纳什均衡哈佛第六讲
博弈论-混合策略纳什均衡PPT课件

说明
• 如果纳税人逃税的概率小于q*, • 则q<C/a+F ,税收机关的最优选择是不检
查; • 如果纳税人逃税的概率大于q*, • 则q>C/a+F ,税收机关的最优选择是检查; • 如果纳税人逃税的概率等于q*, • 则q=C/a+F ,税收机关随机地选择检查或
不检查。
26
之二
• 假设采用混合策略是税务机关的最优选择 那么给定p ,纳税人选择逃税和不逃税的期 望收益相等:
那么,政府的期望效用函数为:
vG G , L 3 11 1 01
5 1
对上述效用函数求微分,得到政府最优化的一阶条件 为:
vG
5
1 0 0.2
就是说,从政府的最优化条件找到流浪汉混合策略— —流浪汉以0.2的概率选择寻找工作,0 .8的概率选择 游闲。
• 答案是否定的。
• 事实上,局中人的选择仍然是很有讲究的, 策略选择的好坏对局中人的利益仍然有很大 的影响。
• 在这个零和博弈里,无论双方采用哪种策略 组合,结果都是一方输一方赢,而输的一方 又总是可以通过单独改变策略而反输为赢。 如果哪个局中人能找到对手方的规律或者偏 好,他就能猜测到对手的策略而采用针对性 策略从而保证赢。
政府
不救济 (-1,1) (0,0) 8
政府和流浪汉的博弈
• 思考:政府会采用纯策略吗?流浪汉呢?这 个博弈有没有纯策略的纳什均衡?
• ——跟你玩剪子石头布游戏一样,你会一直 采用纯策略吗?
• 那么政府和流浪汉最有可能采用什么策略? • ——使自己的预期支付最大化。 • ——若能够猜的对方的策略,就可以采用针
vL 1, 1 3 vL 0,
纳什均衡PPT课件

可编辑
<#>
3、纳什均衡与上策均衡、累次严优
❖ 每一个上策均衡、累次严优求解出的均衡一定是纳 什均衡,但并非每一个纳什均衡都是上策均衡或累 次严优求解出的均衡。
ห้องสมุดไป่ตู้
❖ 如果应用累次严优排除了除
之外的所
有策略组合,那么
在进一行定博弈是分这析个之前博先弈通过的重唯复
一纳什均衡;
剔除严格劣策略方法来简化博弈
wuweiwei100@
<#>
纳什均衡就是一个僵局,给定其他 人不动,没有人有动的积极性,谁 动谁吃亏。具体地说,一个纳什均 衡就是博弈中各个博弈方都不愿意 单独改变策略的一个策略组合。
——张维迎
(北京大学教授)
可编辑
<#>
再如 猎鹿博弈
猎人1
鹿 兔子
猎人2
鹿
兔子
5,5 3,0
0,3 3,3
❖ 如果
是可行的
是博弈的一个纳什均衡,那么累
次严优一定不会将它消去。
可编辑
<#>
4、不同均衡概念之间的关系
上策均衡 累次严优均衡
纯策略纳什均衡 混合策略纳什均衡
可编辑
<#>
如果所有博弈方都预测一个特定的博弈结果会出现那么所有的博弈方都不会利用该预测或者这种预测能力选择与预测结果不一致的策略即没有哪个博弈方有偏离这个预测结果的愿望因此这个预测结果最终真会成为博弈的结果
纳什均衡
wuweiwei100@
1
博弈的正规型表述
用 表示一个博弈,其中有 个局中人,每个局中
❖ 两个人从独木桥的两端走 向中央进行火拚,每个人 都有两种策略:前进、后 退
非合作博弈——纳什均衡

举个简单的例子来说明博奕论是什么?你在一个屋子里,屋里有很多人。
这时候,屋里突然失火,火势很大,无法扑灭。
此时你的目的就是逃生。
你的面前有两个门,左门和右门,你必须在它们之间选择。
但问题是,其他人也要争抢这两个门出逃。
如果你选择的门是很多人选择的,那么你将因人多拥挤、冲不出去而烧死;相反,如果你选择的是较少人选择的,那么你将逃生。
这里我们不考虑道德因素,你将如何选择?——这就是博弈论!你的选择必须考虑其他人的选择,而其他人的选择也考虑你的选择。
