号处理中的作用

小波变换在信号处理中的作用

小波变换在信号处理中的作用信号处理是一门研究如何对信号进行采集、分析、处理和解释的学科。

在实际应用中,信号处理广泛应用于通信、图像处理、音频处理等领域。

而小波变换作为一种有效的信号处理方法,在各个领域中发挥着重要的作用。

小波变换是一种数学变换方法,可以将信号分解成不同频率的成分,从而对信号进行分析和处理。

与傅里叶变换相比,小波变换具有更好的时频局部性,能够更准确地描述信号的瞬时特征。

因此,小波变换在信号处理中被广泛应用于时频分析、信号去噪、特征提取等方面。

首先,小波变换在时频分析中起到了重要的作用。

时频分析是对信号在时间和频率上的变化进行分析的方法。

传统的傅里叶变换只能提供信号在频域上的信息,无法提供时间上的信息。

而小波变换通过将信号分解成不同尺度和频率的小波基函数,可以同时提供信号在时间和频率上的信息。

这使得小波变换在分析非平稳信号、瞬态信号等方面具有优势,如地震信号分析、语音信号分析等。

其次,小波变换在信号去噪中也发挥着重要的作用。

在实际应用中,信号通常受到噪声的干扰,这会影响信号的质量和可靠性。

小波变换通过将信号分解成不同频率的小波系数,可以对信号和噪声进行分离。

通过对小波系数的阈值处理或者重构过程中的系数截断,可以实现对信号的去噪操作。

这使得小波变换在语音去噪、图像去噪等方面具有广泛的应用。

此外,小波变换还可以用于信号的特征提取。

在实际应用中,我们常常需要从信号中提取出有用的特征,用于信号分类、识别等任务。

小波变换通过将信号分解成不同频率的小波系数,可以提取出信号在不同频率上的特征。

这些特征可以用于信号的模式识别、故障诊断等方面。

例如,在图像处理中,小波变换可以提取出图像的边缘、纹理等特征,用于图像的分割和识别。

综上所述,小波变换作为一种有效的信号处理方法,在时频分析、信号去噪、特征提取等方面发挥着重要的作用。

它具有更好的时频局部性,能够更准确地描述信号的瞬时特征。

随着科技的不断发展,小波变换在信号处理领域的应用将会越来越广泛。

小波变换在信号解调中的应用及优化方法

小波变换在信号解调中的应用及优化方法

小波变换在信号解调中的应用及优化方法小波变换(Wavelet Transform)是一种信号处理技术,它可以将信号分解成不同频率的子信号,从而更好地理解和分析信号的特性。

