初中圆的知识点归纳

合集下载

初中数学知识归纳圆的概念及性质

初中数学知识归纳圆的概念及性质

初中数学知识归纳圆的概念及性质圆是初中数学中的一个重要概念,它具有独特的性质和应用。

本文将对圆的概念及其性质进行归纳总结,以帮助读者更好地理解和掌握这一数学知识点。

一、圆的定义与基本概念圆是由平面上与一个确定点的距离相等的所有点组成的图形。

这个确定点称为圆心,距离称为半径。

圆可以用符号表示为O(A,r),其中O为圆心,A为圆上的任意一点,r为半径。

二、圆的性质1. 圆的直径圆上的任意两点连线,经过圆心,则称为圆的直径。

直径的长度是半径的两倍,用符号表示为d=2r。

2. 圆的弦圆上的任意两点连线,不经过圆心,则称为圆的弦。

圆的直径是一条特殊的弦,它同时也是最长的弦。

3. 圆的弧圆上的部分曲线,是由两个弦之间的交点所夹的部分,称为圆的弧。

同一个圆上的两个弧可以互补称为对称弧。

4. 圆的周长圆的周长是圆上所有点与圆心的距离之和,也就是圆的一周的长度。

圆的周长公式为C=2πr,其中π取约等于3.14。

5. 圆的面积圆的面积是圆内部的所有点与圆心的距离之和,也就是圆所围成的区域的大小。

圆的面积公式为A=πr²。

6. 圆的切线与切点从圆外一点引一条直线与圆相交,该直线在圆上的切点和与圆相切的直线称为圆的切线。

7. 圆的切圆两个圆相切于一点,称为圆的切圆。

8. 圆的切线定理如果一条直线与一个圆相切,那么与这条直线相垂直的半径也是与这条直线相切的。

9. 圆的相交性质两个圆相交于两个点,这两个点到各自的圆心的距离相等,且此两点不在任一圆内部。

10. 弧长与弧度圆的弧长是指圆心角所对应的弧的长度。

弧度是表示弧长与半径之比,记作θ,弧度大小等于圆心角大小的弧长除以半径,即θ=弧长/半径。

11. 弧长公式圆的弧长公式为L=θr,其中L表示弧长,θ表示圆心角的大小(弧度制),r表示半径。

12. 扇形的面积公式扇形是由圆心角和半径所夹的弧围成的区域,扇形的面积公式为S=1/2θr²,其中S表示扇形的面积。

九年级数学圆的知识点总结大全

九年级数学圆的知识点总结大全

圆是数学中的一个基本几何概念,九年级数学中关于圆的知识点如下:一、圆的定义和要素:1.圆的定义:由平面上离一个确定点(圆心)的距离相等的点的全体,构成一个平面图形,称为圆。

