初三圆知识点复习总结

合集下载

初三《圆》章节知识点总结

初三《圆》章节知识点总结

《圆》章节知识点复习一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;A四、圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;图1五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。

九年级数学圆的知识点总结大全

九年级数学圆的知识点总结大全

第三章:《圆》一、知识回顾圆的周长:C=2πr或C=πd、圆的面积:S=πr²圆环面积计算方法:S=πR²-πr²或S=π(R²-r²)(R是大圆半径,r是小圆半径)二、知识要点一、圆的概念集合形式的概念:1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;固定的端点O为圆心。

连接圆上任意两点的线段叫做弦,经过圆心的弦叫直径。

圆上任意两点之间的部分叫做圆弧,简称弧。

2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线;3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;A2、直线与圆相切 ⇒ d r = ⇒ 有一个交点;3、直线与圆相交 ⇒ d r < ⇒ 有两个交点;四、圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;图4图5(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。

中考圆的知识点总结总结

中考圆的知识点总结总结

中考圆的知识点总结总结一、圆的定义和性质1. 圆的定义圆是一个平面上和一个确定点的距离都相等的点的集合。

这个确定点就是圆心,而圆心到圆上的任意点的距离就是半径。

2. 圆的性质(1)圆心角圆心角是以圆心为顶点的角,它的两条边分别是圆周上的两条弦。

圆心角的度数等于对应的弧所对的圆周的度数。

如果圆心角的度数为360度,那么这个角就是周角。

(2)弧圆上的一段弧是圆周的一部分。

圆的周长就是圆周的长度,可以用角度和弧度来表示。

(3)切线和切点切线是一个直线,它与圆相切于一个点。

在圆上,切线与半径的夹角为90度。

(4)同位角同位角是两条平行线被一条截线所切割而形成的一对内角和一对外角。

同位角的性质也可以应用到圆上。

(5)相似两个或者更多的圆是相似的,如果它们有着相同的形状但是不同的尺寸。

相似的圆的半径之比等于它们的直径之比。

二、圆的相关定理1. 圆周角定理圆周角等于圆心角的一半。

2. 圆的面积和周长圆的面积等于πr^2,圆的周长等于2πr,其中r是圆的半径,π是一个无理数,约等于3.14159。

3. 弦长定理在同一个圆上,相交弦的两个切点到圆心的距离相等。

4. 弧长定理同样的圆上,相对的圆周弧长相等。

5. 切线定理切线和半径的夹角为90度。

6. 弧上的角定理同样的圆上,一个圆周弧所对的圆心角等于这个弧上的其他角的和。

7. 线段对定理在一个圆上,两条相交的弧所对的线段互为比例。

三、圆的应用1. 圆的周长和面积的应用圆的周长和面积是经常在实际生活中用到的数学概念。

比如在工程测量中,需要计算环形的周长和面积。

2. 圆的图形补充圆的图形补充,包括扇形、环形等概念,也是圆的知识点之一。

3. 圆的运动学应用在运动学中,圆的运动规律和路径也是一个重要的应用。

四、典型例题下面列举一些典型的中考圆的例题,帮助大家更好地复习和巩固知识。

1. 如果一条切线和一条半径分割了一个角为30度的圆心角,那么这条切线和半径的夹角是多少度?A. 60度B. 45度C. 30度D. 15度答案:A. 60度2. 已知圆的半径为8cm,求圆的面积和周长。

初中数学中考圆的知识点总结归纳(中考必备)

初中数学中考圆的知识点总结归纳(中考必备)

中考数学圆的知识点总结归纳一、圆的定义(1)平面上到定点的距离等于定长的所有点组成的图形叫做圆。

(2)平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。

二、圆心(1)如定义(1)中,该定点为圆心(2)如定义(2)中,绕的那一端的端点为圆心。

(3)圆任意两条对称轴的交点为圆心。

(4)垂直于圆内任意一条弦且两个端点在圆上的线段的二分点为圆心。

注:圆心一般用字母O表示直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。

直径一般用字母d表示。

半径:连接圆心和圆上任意一点的线段,叫做圆的半径。

半径一般用字母r表示。

圆的直径和半径都有无数条。

圆是轴对称图形,每条直径所在的直线是圆的对称轴。

在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=二分之d。

圆的半径或直径决定圆的大小,圆心决定圆的位置。

圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。

圆的周长与直径的比值叫做圆周率。

圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。

计算时,通常取它的近似值,π≈3.14。

直径所对的圆周角是直角。

90°的圆周角所对的弦是直径。

圆的面积公式:圆所占平面的大小叫做圆的面积。

πr^2,用字母S表示。

一条弧所对的圆周角是圆心角的二分之一。

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。

在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。

在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,所对的弦心距也相等。

三、周长计算公式1.、已知直径:C=πd2、已知半径:C=2πr3、已知周长:D=c\π4、圆周长的一半:1\2周长(曲线)5、半圆的长:1\2周长+直径四、面积计算公式1、已知半径:S=πr平方2、已知直径:S=π(d\2)平方3、已知周长:S=π(c\2π)平方五、点、直线、圆和圆的位置关系1、点和圆的位置关系①点在圆内<=>点到圆心的距离小于半径②点在圆上<=>点到圆心的距离等于半径③点在圆外<=>点到圆心的距离大于半径2.过三点的圆不在同一直线上的三个点确定一个圆。