在信号解调中,小波变换有着广泛的应用,并且还有一些优化方法可以进一步提高解调的效果。

首先,让我们了解一下信号解调的概念。

信号解调是指从复杂的信号中提取出我们感兴趣的信息。

在通信领域,信号解调常常用于解析调制信号,以便恢复原始的信息。

例如,我们可以使用信号解调来分析调幅(AM)或者调频(FM)信号,以便获取原始的音频或者数据。

小波变换在信号解调中的应用主要体现在两个方面:信号分解和特征提取。

首先,小波变换可以将复杂的信号分解成不同频率的子信号。

这种分解可以帮助我们更好地理解信号的频域特性。

通过观察不同频率子信号的幅值和相位变化,我们可以获取关于信号的重要信息。

其次,小波变换还可以用于特征提取。

通过选择适当的小波基函数,我们可以提取出信号中的特征,比如频率、幅值和相位等。

这些特征可以用于后续的信号处理和分析。

然而,小波变换在信号解调中也存在一些问题,比如频率混叠和边缘效应。

频率混叠是指在进行小波变换时,高频信号会被混叠到低频信号中,导致频率信息的丢失。

边缘效应是指信号在边缘处的处理效果较差,可能会引入一些伪像。

为了解决这些问题,有一些优化方法可以被应用。

首先,频率混叠可以通过选择合适的小波基函数来减轻。

不同的小波基函数在频域上有不同的特性,选择适当的小波基函数可以使得高频信号的混叠程度更小。

此外,还可以通过多尺度分析来进一步减轻频率混叠问题。

多尺度分析是指使用不同尺度的小波基函数进行分解,从而更好地捕捉信号的频率变化。

其次,边缘效应可以通过边界处理方法来解决。

边界处理方法可以在信号的边缘处采取一些特殊的处理策略,从而减少边缘效应的影响。

常用的边界处理方法包括零填充、对称填充和周期填充等。

这些方法可以有效地减少边缘效应,并提高信号解调的准确性。

数字信号处理中的小波变换与滤波应用

数字信号处理中的小波变换与滤波应用

数字信号处理中的小波变换与滤波应用随着计算机技术的发展,数字信号处理(DSP)已经成为了许多领域的必备工具。

其中,小波变换与滤波应用在信号处理中应用非常广泛。

它们可以用于信号的压缩、去噪、特征提取等等,具有重要的实际应用价值。

一、小波变换的基本原理小波变换(Wavelet Transform)是一种信号分析的工具,它可以将信号分解成不同频率的子信号。

与傅里叶变换相比,小波变换可以更好地应对非平稳信号的分析。

其基本原理是将信号与一组称之为小波函数的特定函数进行卷积运算。

小波变换有两个主要特性:尺度变换和平移变换。

其中,尺度变换是指通过缩放小波函数的时间轴来改变小波函数的频率;平移变换是指通过移动小波函数的时间轴来改变小波函数的相位。

利用小波变换可以将信号分解成多个尺度和频率上的子信号,并且可以对这些子信号进行重构。

小波变换具有多分辨率分析的特点,可以在不同分辨率下对信号进行分解和重构。

二、小波变换在信号处理中的应用1. 信号压缩小波变换可以将信号分解成多个尺度和频率上的子信号,这些子信号可以被视为信号的特征。

通过保留重要的子信号,可以实现对信号的压缩。

这种方法被称为小波压缩。

小波压缩的基本步骤是进行小波分解,然后对分解得到的系数进行阈值处理,去除一些小的系数,最后再进行小波重构。

这样可以减小信号的维度,实现信号的压缩。

2. 信号去噪噪声是指不想要的信号成分,会使原信号数据变得不可靠。

小波变换可以将信号分解成多个尺度和频率上的子信号,可以很好地分离出噪声信号。

通过去除噪声信号,可以实现信号的去噪。

信号去噪的基本步骤是进行小波分解,然后对分解得到的系数进行阈值处理,去除一些小的系数,最后再进行小波重构。

这样可以去除噪声信号,实现信号的去噪。

3. 特征提取小波变换可以将信号分解成多个尺度和频率上的子信号,在不同的尺度下,可以捕捉到信号的不同特征。

因此,小波变换可以用来进行信号特征提取。

特征提取的方法是通过小波分解,挑选出某些尺度和频率下的小波系数,然后再将这些系数用于信号的分类、识别等任务中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小波变换提出了变化的时间窗。当需要精确的低频信息时,采用长的时间窗, 频率分辨率高,当需要精确的高频信息时,采用短的时间窗,时间分辨率高。
由此可知,小波变换采用的不是时间-频率域,而是时间-尺度域。尺度越 大,采用越大的时间窗,尺度越小,采用越短的时间窗,即尺度与频率成反比。
第8页
(3)小波变换
第9页
第16页
二、连续小波变换
傅 立 叶 变 换 过 程 信号
不同频率分量的组成
图5 信号傅立叶变换过程
第17页
基本小波函数ψ()的缩放和平移操作含义如下:
(1) 缩放。简单地讲, 缩放就是压缩或伸展基本小波, 缩放 系数越小, 则小波越窄,如图6所示。
f (t)

O
波 变
f (t)