你的结果(博弈论称之为支付pay off),不仅取决于你的行动选择(博弈论称之为策略选择),同时取决于他人的策略选择。
你和这群人构成一个博弈(game)。
博弈论对人的基本假定是:人是理性的(rational)。
所谓理性的人是指他在具体策略选择时的目的是使自己的利益最大化,博弈论研究的是理性的人之间如何进行策略选择的。
中国人对博弈论有天生的了解。
正如中国人常说的“事事洞明皆学问,人情练达即文章”,即是说人与人之间的关系、社会交往均是学问。
而中国很多“做人”的道理,道出了如何在人与人的博弈中获取成功。
罗贯中的《三国演义》在今天看来就是一部博弈论教材!无论是兵书如《孙子兵法》、《三十六计》,还是现代流行的所谓“厚黑学”,都是关于如何赢得与人交往的胜利的,或者说如何获取成功的.博奕论中流传最广的是一个叫做“囚徒困境”的故事。
说的是两个囚犯的故事。
这两个囚徒一起做坏事,结果被警察发现抓了起来,分别关在两个独立的不能互通信息的牢房里进行审讯。
在这种情形下,两个囚犯都可以做出自己的选择:或者供出他的同伙(即与警察合作,从而背叛他的同伙),或者保持沉默(也就是与他的同伙合作,而不是与警察合作)。
如果他们中的一个人背叛,即告发他的同伙,那么他就可以被无罪释放。
而他的同伙就会被判10年。
如果双方都与警方合作共同招认,则各被判5年。
如果双方均不承认有罪,因警察找不到其他证据来证明他们以前的违法证据,则各判3个月。
纳什均衡

许昌-建邺航线的价格博弈
一种情况是,曹操约孙权坐在一起就该 航线的航班供应量和机票价格达成一 致 ,双方平分市场份额。 在没有协议的情况下,双方都不可能对 结果进行垄断。当一方假定对方不变的 情况下,可能会考虑增加航班,降低价 格,使自己的总利润增加。
许昌-建邺航线的价格博弈
许昌建邺航线机票价格和需求表
纳什均衡
--从无序市场中把握有序市场规律 --从无序市场中把握有序市场规律
什么是纳什均衡?
在对方策略确定的情况下,每个参与者的策 略都是最好的。 在纳什均衡点上,每一个理性的参与者都不 会有单独改变策略的冲动。
囚徒困境
囚犯甲 囚犯甲的博弈矩阵 招供 招供 囚犯乙 不招供 判刑三月 判刑一年 判刑五年 不招供 判刑十年
机票价格 (元) 1200 1100 1000 950 900 850 800 700 520 每航班收益 (万元) 30 27.5 25 23.75 22.5 21.25 20 17.5 13 减除成本后的每航 班利润(万元) 17 14.5 12 10.75 9.5 8.25 7 4.5 0 每周航班数 (次) 16 20 28 32 36 40 44 48 56 每周利润总 和(万元) 272 290 336 344 342 330 308 216 0
当这些寡头们选择利润最大化的生产供 应量时,这个量一般会大于垄断的生产 供应量,而小于竞争的生产供应量;而 寡头的生产价格也会高于竞争价格(竞争 价格等于边际成本)而低于垄断价格。
许昌-建邺航线的价格博弈
即使寡头们愿意勾结,也是暂时的均衡; 采取降价以扩大市场份额; 寡头市场最终会形成纳什均衡。
航空公司之间的合作自律问题
通过航空公司之间相互自律的形式能否 有效避免降价大战的发生呢? 依照经典的“囚徒困境”模型对此进行 分析。
博弈论-纳什均衡(非合作博弈均衡)

博弈论-纳什均衡(非合作博弈均衡)完全理性:理性指一种行为方式,它适合实现指定目标,而且在给定条件和约束的限度之内。
在不同的学科领域,理性所涵盖的内容存在着差异完全理性的内涵具有完全理性的行为人是个无所不知的超人,他具有纵向和横向方面完备的知识。
在纵向方面,他可以预测未来;在横向方面,他通晓资源、交易伙伴和环境等情况。
具体而言,行为人的完全理性包括以下隐含内容。
