对数平均温差及其修正系数

合集下载

传热过程的计算

传热过程的计算

1 总传热速率方程如图所示,以冷热两流体通过圆管的间壁进行换热为例,热流体走管内,温度为T,冷流体走管外温度为t,管壁两侧温度分别为T W和t w,壁厚为,b,其热导率为λ,内外两侧流体与固体壁面间的表面传热系数分别为αi和α0。

根据牛顿冷却定律及傅立叶定律分别列出对流传热及导热的速率方程:对于管内侧:对于管壁导热:对于管外侧:即故有令(4.6.1)则(4.1.1)该式称为总传热速率方程。

A为传热面积,可以是内外或平均面积,K与A是相对应的。

2 热流量衡算热流量衡算式反映两流体在换热过程中温度变化的相互关系,在换热器保温良好,无热损失的情况下,对于稳态传热过程,其热流量衡算关系为:(热流体放出的热流量)=(冷流体吸收的热流量)在进行热衡算时,对有、无相变化的传热过程其表达式又有所区别。

(1)无相变化传热过程式中Q----冷流体吸收或热流体放出的热流量,W;m h,m c-----热、冷流体的质量流量,kg/s;C ph,C pc------热、冷流体的比定压热容,kJ/(kg·K);T1,t1 ------热、冷流体的进口温度,K;T2,t2------热、冷流体的出口温度,K。

(2)有相变化传热过程两物流在换热过程中,其中一侧物流发生相变化,如蒸汽冷凝或液体沸腾,其热流量衡算式为:一侧有相变化两侧物流均发生相变化,如一侧冷凝另一侧沸腾的传热过程式中r,r1,r2--------物流相变热,J/kg;D,D1,D2--------相变物流量,kg/s。

对于过冷或过热物流发生相变时的热流量衡算,则应按以上方法分段进行加和计算。

3 传热系数和传热面积(1)传热系数K和传热面积A的计算传热系数K是表示换热设备性能的极为重要的参数,是进行传热计算的依据。

K的大小取决于流体的物性、传热过程的操作条件及换热器的类型等,K值通常可以由实验测定,或取生产实际的经验数据,也可以通过分析计算求得。

传热系数K可利用式(4.6.1)进行计算。

板式换热器设计及其选用

板式换热器设计及其选用

题目:板式换热器设计及其选用目录一、说明书 (2)二、设计方案 (3)三、初步选定 (4)(1)已知两流体的工艺参数(2)确定两流体的物性数据(3)计算热负荷和两流体的质量流速(4)计算两流体的平均传热温差(5)初选换热器型号四、验证 (6)(1)算两流体的流速u(2)算雷诺数Re(3)计算努塞尔特数Nu(4)求两流体的传热系数α(5)求污垢热阻R(6)求总传热系数K,并核算五、核算 (7)(1)压强降△P核算(2)换热器的换热量核算六、结论 (7)七、设计结果 (8)八、附录 (9)表1:板式换热器的污垢热阻图1:多程流程组合的对数平均温差修正系数九、参考文献 (9)一、说明书现有一块建筑用地,建筑面积为12500 m2,采用高温水在板式换热器中加热暖气循环水。

高温水进入板式换热器的温度为100℃,出口的温度为75℃;循环水进入板式换热器的温度为65℃,出口的温度为90℃。

供暖面积热强度为293 kJ/(m2·h)。

要求高温水和循环水经过板式换热器的压强降均不大于100 kPa。

请选择一台型号合适的板式换热器。

(假设板壁热阻和热损失可以忽略)已知的工艺参数:二、设计方案(1) 根据热量平衡的关系,求出未知的换热量和质量流量,同时算出两流体的平均温度差;(2) 参考有关资料、数据,设定总传热系数K,求出换热面积S,根据已知数据初选换热器的型号;(3) 运用有关关联式验证所选换热器是否符合设计要求;(4) 参考有关资料、数据,查出流体的污垢热阻;(5) 根据式求得流体的总传热系数,该值应不小于初设的总传热系数,否则改换其他型号的换热器,由(3)开始重新计算;(6) 如果大于初设值,则再进一步核算两流体的压强降和换热量,是否满足设计要求,否则改换其他型号的换热器,由(3)开始重新计算;(7) 当所选换热器均满足设计要求时,该换热器才是合适的。