2.圆的要素:圆心、半径、直径、弧、弦、切线、割线、扇形、弓形等。

二、圆的性质:1.圆的任意两点之间的距离相等。

2.圆的半径是圆上任意一点到圆心的距离。

3.圆的直径是通过圆心的一条线段,直径的长度等于半径的两倍。

4.圆的弧是圆上两点之间的一段曲线,圆的圆心角对应的弧长是圆的周长的一部分。

5.圆的弦是圆上的两点间的线段。

6.圆的切线是与圆只有一个交点的直线。

7.圆的割线是与圆有两个交点的直线。

8.圆的相似圆是指具有相同圆心,半径成比例的圆。

9.圆与其他几何图形的关系,如圆与直线、圆与多边形等。

三、圆的图形和公式:1.圆的标准方程:(x-a)²+(y-b)²=r²,其中(a,b)为圆心坐标,r为半径。

2.圆的一般方程:x²+y²+Dx+Ey+F=0,对应一般方程的圆心坐标为(-D/2,-E/2),半径为√((D²+E²)/4-F)。

3.圆的表示方法:各种符号和字母的含义及表示。

四、圆的计算题:1.圆的周长:C=2πr,其中C为周长,r为半径。

2.圆的面积:A=πr²,其中A为面积,r为半径。

3.圆的弧长公式:L=2πr(θ/360°),其中L为弧长,r为半径,θ为圆心角的度数。

4.扇形的面积公式:A=(θ/360°)πr²,其中A为扇形的面积,r为半径,θ为圆心角的度数。

5. 弓形的面积公式:A=(θ/360°)πr²-hr,其中A为弓形的面积,r为半径,θ为弧对应的圆心角的度数,h为弓形的高。

五、圆的证明题:1.圆上的弦垂直于直径。

2.圆上的垂直于弦的直径。

3.圆的半径与切线垂直。

六、圆的应用:1.圆的模拟应用,如钟表等。

初三圆知识点汇总

初三圆知识点汇总

初三圆知识点汇总圆是初中数学中的一个重要内容,也是中考的必考知识点之一。

下面就为大家详细汇总初三圆的相关知识点。

一、圆的定义1、动态定义:在平面内,线段 OA 绕它固定的一个端点 O 旋转一周,另一个端点 A 所形成的图形叫做圆。

固定的端点 O 叫做圆心,线段 OA 叫做半径。

2、静态定义:圆是到定点的距离等于定长的点的集合。

二、圆的相关概念1、弦:连接圆上任意两点的线段叫做弦。

2、直径:经过圆心的弦叫做直径,直径是圆中最长的弦。

3、弧:圆上任意两点间的部分叫做圆弧,简称弧。

弧分为优弧、劣弧和半圆。

4、半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。

5、等圆:能够重合的两个圆叫做等圆。

6、等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。

三、圆的基本性质1、圆的对称性(1)圆是轴对称图形,其对称轴是任意一条过圆心的直线。

(2)圆是中心对称图形,对称中心为圆心。

2、垂径定理垂直于弦的直径平分弦且平分弦所对的两条弧。

推论:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。

3、圆心角、弧、弦之间的关系在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。

4、圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半。

推论 1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

推论 2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。

四、圆的位置关系1、点与圆的位置关系设圆的半径为 r,点到圆心的距离为 d,则有:(1)点在圆外⇔ d > r;(2)点在圆上⇔ d = r;(3)点在圆内⇔ d < r。

2、直线与圆的位置关系设圆的半径为 r,圆心到直线的距离为 d,则有:(1)直线与圆相离⇔ d > r;(2)直线与圆相切⇔ d = r;(3)直线与圆相交⇔ d < r。

九年级数学圆的知识点总结大全

九年级数学圆的知识点总结大全

第四章:《圆》一、知识回顾圆的周长: C=2πr或C=πd、圆的面积:S=πr²圆环面积计算方法:S=πR²-πr²或S=π(R²-r²)(R是大圆半径,r是小圆半径)二、知识要点一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;固定的端点O为圆心。

连接圆上任意两点的线段叫做弦,经过圆心的弦叫直径。

圆上任意两点之间的部分叫做圆弧,简称弧。

2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线;3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;A四、圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。

初中圆的考点梳理

初中圆的考点梳理

初中圆的考点梳理圆是一种几何图形。

根据定义,通常用圆规来画圆。

同圆内圆的直径、半径的长度永久相同,圆有无数条半径和无数条直径。

圆是轴对称、中心对称图形。

今天作者在这给大家整理了一些初中圆的考点梳理,我们一起来看看吧!初中圆的考点梳理一、圆及圆的相干量的定义1.平面上到定点的距离等于定长的所有点组成的图形叫做圆。

定点称为圆心,定长称为半径。

2.圆上任意两点间的部分叫做圆弧,简称弧。

大于半圆的弧称为优弧,小于半圆的弧称为劣弧。

连接圆上任意两点的线段叫做弦。

经过圆心的弦叫做直径。

3.顶点在圆心上的角叫做圆心角。

顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

4.过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。

和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。

5.直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有公共点为相切,这条直线叫做圆的切线,这个的公共点叫做切点。

6.两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有公共点的,一圆在另一圆之外叫外切,在之内叫内切;有2个公共点的叫相交。

两圆圆心之间的距离叫做圆心距。

7.在圆上,由2条半径和一段弧围成的图形叫做扇形。

圆锥侧面展开图是一个扇形。

这个扇形的半径成为圆锥的母线。

二、有关圆的字母表示方法圆--⊙半径—r 弧--⌒直径—d扇形弧长/圆锥母线—l 周长—C 面积—S三、有关圆的基本性质与定理1.点P与圆O的位置关系(设P是一点,则PO是点到圆心的距离):P在⊙O外,PO P在⊙O上,PO=r;P在⊙O内,PO2.圆是轴对称图形,其对称轴是任意一条过圆心的直线。