(1)不存在不确定性,即使存在不确定性,也可以预知不确定性的概率分布。
也就是说,对于具有完全理性的行为人来说,一切信息都是确定的。
(2)行为人具有可以确定的效用函数(消费者的效用函数和厂商的利润函数可以统称为效用函数),同时行为人具有同质性以及一致性的偏好体系。
(3)选择结果具有描述不变性、程序不变性和前后关系独立性。
描述不变性要求行为人选择的先后顺序不应依赖于所描述或显示的选项,也就是说如果行为人经过再三思考,将两种描述视为同一问题的同义表达,那么它们必定导致相同的选择——即这种思考不存在异处;程序不变性要求不同方式的等价学说揭露相同的偏好次序;前后关系独立性指一项选择与其他替代方案互为独立的原则,它要求在给定Z而不提供有关X或Y 的新的信息的情况下,X 与Y的优先权顺序不应该依赖于Z是否有效。
(4)行为人具备完备的计算和推理能力,可以像计算机一样在数秒内从事无穷尽的计算步骤,同时也不存在感性因素对选择的干扰。
(5)选择意味着在各种方案或选择集中进行比较和挑选,因此完全理性的行为人可以设计出所有的被选方案,以及各项方案所产生的全部后果。
(6)一个确定的报酬函数,即行为人可以确定地赋予每项行动结果一个具体的量化价值或效用。
(7)确定性的结果,也就是行为人町以实现效用最大化或最优目标(消费者效用最大化和企业利润最大化)。
在上述条件下,建立在完全理性假设的基础上的主流经济学的方法论,即行为人的选择或决策意味着在资源约束的条件下实现效用最大化或利润最大化。
引言纳什均衡NashEquilibrium反应函数法.ppt

的利润分别为6,18和12,再作其它产量组合时亦会有不同的
结果。
最稳定的产量组合,是一个纳什均衡
表12-2 三厂商离散产量组合对应价格和利润
m1
m2
m3
p
π1
π2
π3
3
9
6
2
6
18
12
3
8
6
3
9
24
18
5
5
6
4
20
20
24
5
5
5
5
按博弈方式
非合作博弈 合作博弈
完全理性 有限理性
博弈分类
按博弈人数
二人博弈
二人零和博弈 二人非零和博弈
多人博弈
按博弈状态
静态博弈 动态博弈
完全信息静态博弈 不完全信息静态博弈 完全信息动态博弈 不完全信息动态博弈
Page 18
12.1.3 博弈的结构和分类
【例12-2】1943年2月,日本统帅山本五十六大将计划 由南太平洋新不列颠群岛的拉包尔出发,3天穿过俾 斯麦海,开往新几内亚的莱城,支援困守的日军。有 两条路线:北线和南线。
Two person finite non-zero-sum game
12.1 引 言
12.1.1 博弈论概述
博弈论(game theory)亦称对策论,是研究具有 对抗或竞争性质现象的数学理论和方法,它既是数 学、也是运筹学的一个重要分支。
博弈行为是博弈论中一个重要的概念。博弈行为 是指具有竞争或对抗性质的行为,在这类行为中, 参加斗争或竞争的各方各自具有不同的利益和目标, 各方需考虑对手的各种可能的行动方案,如何采取 行动以及与对手互动对自己最为有利 。
运筹学-第六讲对策论

【定义 】 在对策G={S1,S2…,Sn;h1,h2…hn}中,假如由各个对策方旳各 选用一种策略构成旳某个策略组合(S1*,S2*…,Sn*)中,任一对策方i 旳策略 Si*,都是对其他策略方策略旳组合 (S1*,…,S*i-1,S*i+1…,Sn*)旳最佳策略, 即h i(S1*, … , S*i-1, Si*, S*i+1,…Sn*)≥hi(S1*, …, S*i-1, Sij, S*i+1 , …, Sn*)对任意 Sij∈Si 都成立,则称(S1*,…,Sn*)为G旳一种纯策略意义下旳“纳什均 衡”(Nash Equilibrium).