数学初三圆的知识点总结

数学初三圆的知识点总结

数学初三圆的知识点总结一、圆的概念1.1 圆的定义圆是平面上所有与一个给定点的距离相等的点的集合。

这个距离称为圆的半径,而给定的那个点叫做圆心。

1.2 相关术语(1)圆心:圆的中心点。

(2)半径:圆心到圆上任一点的距离。

(3)直径:通过圆心并且两端点在圆上的线段叫做圆的直径。

(4)弧长:圆上一部分的长度。

(5)圆周:圆的边界。

(6)扇形:由圆心和圆上两点组成的区域。

(7)弦:圆上连接两点的线段。

(8)切线:与圆相切的直线。

1.3 圆的元素圆的位置和形状是由圆心和半径共同决定的,而圆的面积则是与圆的半径有关。

二、圆的性质2.1 圆周率圆周率是圆的重要常数,通常用π表示。

它的值是一个无理数,约等于3.14159。

圆周率在数学中有广泛的应用,涉及到圆的面积、周长和体积等问题。

2.2 圆的面积和周长(1)圆的周长圆的周长公式为:C = 2πr,其中C表示圆的周长,r表示圆的半径,π表示圆周率。

(2)圆的面积圆的面积公式为:S = πr²,其中S表示圆的面积,r表示圆的半径,π表示圆周率。

2.3 圆的关系(1)直径与半径的关系圆的直径是圆的半径的两倍,即d = 2r。

(2)弧长与圆周角的关系弧长l与半径r和所对的圆周角θ之间有一个简单的关系:l = rθ。

(3)圆心角与圆周角的关系圆心角和它所对的圆周角是成等比关系的,即θ = 2α。

(4)弦的性质圆上的两条弦若相交,则交点至两条弦的两端的交点距离相等。

2.4 圆与直线的关系(1)切线定理切线定理指的是,若直线与圆相切,则该直线与圆心的连线和切点的连线是垂直的。

(2)弦切定理弦切定理是指,若一个直线既是弦又是切线,则该直线与圆心的连线和切点的连线也是垂直的。

三、圆的相关定理3.1 圆的基本定理(1)切线定理定理表明,切线与半径的夹角是直角,即触点与圆心与切点的连线共线。

(2)弦长定理定理表明,与直径垂直的弦,把弦分成的两段乘积等于圆的半径的平方。

九年级圆的知识点总结

九年级圆的知识点总结

九年级圆的知识点总结一、圆的基本定义1. 圆的定义:平面上所有与给定点(圆心)距离相等的点的集合。

2. 圆心(O):圆心是圆的中心点,所有圆上的点到圆心的距离都等于半径。

3. 半径(r):圆心到圆上任意一点的距离。

4. 直径(d):通过圆心的最长弦,是半径的两倍长度。

5. 弦(c):连接圆上任意两点的线段。

6. 弧(a):圆上两点之间的圆周部分。

7. 优弧:大于半圆的弧。

8. 劣弧:小于半圆的弧。

9. 半圆:圆的一半,由直径所界定的弧。

10. 切线(t):与圆只有一个公共点的直线。

二、圆的性质1. 所有半径的长度相等。

2. 直径是圆内最长的弦。

3. 圆的任意两点之间的弧,优弧总是大于劣弧。

4. 切线与半径相交于圆外的一点,形成直角。

5. 圆周角定理:圆周上任意一点引出的两条半径与圆周所形成的角,其大小是圆心角的一半。

6. 圆心角定理:同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

三、圆的计算公式1. 圆的周长(C):C = πd = 2πr2. 圆的面积(A):A = πr²3. 扇形面积:S = (θ/360) × πr²,其中θ是扇形的中心角的度数。