三、初步选定(1)已知两流体的工艺参数高温水t1′= 100℃t1〞= 75℃△P1≤100 kPa循环水t2′= 65℃t2〞= 90℃△P2≤100 kPa(2)确定两流体的物性数据高温水的定性温度为:循环水的定性温度为:根据定性温度,分别查取两流体的有关物性数据:① 热的一侧(高温水)在87.5℃下的有关数据如下:密度ρ1 = 970.17 kg/m3定压比热容 cp1 = 4.196 kJ/(kg·℃)导热系数λ1 = 0.67425 W/(m·℃)流体运动黏度ν1 = 0.355×10-6 m2/s 普兰特数 Pr1 = 2.145② 冷的一侧(循环水)在77.5℃下的有关数据如下:密度ρ2 = 976.3 kg/m3定压比热容 cp2 = 4.18 kJ/(kg·℃)导热系数λ2 = 0.669 W/(m·℃)流体运动黏度ν2 = 0.4205×10-6 m2/s普兰特数 Pr2 = 2.465(3)计算热负荷和两流体的质量流速热负荷:高温水质量流速:循环水质量流速:(4)计算两流体的平均传热温差对数平均温度差:循环水的传热单元数:由<图1>查得,取:Ф = 0.942,则平均传热温差:(5)初选换热器型号根据两流体情况,假设K′=3100 W/(m2·℃),故:传热面积:由换热器系列标准中初选BR0.3型板式换热器,有关工艺参数如下:换热面积 So = 35 m2流程组合单板换热面积 Ao = 0.368 m2单流道截面积Aε = 0.0013392 m2当量直径 de = 0.0072 m板片厚度δo = 0.0008 ( 材料为18.8不锈钢 )传热和压降计算关联式如下:若采用此换热器,则要求过程的总传热系数K≥3100 W/(m2·℃)。

换热器计算

换热器计算

1、一台逆流套管式换热器在下列条件下运行,传热系数保持不变,冷流体质流量0.125kg/s ,定压比热为4200J/kg ﹒K ,入口温度40℃,出口温度95℃。

热流体质流量0.125kg/s ,定压比热为2100J/kg ﹒K ,入口温度210℃,若冷、热流体侧的表面对流传热系数及污垢热阻分别为2000W/m 2﹒K 、0.0004m 2﹒K /W 、120W/m 2﹒K 、0.0001m 2﹒K /W ,且可忽略管壁的导热热阻,试确定该套管式换热器的换热面积。

解:热流体出口温度:22221111(''')'''42000.125(9540)21010021000.125c m t t t t c m -=-⨯⨯-=-=⨯℃对数平均温差:'21095115,''1104070t t ∆=-=∆=-=℃℃,'''1157086.6'115ln ln ''70m t t t t t ∆-∆-∆===∆∆℃111(''')0.1252100(210100)28875C t t W Φ=-=⨯⨯-=228875 3.11107.1486.6m A m K t Φ===∆⨯2、一1-2型管壳式换热器,热水流量为1.86kg/s ,热水入口温度为92.3℃,出口温度为58.5℃。

冷水入口温度为37.8℃,流量为13.6t/h 。

热水位于管侧,h 1=2800W/m 2﹒K 。

冷水在壳侧,h 2=3958W/m 2﹒K 。

管子内外径分别为14mm 和16mm 。

热水c p1=4.195kJ/kg ,冷水c p2=4.174kJ/kg 。

温差修正系数Ψ=0.86。

忽略管壁导热热阻和污垢热阻。

求该换热器的传热面积。

解:热水侧换热量:1111(''')m p q c t t Φ=- 1.86 4.195(92.358.5)263.7kW =⨯⨯-=冷水侧出口温度:2222'''m p t t q c Φ=+263.737.854.54.17413.6/3.6=+=⨯℃ 对数平均温差为:12121212(''')(''')'''ln '''m t t t t t t t t t ---∆=ψ-- (92.354.5)(58.537.8)0.8624.492.354.5ln 58.537.8---=⨯=--℃ 传热系数为:0011i i k d h d h =+211513.3/0.016128000.0143958W m K ==+⨯传热面积为:m A k t Φ=∆ 2263.710007.141513.324.4m ⨯==⨯ 3、一卧式蒸汽冷凝器采用1-1壳管式换热器,冷凝蒸汽量q m1=1000kg/h ,从干饱和蒸汽凝结为饱和水。

知识点:对数平均温差PPT.