(2,0)
(4,0)
反应函数法
对策论 game theory
【例4】 考虑上述模型旳另一种情况即各厂商所选择旳是价格而不是产量,假 设产量与价格旳函数关系为:
q1 ( p2 ) a1 b1 p1 d1 p2
q2 ( p1 ) a2 b2 p2 d 2 p1
其他条件不变,边际成本为C1、C2,试求解其纳什均衡。
P2
R2 ( p1 )
1 2b2
(a2
b2 c2
d 2 p1 )
p1*
p2*
1 2b1 1 2b2
(a1b1c1ຫໍສະໝຸດ d1p* 2
)
(a2 b2c2 d 2 p1* )
P1*
d1 4b1b2 d1d 2
(a2
b2c2 )
2b2 4b1b2 d1d 2
(a1
b1c1 )
P2*
d2 4b1b2 d1d 2
Nash对对策论旳贡献有: (i) 合作对策中旳讨价还价模型,称为Nash讨价还价解; (ii) 非合作对策旳均衡分析。
第二章 纳什均衡 《博弈论与经济》 PPT课件

▪ G的纳什均衡可由以下划线法求得。
▪ 1.对局中人1的每个策略i (i 1,2,, m) ,寻找局中人2的最
优反应。若最优反应为
j
,即 bij
max
k 1,2,,n
bik
,则在支付矩
阵元素 bij 下划一短线。
▪ 2.对局中人2的每个策略 j ( j 1,2,, n) ,寻找局中人1的
最优反应,若最优反应为 i
▪ 考虑由商店A, B构成的市场,A与B分别销售不同品牌的商 品,进行价格竞争。假设生产的单位成本为零。消费者 分为两类, n A ( 0)个消费者偏好于产品A,nB ( 0)个消费者 偏好于产品B。A,B两种品牌价格分别为 PA , PB 。设消费 者可从A或B处购买单位商品。
▪ 用 0表示由于购买不喜欢的产品所付出的厌恶成本,假 设消费者具有如下的效用函数
按 等待
等按待
(5,1) (9,1)
4,4
(0, 0)
▪ 严格纳什均衡为大猪“按”,小猪“等待”。
▪ 例2.7 在例1.8中的大堤维护博弈中,支付矩阵为
维护
不维护
不维维护护 ((1
4,4) 0,1 4)
((1140,,1100))
▪ 利用划线法可得纳什均衡(维护,维护),(不维护, 不维护)。
▪ 为了保护生命财产的安全,政府可以立法,如果参与人
第2章 纳什均衡
2.1 纳什均衡的定义
▪ 纳什均衡是博弈论中最重要的概念,各种非合作博弈模型的均衡概念都是建 立在纳什均衡基础之上的。
▪ 纳什均衡是个策略组合 s* (si*, s*i ) ,它满足两个要求。
▪
1.对每个局中人 i N
,能够预期到对手采用策略组合s
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Lecture VI:Existence of Nash equilibriumMarkus M.M¨o biusFebruary26,2008•Osborne,chapter4•Gibbons,sections1.3.B1Nash’s Existence TheoremWhen we introduced the notion of Nash equilibrium the idea was to come up with a solution concept which is stronger than IDSDS.Today we show that NE is not too strong in the sense that it guarantees the existence of at least one mixed Nash equilibrium in most games(for sure in allfinite games). This is reassuring because it tells that there is at least one way to play most games.1Let’s start by stating the main theorem we will prove:Theorem1(Nash Existence)Everyfinite strategic-form game has a mixed-strategy Nash equilibrium.Many game theorists therefore regard the set of NE for this reason as the lower bound for the set of reasonably solution concept.A lot of research has gone into refining the notion of NE in order to retain the existence result but get more precise predictions in games with multiple equilibria(such as coordination games).However,we have already discussed games which are solvable by IDSDS and hence have a unique Nash equilibrium as well(for example,the two thirds of the average game),but subjects in an experiment will not follow those equilibrium prescription.Therefore,if we want to describe and predict 1Note,that a pure Nash equilibrium is a(degenerate)mixed equilibrium,too.1the behavior of real-world people rather than come up with an explanation of how they should play a game,then the notion of NE and even even IDSDS can be too restricting.Behavioral game theory has tried to weaken the joint assumptions of rationality and common knowledge in order to come up with better theories of how real people play real games.Anyone interested should take David Laibson’s course next year.Despite these reservation about Nash equilibrium it is still a very useful benchmark and a starting point for any game analysis.In the following we will go through three proofs of the Existence Theorem using various levels of mathematical sophistication:•existence in2×2games using elementary techniques•existence in2×2games using afixed point approach•general existence theorem infinite gamesYou are only required