O


f (t)
第33页
三、一维离散小波变换
由图11可以看出离散小波变换可以表示成由低通滤波器 和高通滤波器组成的一棵树。原始信号经过一对互补的滤波 器组进行的分解称为一级分解,信号的分解过程也可以不断 进行下去,也就是说可以进行多级分解。如果对信号的高频 分量不再分解,而对低频分量进行连续分解,就可以得到信 号不同分辨率下的低频分量, 这也称为信号的多分辨率分 析。如此进行下去, 就会形成图12所示的一棵比较大的分 解树, 称其为信号的小波分解树(Wavelet Decomposition Tree)。实际中, 分解的级数取决于要分析的信号数据特征 及用户的具体需要。
j 1
j 1
其中: AJ n是,小D波j基n函数
第30页
三、一维离散小波变换
执行离散小波变换的有效方法是使用滤波器, 该方法 是Mallat于1988年提出的,称为Mallat算法。这种方法实际 上是一种信号分解的方法, 在数字信号处理中常称为双通 道子带编码。
用滤波器执行离散小波变换的概念如图11所示。S表示 原始的输入信号, 通过两个互补的滤波器组, 其中一个 滤波器为低通滤波器,通过该滤波器可得到信号的近似值 A (Approximations),另一个为高通滤波器, 通过该滤 波器可得到信号的细节值D(Detail)。
第10页
(5) 小波的3 个特点
• 小波变换,既具有频率分析的性质,又能表示发生的 时间。有利于分析确定时间发生的现象。(傅里叶变 换只具有频率分析的性质)
• 小波变换的多分辨度的变换,有利于各分辨度不同特 征的提取(图象压缩,边缘抽取,噪声过滤等)
• 小波变换比快速Fourier变换还要快一个数量级。信 号长度为M时, Fourier变换(左)和小波变换(右) 计算复杂性分别如下公式:
N 1
X
k 0
k
j 2 kn
eN
k 0,1,..., N 1
n 0,1,..., N 1
第3页
2. 傅立叶变换的实质
傅里叶变换的实质是:把f(t)这个波形分解成许多不同频率 的正弦波的叠加和。这样我们就可以将对原函数f(t)的研究 转化为对其权系数,及傅里叶变换F(ω)的研究。从傅里叶 变换中可以看出,这些标准基是由正弦波及高次谐波组成 的,因此它在频域内是局部化的。
a,b t
第25页
一维连续小波变换Matlab实现
• COEFS=cwt(S,SCALES,’wname’) • COEFS=cwt(S,SCALES,’wname’,’plot’) • COEFS=cwt(S,SCALES,’wname’,PLOTMODE) • COEFS=cwt(S,SCALES,’wname’,PLOTMODE,XLIM)
第11页
(6) 小波基表示发生的时间和频率
傅里叶变换 (Fourier)基
小波基
时间采样基
Fourier变换的基(上)小波变换基(中)
和时间采样基(下)
第12页
二、连续小波变换
1. 连续小波变换
设函数, (t) L2 (R),如果满足: ˆ ( ) 2 d
则称 (t) 为一个基本小波和小波母函数,式中 ˆ ()
图4表示了正弦波和小波的区别,由此可以看出,正弦
波从负无穷一直延续到正无穷,正弦波是平滑而且是可预测
的, 而小波是一类在有限区间内快速衰减到0的函数,其平
均值为0, 小波趋于不规则、不对称。
第15页
二、连续小波变换