知识点:对数平均温差PPT.
知识点:对数平均温差
1.顺流和逆流换热器的对数平均温差
t 1 t′ t 1 t′
Δ t′
Δ t″
2 t″
Δ t″
2 t′ 2 t″
2 t″
2 t′
0
1 t′
t
′ 2
F
1 1 t″ t′ 2 t″
0
Hale Waihona Puke Δ t′1 t″1 t″
F
1 t″
(顺流)
(逆流)
2 t′
图1 流体温度沿传热面变化示意图
知识点:对数平均温差
知识点:对数平均温差
对数平均温差,先按逆流计算出对数平均温差,在乘以温差 修正系数ε Δ t,ε Δ t是辅助量P和的函数 t2 冷流体的加热度 t2 P t2 两流体进口温差 t1 t1 热流体的冷却度 t1 R t2 冷流体的加热度 t2 一般将ε Δ t=f(P、R)关系整理成线算图,以供查取, 具体参观有关书籍和设计手册。
换热器的平均温差有算术平均温差和对数平均温差,其 中最常用和最准确的为对数平均温差。经理论推导对数平均 温差为 t t t m t ln t 式中Δ t′—换热器同一侧冷热流体较大温差端的温差,℃; Δ t″—换热器同一侧冷热流体较小温差端的温差,℃。 t2 对顺流换热器 t t1 t2 t t1 t2 两个温差较大 t2 和 t1 对逆流换热器 Δ t′为 t1 的一个温差,而Δ t″为另一个较小的温差。 2.其他流动方式换热器的对数平均温差 其他流动方式如交叉流、混合流及不同的壳程管程等的

热交换器原理与设计—第1章_热交换器热计算的基本原理_(1)

热交换器原理与设计—第1章_热交换器热计算的基本原理_(1)
例如 对于壳侧为一个流程、管程为偶数流程的壳管式热交换器, 其 值为:(推导得出)
两种流体中只有一种横向混合的错流式热交换器,其 值为:
能源与动力工程教研室
对于某种特定的流动形式, 是辅助参数P、R的函 数 f ( P, R) 该函数形式因流动方式而异。
对于只有一种流体有横向混合的错流式热交换器, 可将辅助参数的取法归纳为:
t m ,算术
t max t min 2
使用条件:如果流体的温度沿传热面变化不大, 范围在
t max 2 内可以使用算数平均温差。 t min
能源与动力工程教研室
算术平均与对数平均温差
t m ,算术
t max t min 2
t m ,对数
t max t min t max ln t min
R 1 t t 2 2 1 P ln 1 PR
的函数
t1m,c
能源与动力工程教研室
为了简化 的计算,引入两辅助参数:
t 2 t2 p t2 t1
t1 t1 R t 2 t2

冷流体的加热度 两种流体的进口温差
能源与动力工程教研室
1.2 平均温差
1.2.2 顺流和逆流情况下的平均温差
简单顺流时的对数平均温差 假设:
(1)冷热流体的质量流量qm2、qm1 以及比热容c2, c1是常数; (2)传热系数是常数;
(3)换热器无散热损失; (4)换热面沿流动方向的导热量 可以忽略不计。 下标1、2分别代表热冷流体。 上标1撇和2撇分别代表进出口
能源与动力工程教研室
在假设的基础上,并已知冷热流体的 进出口温度,现在来看图中微元换热 面dA一段的传热。温差为:

板式换热器对数平均温差计算公式

板式换热器对数平均温差计算公式

用板式换热器就是要选择板片的面积,它的选择主要有两种方法,但这两种都比较难理解,最简单的是套用公式Q=K×F×Δt ,Q——热负荷K——传热系数F——换热面积
Δt——传热温差(一般用对数温差)传热系数取决于换热器自身的结构,每个不同流道的板片,都有自身的经验公式,如果不严格的话,可以取2000~3000。