to understand the simplest approach.The rest is for the intellectually curious.2Nash Existence in2×2GamesLet us consider the simple2×2game which we discussed in the previousequilibria:lecture on mixed Nash2Let’s find the best-response of player 2to player 1playing strategy α:u 2(L,αU +(1−α)D )=2−αu 2(R,αU +(1−α)D )=1+3α(1)Therefore,player 2will strictly prefer strategy L iff2−α>1+3αwhich implies α<14.The best-response correspondence of player 2is therefore:BR 2(α)=⎧⎨⎩1if α<14[0,1]if α=140if α>14(2)We can similarly find the best-response correspondence of player 1:BR 1(β)=⎧⎨⎩0if β<23[0,1]if β=231if β>23(3)We draw both best-response correspondences in a single graph (the graph is in color -so looking at it on the computer screen might help you):We immediately see,that both correspondences intersect in the single point α=14and β=23which is therefore the unique (mixed)Nash equilibrium of the game.3What’s useful about this approach is that it generalizes to a proof that any two by two game has at least one Nash equilibriu,i.e.its two best response correspondences have to intersect in at least one point.An informal argument runs as follows:1.The best response correspondence for player2maps eachαinto atleast oneβ.The graph of the correspondence connects the left and right side of the square[0,1]×[0,1].This connection is continuous -the only discontinuity could happen when player2’s best response switches from L to R or vice versa at someα∗.But at this switching point player2has to be exactly indifferent between both strategies-hence the graph has the value BR2(α∗)=[0,1]at this point and there cannot be a discontinuity.Note,that this is precisely why we need mixed strategies-with pure strategies the BR graph would generally be discontinuous at some point.2.By an analogous argument the BR graph of player1connects the upperand lower side of the square[0,1]×[0,1].3.Two lines which connect the left/right side and the upper/lower sideof the square respectively have to intersect in at least one point.Hence each2by2game has a mixed Nash equilibrium.3Nash Existence in2×2Games using Fixed Point ArgumentThere is a different way to prove existence of NE on2×2games.The advantage of this new approach is that it generalizes easily to generalfinite games.Consider any strategy profile(αU+(1−α)D,βL+(1−β)R)represented by the point(α,β)inside the square[0,1]×[0,1].Now imagine the following: player1assumes that player2follows strategyβand player2assumes that player1follows strategyα.What should they do?They should play their BR to their beliefs-i.e.player1should play BR1(β)and player2should play BR2(α).So we can imagine that the strategy profile(α,β)is mapped onto(BR1(β),BR2(α)).This would describe the actual play of both players if their beliefs would be summarizes by(α,β).We can therefore define a4giant correspondence BR:[0,1]×[0,1]→[0,1]×[0,1]in the following way:BR(α,β)=BR1(β)×BR2(α)(4) The followingfigure illustrates the properties of the combined best-response map BR:The neat fact about BR is that the Nash equilibriaσ∗are precisely the fixed points of BR,i.e.σ∗∈BR(σ∗).In other words,if players have beliefs σ∗thenσ∗should also be a best response by them.The next lemma followsdirectly from the definition of mixed Nash equilibrium:Lemma1A mixed strategy profileσ∗is a Nash equilibrium if and only if it is afixed point of the BR correspondence,i.e.