4. 弓形面积:S = (θ/360) × πr² - (θ/360) × rθ/2,其中θ是弓形的中心角的度数。

四、圆的应用问题1. 圆与直线的关系:相交、相切、相离。

2. 圆与圆的关系:内含、外离、相交、内切、外切。

3. 圆的切线问题:求切线长度、切点坐标等。

4. 圆的弦长问题:根据圆心距、半径、弦心距等求弦长。

5. 圆的面积问题:根据圆的半径、直径、周长等求面积。

五、圆的作图方法1. 用圆规画圆:确定圆心和半径,旋转圆规即可画出圆。

2. 作圆的切线:通过圆外一点作圆的切线,需要利用圆心到切点的垂线与切线垂直的性质。

3. 作圆的中垂线:连接圆上任意两点,作其中点的垂线,即为圆的中垂线。

九年级数学圆的知识点总结大全

九年级数学圆的知识点总结大全

第四章:《圆》一、知识回顾圆的周长: C=2πr或C=πd、圆的面积:S=πr²圆环面积计算方法:S=πR²-πr²或S=π(R²-r²)(R是大圆半径,r是小圆半径)二、知识要点一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;固定的端点O为圆心。

连接圆上任意两点的线段叫做弦,经过圆心的弦叫直径。

圆上任意两点之间的部分叫做圆弧,简称弧。

2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线;3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系1、点在圆⇒d r<⇒点C在圆;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;四、圆与圆的位置关系外离(图1)⇒无交点⇒d R r>+;外切(图2)⇒有一个交点⇒d R r=+;相交(图3)⇒有两个交点⇒R r d R r-<<+;切(图4)⇒ 有一个交点 ⇒ d R r =-; 含(图5)⇒ 无交点 ⇒ d R r <-;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。

初三数学圆知识点总结

初三数学圆知识点总结
第4页
6.两圆公切线的性质
〔1〕如果两圆有两条外公切线,那么两外公切线长相等。
〔2〕如果两圆有两条内公切线,那么两内公切线长相等。
7.相交弦定理、切割线定理、切线长定理
定理 相交弦定理
图形
A
C
P
O
D
B
关系式
PA PB PC PD R2 OP2
相交弦定理的
推论
A
C OP B
PA PB PC2 PD2 R2 OP2
2
为斜边〕 〔2〕圆外切四边形两组对边与相等,即如右图,四边形 ABCD 是⊙ O 的外切四边形,那么 AB+CD=AD+BC。 三.圆中的计算问题 1.圆 〔2〕弧长: l n R ;
180
〔3〕圆面积: S R2 ;
〔4〕扇形面积:
S扇形=
1 2
lR
n R2 ;
于半圆的弧叫做劣弧。
〔4〕圆心角:如右图中∠COD 就是圆心角。
3.圆心角、弧、弦、弦心距之间的关系。
第1页
〔1〕定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的 弦的弦心距相等。 〔2〕推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或 两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分 别相等。 4.过三点的圆。 〔1〕定理:不在同一条直线上的三点确定一个圆。 〔2〕三角形的外接圆圆心〔外心〕是三边垂直平分线的交点。 5.垂径定理。 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。 推论: 〔1〕①平分弦〔不是直径〕的直径垂直于弦,并且平分弦所对的两 条弧;②弦的垂直平分线经过圆心,并且平分弦所对的两条弧;③平 分弦所对的一条弦的直径,垂直平分弦,并且平分弦所对 的另一条 弧。 〔2〕圆的两条平行弦所夹的弧相等。 6.与圆相关的角 〔1〕与圆相关的角的定义 ①圆心角:顶点在圆心的角叫做圆心角 ②圆周角:顶点在圆上且两边都与圆相交的角叫做圆周角。 ③弦切角:顶点在圆上,一边与圆相交,另一连轴与圆相切的角叫做 弦切角。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

M
A
N
以上三个定理及推论也称二推一定理:即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。
4. 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。
即:∵ PA 、 PB 是的两条切线 ∴ PA PB PO 平分 BPA
例 1. 已知⊙ O的半径为 3,A 为线段 PO的中点 , 则当 OP=6时 , 点 A 与⊙ O的位置关系为 ( ) A. 点在圆内 B. 点在圆上 C. 点在圆外 D. 不能确定
B
O P
A
2. ⊙ O的半径为 6, ⊙ O的一条弦 AB长为 3 3 , 以 3 为半径的同心圆与直线 AB 的位置关系是 ( )
A. 相离 B. 相切 C. 相交 D. 不能确定 3. 如图所示 , ⊙O的外形梯形 ABCD中 , 如果 AD∥ BC,那么∠ DOC的度数为 ( )
A.70° B.90 ° C.60 ° D.45 °
A
由对称性还可知: 1、在同圆或等圆中,如果圆心角相等,那么它们所对的弧相等,所对的弦相等;
2、在同圆或等圆中,如果弧相等,那么它们所对的圆心角相等,所对的弦相等;
3、在同圆或等圆中,如果弦相等,那么它们所对的圆心角相等,所对的弧相等;
简记ห้องสมุดไป่ตู้在同圆或等圆中,①弦②圆心角③弧中只要一个相等,其它两个也相等。
二、圆周角定理
1、圆周角定理:在同圆或等圆中,同弧所对的圆周角相等,等于它所对的圆心的角的一半。即:∵
AOB 和
ACB
⌒ 是AB
所对的圆心角和圆周角
2、圆周角定理的推论:
∴ AOB 2 ACB
推论 1:半圆或直径所对的圆周角是直角; 90 圆周角所对的弦直径
推论 2:圆内接四边形的对角互补;
D
C
B
O
AB 与 车 轮 内 圆 相 切 于 点 D ,做 CD⊥ AB 交 外 圆 于 点 C .测 得 CD=10cm , AB=60cm ,则 这
个 车轮的外圆半径 为