最后算出的板换的面积要乘以一定的系数如1.2。

单位面积热负荷乘以建筑面积得总的热负荷,然后通过热负荷等于流量乘以温差来求得流量等相关技术参数,最后换算出换热面积。

对数平均温差因为在板换中温度是变化的,为了我们更好的选型计算所以出来一个相对准确的数值,当 △T1/△T2>1.7时 用
公式: △Tm=(△T1-△T2)/㏑(△T1/△T2).如果△T1/△T2≤1.7时,△Tm=(△T1+△T2)/2 二种流体在热交换器中传热过程温差的△T1=T1-t2, △T2=T2-t1, 其中 T1:热流进口温度℃,T2:热流出口温度;t1:冷流进口温度;t2:冷流出口温度;In :对数
△T2>1.7时用
在热交换器中传热过程温差的积分的平均值。

出口温度;In:对数。

板式换热器对数平均温差计算公式

板式换热器对数平均温差计算公式

用板式换热器就是要选择板片的面积,它的选择主要有两种方法,但这两种都比较难理解,最简单的是套用公式Q=K×F×Δt ,Q——热负荷K——传热系数F——换热面积
Δt——传热温差(一般用对数温差)传热系数取决于换热器自身的结构,每个不同流道的板片,都有自身的经验公式,如果不严格的话,可以取2000~3000。

最后算出的板换的面积要乘以一定的系数如1.2。

单位面积热负荷乘以建筑面积得总的热负荷,然后通过热负荷等于流量乘以温差来求得流量等相关技术参数,最后换算出换热面积。

对数平均温差因为在板换中温度是变化的,为了我们更好的选型计算所以出来一个相对准确的数值,当 △T1/△T2>1.7时 用
公式: △Tm=(△T1-△T2)/㏑(△T1/△T2).如果△T1/△T2≤1.7时,△Tm=(△T1+△T2)/2 二种流体在热交换器中传热过程温差的△T1=T1-t2, △T2=T2-t1, 其中 T1:热流进口温度℃,T2:热流出口温度;t1:冷流进口温度;t2:冷流出口温度;In :对数
△T2>1.7时用
在热交换器中传热过程温差的积分的平均值。

出口温度;In:对数。

板式换热器与壳管式换热器---之比较

板式换热器与壳管式换热器---之比较

(2)对数平均温差大,末端温差小。 (2)对数平均温差大,末端温差小。 对数平均温差大 在壳管式换热器中, 在壳管式换热器中,两种流体分别 在壳程和管程内流动, 在壳程和管程内流动,总体上是错 流流动, 流流动,对数平均温差修正系数小 而板式换热器多是并流或逆流流动 方式,其修正系数通常在0 95左右 左右。 方式,其修正系数通常在0 95左右。
(4)容易改变换热面积或流程组合。 (4)容易改变换热面积或流程组合。 容易改变换热面积或流程组合 只要增加或减少几张板片, 只要增加或减少几张板片,即可达 到增加或减少换热面积的目的; 到增加或减少换热面积的目的;改 变板片排列或更换几张板片, 变板片排列或更换几张板片,即可 达到所要求的流程组合, 达到所要求的流程组合,适应新的 换热工况, 换热工况,而壳管式换热器的传热 面积几乎不可能增减。 面积几乎不可能增减。
此外. 此外.冷、热液体在板式换热器内 的流动平行于换热面.无旁流, 的流动平行于换热面.无旁流,因 此使得板式换热器的末端温差小, 此使得板式换热器的末端温差小, 对水一水换热可低于1 对水一水换热可低于1。c,而壳管 式换热器一般为5 式换热器一般为5。c。
(3)占地面积小。板式换热器结构紧 (3)占地面积小。板式换热器结构紧 占地面积小 凑,单位体积内的换热面积为壳管 式的2 式的2—5倍,也不象壳管式那样要 预留抽出管柬的检修场地, 预留抽出管柬的检修场地,因此实 现同样的换热量, 现同样的换热量,扳式换热器占地 面积约为壳管式换热器的1/5— 面积约为壳管式换热器的1/5— 1/10。 1/10。
板式换热器与壳管式换热器 ---之比较 ---之比较
(1)传热系数高。 (1)传热系数高。由于不同的波纹板 传热系数高 相互倒置,构成复杂流道, 相互倒置,构成复杂流道,使流体 在波纹板间流道内呈旋转三维流动, 在波纹板间流道内呈旋转三维流动, 能在较低的雷诺效( Re=50~ 能在较低的雷诺效(~般Re=50~ 200)下产生紊流 所以传热系数高, 200)下产生紊流,所以传热系数高, 下产生紊流, 一般认为是壳管式的3 一般认为是壳管式的3~5倍。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档