σ∗∈BR(σ∗).We therefore look precisely for thefixed points of the correspondence BR which maps the square[0,1]×[0,1]onto itself.There is well developed mathematical theory for these types of maps which we utilize to prove Nash existence(i.e.that BR has at least onefixed point).3.1Kakutani’s Fixed Point TheoremThe key result we need is Kakutani’sfixed point theorem.You might have used Brower’sfixed point theorem in some mathematics class.This is not5sufficient for proving the existence of nash equilibria because it only applies to functions but not to correspondences.Theorem2Kakutani A correspondence r:X→X has afixed point x∈X such that x∈r(x)if1.X is a compact,convex and non-empty subset of n.2.r(x)is non-empty for all x.3.r(x)is convex for all x.4.r has a closed graph.There are a few concepts in this definition which have to be defined: Convex Set:A set A⊆ n is convex if for any two points x,y∈A the straight line connecting these two points lies inside the set as well.Formally,λx+(1−λ)y∈A for allλ∈[0,1].Closed Set:A set A⊆ n is closed if for any converging sequence {x n}∞n=1with x n→x∗as n→∞we have x∗∈A.Closed intervals such as[0,1]are closed sets but open or half-open intervals are not.For example(0,1]cannot be closed because the sequence1n converges to0which is not inthe set.Compact Set:A set A⊆ n is compact if it is both closed and bounded.For example,the set[0,1]is compact but the set[0,∞)is only closed but unbounded,and hence not compact.Graph:The graph of a correspondence r:X→Y is the set{(x,y)|y∈r(x)}. If r is a real function the graph is simply the plot of the function.Closed Graph:A correspondence has a closed graph if the graph of the correspondence is a closed set.Formally,this implies that for a sequence of point on the graph{(x n,y n)}∞n=1such that x n→x∗and y n→y∗as n→∞we have y∗∈r(x∗).2It is useful to understand exactly why we need each of the conditions in Kakutani’sfixed point theorem to be fulfilled.We discuss the conditions by looking correspondences on the real line,i.e.r: → .In this case,afixed point simply lies on the intersection between the graph of the correspondenceand the diagonal y=x.Hence Kakutani’sfixed point theorem tells us that 2If the correspondence is a function then the closed graph requirement is equivalent to assuming that the function is continuous.It’s easy to see that a continuous function hasa closed graph.For the reverse,you’ll need Baire’s category theorem.6a correspondence r:[0,1]→[0,1]which fulfills the conditions above always intersects with the diagonal.3.1.1Kakutani Condition I:X is compact,convex and non-empty. Assume X is not compact because it is not closed-for example X=(0,1). Now consider the correspondence r(x)=x2which maps X into X.However, it has nofixed point.Now consider X non-compact because it is unbounded such as X=[0,∞)and consider the correspondence r(x)=1+x which maps X into X but has again nofixed point.If X is empty there is clearly nofixed point.For convexity of X look atthe example X=[0,13]∪[23,1]which is not convex because the set has a hole.Now consider the following correspondence(seefigure below):r(x)=34if x∈[0,13]14if x∈[23,1](5)This correspondence maps X into X but has nofixed point again.From now on we focus on correspondences r:[0,1]→[0,1]-note