例 4、如图,在 5×5 的正方形网格中,一条圆弧 经过 A, B,C 三点,那么这条圆弧所在圆的圆心是
A.点 P B .点 Q C .点 R D .点 M
4. 如图所示 ,PA 与 PB分别切⊙ O于 A、B 两点 ,C 是 AB 上任意一点 , 过 C作⊙ O的切线 , 交 PA及 PB
A
D
O
B ( 第6题) C
于 D、E 两点 , 若 PA=PB=5cm则, △ PDE的周长是 _______cm.
5、如图 2 ,在平面直角坐标系 xOy 中,半径为 2 的⊙ P 的圆心 P 的坐标为 ( 3,0) ,将⊙ P 沿 x 轴 正方向平移,使⊙ P 与 y 轴相切,则平移的距离为 A .1 B. 1 或 5 C. 3 D. 5
3. 切线的性质与判定定理
( 1)切线的判定定理:过半径外端且垂直于半径的直线是切线;
两个条件:过半径外端且垂直半径,二者缺一不可即:∵
MN OA 且 MN 过半径 OA 外端 ∴ MN 是⊙ O 的切线
( 2)性质定理:切线垂直于过切点的半径(如上图)
推论 1:过圆心垂直于切线的直线必过切点。
O
推论 2:过切点垂直于切线的直线必过圆心。
一 . 垂径定理
初三数学圆知识点
A
垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。 推论 1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;
( 2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; ( 3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
O
E
C
D
B
简单记成:一条直线:①过圆心②垂直弦
例 2 .已知⊙ O 的直径 CD 10cm , AB 是⊙ O 的弦, AB 8cm ,且 AB CD ,垂足为 M ,则 AC 的长为( C )
A. 2 5cm
B. 4 5cm
C. 2 5cm 或 4 5cm
D. 2 3cm或 4 3cm
例 3、如 图 是 一 个 古 代 车 轮 的 碎 片 , 小 明 为 求 其 外 圆 半 径 , 连 结 外 圆 上 的 两 点 A 、 B, 并 使
6、如图, Rt△ABC 中,∠ ABC=90 °,以 AB 为直径作半圆⊙ O 交 AC 与点 D,点 E 为 BC 的中点,连接 DE . ( 1)求证: DE 是半圆⊙ O 的切线. ( 2)若∠ BAC=30 °, DE=2,求 AD 的长.
则∠ ADC=( ) A,44
0 B . 540 C . 720 D . 530
学生练习:
2
三、与圆有关的位置关系
1.点与圆的位置关系: 设圆的半径为 r,点到圆心的距离为 d,则点在圆内
______;点在圆上
_______ ;?点在圆外
_______.
2.直线与圆的位置关系:如果⊙ O 的半径为 r,圆心 O 到直线 L 的距离为 d,那么:
③平分弦 ④平分弦所对的劣弧⑤平分弦所对的优弧弧
以上以任意两个为已知条件,其它三个都成立,简称
2 推 3 定理:此定理中共 5 个结论中,只要知道其中 2 个即
可推出其它 3 个结论,即: ① AB 是直径
② AB
CD
③ CE
DE

⌒ BC
⌒ BD

⌒ AC
⌒ AD

任意 2 个条件推出其他 3 个结论。 例 1.如图,在⊙ O 中,弦 CD 垂直于直径 AB 于点 E,若∠ BAD=30 °,且 BE=2 ,则 CD= ___.
例 1、如图,已知 A、B、C 三点在⊙ O 上, AC⊥ BO 于 D,∠ B=55°,则∠ BOC 的度数是
例 2、从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是(

70° .
A.
B.
C.
D.
1
例 3、如图, □ABCD的顶点 A、B、D 在⊙0上,顶点 C 在⊙0的直径 BE上,连接 AE,∠E=360,
( 1)直线和圆有 _____个公共点时,叫做直线与圆相交,这时直线叫做圆的
_____,公共点叫做 _____ ,此时 d_____r;
( 2)直线和圆有 _____个公共点时,叫做直线与圆相切,这时直线叫做圆的
______,公共点叫做 ______,此时 d_______r.
( 3)直线和圆有 ____个公共点时,叫做直线与圆相离,此时 d______r.
相关文档
最新文档