(a)
(b)
(a) 正弦波曲线; (b) 小波曲线 图4 傅立叶变换与小波变换基元
第26页
三、一维离散小波变换与重构
在每个可能的缩放因子和平移参数下计算小波系数, 其计算量相当大, 将产生惊人的数据量,而且有许多数据 是无用的。如果缩放因子和平移参数都选择为2j(j>0且为 整数)的倍数, 即只选择部分缩放因子和平移参数来进行 计算, 就会使分析的数据量大大减少。使用这样的缩放因 子和平移参数的小波变换称为双尺度小波变换 (Dyadic Wavelet Transform ) , 它 是 离 散 小 波 变 换 ( Discrete Wavelet Transform, DWT)的一种形式。通常离散小波变 换就是指双尺度小波变换。
第4页
3. 傅立叶变换的局限性
由左图我们看不出任何频域的性质,但从右图中我们可以明显看出该信号的频 率成分,也可以明显的看出信号的频率特性。
虽然傅里叶变换能够将信号的时域特征和频域特征联系起来,能分别从信号的 时域和频域观察,但不能把两者有机的结合起来。
在实际信号处理过程中,尤其是对非平稳信号的处理中,信号在任一时刻附近 的频域特征都很重要。
W f (a,b) 的逆变换为:
f (t) 1
c R
W
R
f
(a,b)
a,b
(t)
dadb a2
式中:C
ˆ ( ) 2 d
第14页
二、连续小波变换
像傅立叶分析一样,小波分析就是把一个信号分解为将 母小波经过缩放和平移之后的一系列小波,因此小波是小波 变换的基函数。小波变换可以理解为用经过缩放和平移的一 系列小波函数代替傅立叶变换的正弦波和余弦波进行傅立叶 变换的结果。
第27页
三、一维离散小波变换与重构
小波变换就是将 “ 原始信号 s ” 变换 成 “ 小波 系数 w ” , w=[wa , wd] ( 近似系数wa与细节系数wd )
则原始信号s可分解成小波近似a与小波细节d之和。 s = a+d
小波系数 w = [ wa , wd ] 的分量,乘以基函数,形成小波分 解:
O
(t-k)
t
O
t
(a)
(b)
图7 (a) 小波函数ψ(t); (b) 位移后的小波函数ψ(t-k)
19
CWT计算主要有如下五个步骤:
第一步: 取一个小波, 将其与原始信号的开始一节进行比 较。
第二步:
C, C 表示小波与所取一节信号的相
似程度,计算结果取决于所选小波的形状, 如图8所示。
第三步:向右移动小波,重复第一步和第二步,直至覆盖整 个信号,如图9所示。
第23页
二、连续小波变换
第五步:对于所有缩放,重复第一步至第四步。 小波的缩放因子与信号频率之间的关系是:缩放因子 scale越小,表示小波越窄,度量的是信号的细节变化,表 示信号频率越高;缩放因子scale越大, 表示小波越宽,度 量的是信号的粗糙程度,表示信号频率越低。
第24页
二、连续小波变换
第5页
(2)短时傅立叶变换
基本思想:把非稳态信号看成一系列短时平稳信号的叠加,这个过程是通 过加时间窗来实现的。一般选用能量集中在低频处的实的偶函数作为窗函数, 通过平移窗函数来实现时间域的局部化性质。其表达式为:
S , R f t g* t e jtdt
其中“*”表示复共轭,g(t)是有紧支集的函数,
第31页
三、一维离散小波变换
S
滤 波 器组
低通
高通
A
D
图11 小波分解示意图 第32页
三、一维离散小波变换
在小波分析中,近似值是大的缩放因子计算的系数, 表示信号的低频分量,而细节值是小的缩放因子计算的 系数,表示信号的高频分量。实际应用中,信号的低频 分量往往是最重要的,而高频分量只起一个修饰的作用。 如同一个人的声音一样, 把高频分量去掉后,听起来声 音会发生改变,但还能听出说的是什么内容,但如果把 低频分量删除后,就会什么内容也听不出来了。
小波变换在信号处理中的应用
一、从傅里叶变换到小波变换 二、连续小波变换 三、一维离散小波变换与重构 四、二维离散小波变换与重构 五、几种常用小波 六、举例(基于Matlab环境)
第1页
一、从傅里叶变换到小波变换
小波分析是近15年来发展起来的一种新的时频分析方法,我们可以先粗略 地区分一下时域分析和频域分析。 时域分析的基本目标: - 边缘检测和分割; - 将短时的物理现象作为一个瞬态过程分析。 频域分析的基本目标: 区分突发信号和稳定信号以及定量分析其能量。
第四步: 伸展小波, 重复第一步至第三步, 如图10所示。
20
二、连续小波变换
原 始 信号 小 波 信号
C= 0.0 10 2
图8 计算系数值C
第21页
二、连续小波变换
原 始 信号 小 波 信号
图9 计算平移后系数值C
第22页
二、连续小波变换
原 始信 号 小 波信 号
C= 0.2 247
图10 计算尺度后系数值C
小波近似系数wa ×基函数A=近似分解 a ---平均 小波细节系数wd ×基函数D=细节分解 d---变化
第28页
三、一维离散小波变换与重构
小波基D 小波系数wd
原始信号
小波基A
小波系数wa 正变换:原始信号在小波基上,获得 “小波系数”分量 反变换:所有“小波分解” 合成原始信号
相关文档
最新文档