that[0,1] is closed and bounded and hence compact,and is also convex.73.1.2Kakutani Condition II:r (x )is non-empty.If r (x )could be empty we could define a correspondence r :[0,1]→[0,1]such as the following:r (x )=⎧⎨⎩34if x ∈[0,13]∅if x ∈[13,23]14if x ∈[23,1](6)As before,this correspondence has no fixed point because of the hole in the middle.3.1.3Kakutani Condition III:r (x )is convex.If r (x )is not convex,then the graph does not have to have a fixed point as the following example of a correspondence r :[0,1]→[0,1]shows:r (x )=⎧⎨⎩1if x <12 0,13 ∪ 23,1 if x =120if x >12(7)The graph is non-convex because r (12)is not convex.It also does not have a fixed point.83.1.4Kakutani Condition IV:r(x)has a closed graph.This condition ensures that the graph cannot have holes.Consider the follow-ing correspondence r:[0,1]→[0,1]which fulfills all conditions of Kakutaniexcept(4):r(x)=⎧⎨⎩12if x<1214,12if x=1214if x>12(8)Note,that r(12)is the convex set14,12but that this set is not closed.Hencethe graph is not closed.For example,consider the sequence x n=12andy n=12−1n+2for n≥1.Clearly,we have y n∈r(x n).However,x n→x∗=12and y n→y∗=12but y∗/∈r(x∗).Hence the graph is not closed.3.2Applying KakutaniWe now apply Kakutani to prove that2×2games have a Nash equilibrium, i.e.the giant best-response correspondence BR has afixed point.We denote the strategies of player1with U and D and the strategies of player2with L and R.9We have to check(a)that BR is a map from some compact and convex set X into itself,and(b)conditions(1)to(4)of Kakutani.•First note,that BR:[0,1]×[0,1]→[0,1]×[0,1].The square X= [0,1]×[0,1]is convex and compact because it is bounded and closed.•Now check condition(2)of Kakutani-BR(σ)is non-empty.This is true if BR1(σ2)and BR2(σ1)are non-empty.Let’s prove it for BR1-the proof for BR2is analogous.Player1will get the following payoffu1,β(α)from playing strategyαif the other player playsβ:u1,β(α)=αβu1(U,L)+α(1−β)u1(U,R)++(1−α)βu1(D,L)+(1−α)(1−β)u1(D,R)(9) The function u1,βis continuous inα.We also know thatα∈[0,1]which is a closed interval.Therefore,we know that the continuous function u1,βreaches its maximum over that interval(standard min-max result from real analysis-continuous functions reach their minimum and max-imum over closed intervals).Hence there is at least one best response α∗which maximizes player1’s payoff.•Condition(3)requires that if player1has tow best responsesα∗1U+ (1−α∗1)D andα∗2U+(1−α∗2)D to player2playingβL+(1−β)R then the strategy where player1chooses U with probabilityλα∗1+(1−λ)α∗2 for some0<λ<1is also a best response(i.e.BR1(β)is convex).But since both theα1and theα2strategy are best responses of player 1to the sameβstrategy of player2they also have to provide the same payoffs to player1.But this implies that if player1plays strategyα1 with probabilityλandα2with probability1−λshe will get exactly the same payoffas well.Hence the strategy where she plays U with probabilityλα∗1+(1−λ)α∗2is also a best response and her best response set BR1(β)is convex.•Thefinal condition(4)requires that BR has a closed graph.To show this consider a sequenceσn=(αn,βn)of(mixed)strategy profiles and ˜σn=(˜αn,˜βn)∈BR(σn).Both sequences are assumed to converge to σ∗=(α∗,β∗)and˜σ∗=(˜α∗,˜β∗),respectively.We now want to show that˜σ∈BR(σ)to prove that BR has a closed graph.We know that for player1,for example,we haveu1(˜αn,βn)≥u1(α ,βn)10for anyα ∈[0,1].Note,that the utility function is continuous in both arguments because it is linear inαandβ.Therefore,we can take the limit on both sides while preserving the inequality sign:u1(˜α∗,β∗)≥u2(α ,β)for allα ∈[0,1].This shows that˜α∗∈BR1(β)and therefore˜σ∗∈BR(σ∗).Hence the graph of the BR correspondence is closed.Therefore,all four Kakutani conditions apply and the giant best-response correspondence BR has afixed point,and each2×2game has a Nash equilibrium.4Nash Existence Proof for General Finite CaseUsing thefixed point method it is now relatively easy to extend the proof for the2×2case to generalfinite games.The biggest difference is that we cannot represent a mixed strategy any longer with a single number such asα. If player1has three pure strategies A1,A2and A3,for example,then his set of mixed strategies is represented by two probabilities-for example,(α1,α2) which are the probabilities that A1and A2are chosen.The set of admissible α1andα2is described by:Σ1={(α1,α2)|0≤α1,α2≤1andα1+α2≤1}(10) The definition of the set of mixed strategies can be straightforwardly ex-tended to games where player1has a strategy set consisting of n pure strategies A1,..,A n.Then we need n−1probabilitiesα1,..,αn−1such that:Σ1={(α1,..,αn−1)|0≤α1,..,αn−1≤1andα1+..+αn−1≤1}(11) So instead of representing strategies on the unit interval[0,1]we have to represent as elements of the simplexΣ1.Lemma2The setΣ1is compact and convex.Proof:It is clearly convex-if you mix between two mixed strategies you get another mixed strategy.The set is also compact because it is bounded (all|αi|≤1)and closed.To see closedness take a sequence(αi1,..,αi n−1)of elements ofΣ1which converges to(α∗1,..).Then we haveα∗i≥0and n−1α∗i≤1because the limit preserves weak inequalities.QED i=111We can now check that all conditions of Kakutani are fulfilled in the gen-eralfinite case.Checking them is almost1-1identical to checking Kakutani’s condition for2×2games.Condition1:The individual mixed strategy setsΣi are clearly non-empty because every player has at least one strategy.SinceΣi is compact Σ=Σ1×...×ΣI is also compact.Hence the BR correspondence BR:Σ→Σacts on a compact and convex non-empty set.Condition2:For each player i we can calculate his utiltiy u i,σ−i (σi)forσi∈Σi.SinceΣi is compact and u i,σ−i is continuous the set of payoffs is alsocompact and hence has a maximum.Therefore,BR i(Σi)is non-empty.Condition3:Assume thatσ1i andσ2i are both BR of player i toσ−i. Both strategies have to give player i equal payoffs then and any linear com-bination of these two strategies has to be a BR for player i,too.Condition4:Assume thatσn is a sequence of strategy profiles and ˜σn∈BR(σn).Both sequences converge toσ∗and˜σ∗,respectively.We know that for each player i we haveu i˜σn i,σn−i≥u iσ i,σn−ifor allσ i∈Σi.Note,that the utility function is continuous in both arguments because it is linear.3Therefore,we can take the limit on both sides while preserving the inequality sign:u i˜σ∗i,σ∗−i≥u iσ i,σ∗−ifor allσ i∈Σi.This shows that˜σ∗i∈BR iσ∗−iand therefore˜σ∗∈BR(σ∗).Hence the graph of the BR correspondence is closed.So Kakutani’s theorem applies and the giant best-response map BR has afixed point.3It is crucial here that the set of pure strategies isfinite.12。