圆也是中心对称图形,其对称中心是圆心。

3.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。

逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。

4.在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。

完整版)初中圆的知识点归纳

完整版)初中圆的知识点归纳

完整版)初中圆的知识点归纳圆的知识点复圆是数学中的基本图形之一,下面是一些关于圆的知识点。

一、圆的概念圆可以看作是到定点的距离等于定长的点的集合,也可以看作是到定点的距离等于定长的点的轨迹。

以定点为圆心,定长为半径的圆,就是到定点的距离等于定长的点的轨迹。

此外,还有垂直平分线、角的平分线、到直线的距离相等的点的轨迹和到两条平行线距离相等的点的轨迹等。

二、点与圆的位置关系点与圆的位置关系有三种情况:点在圆内、点在圆上和点在圆外。

点在圆内时,到圆心的距离小于半径;点在圆上时,到圆心的距离等于半径;点在圆外时,到圆心的距离大于半径。

三、直线与圆的位置关系直线与圆的位置关系有三种情况:相离、相切和相交。

直线与圆相离时,直线与圆没有交点;直线与圆相切时,直线与圆有一个交点;直线与圆相交时,直线与圆有两个交点。

四、圆与圆的位置关系圆与圆的位置关系有五种情况:外离、外切、相交、内切和内含。

外离时,两个圆没有交点且外圆的半径大于内圆的半径加上它们的距离;外切时,两个圆有一个交点且外圆的半径等于内圆的半径加上它们的距离;相交时,两个圆有两个交点且它们的距离小于外圆的半径减去内圆的半径;内切时,两个圆有一个交点且外圆的半径等于内圆的半径加上它们的距离;内含时,两个圆没有交点且内圆的半径大于外圆的半径减去它们的距离。

五、垂径定理垂径定理指出,垂直于弦的直径平分弦且平分弦所对的弧。

此外,还有推论1,即平分弦的直径垂直于弦,并且平分弦所对的两条弧;弦的垂直平分线经过圆心,并且平分弦所对的两条弧;平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。

这些定理可以互相推导。

1.圆的两条平行弦所夹的弧相等。

在圆O中,因为AB∥CD,所以弧AC=弧BD。

2.圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。

也称为1推3定理,即如果知道其中的一个结论相等,则可以推出其他三个结论。

例如在圆O中,有以下结论:①∠AOB=∠DOE;②AB=DE;③OC=OF;④弧BA=弧BD。

初中 圆 知识点总结

初中 圆 知识点总结

初中圆知识点总结一、圆的定义圆是指平面上到一个固定点的距离等于定值的所有点的集合。

这个固定点叫做圆心,这个固定值称为半径。

二、圆的元素1. 圆心:圆的中心点2. 半径:连接圆心和圆上任意一点的线段3. 直径:穿过圆心并且两端在圆周上的线段4. 弦:连接圆周上的两个点的线段5. 弦长:弦的长度6. 弧:连接圆周上的两个点的曲线部分7. 弧长:弧的长度8. 圆周:连接圆周上的所有点的曲线9. 圆内切角:在圆内部,以弦为两边的角。

10. 圆外切角:在圆外部,以弦为两边的角。

11. 圆心角:以圆心为顶点的角。

三、圆的性质1. 圆周率:圆周的长度与直径的比值,为圆周率π,大约3.14159。

2. 圆内角等于180度。

3. 圆内切角等于其对应的弧所对的圆周角的一半。

4. 圆周角等于对应的圆心角。

5. 弧长公式:弧长 = 弧度 x 半径6. 弧度公式:弧度 = 弧长 / 半径7. 圆心角与对应的弧度的关系:圆心角 = 弧度x 180°/π8. 弧度与角度转换公式:弧度 = 角度x π/180°, 角度 = 弧度x 180°/π9. 一个圆的面积等于π乘以半径的平方。

四、圆的相关定理1. 同位角定理:位于同一个圆的两条相交弦上的两对角互为对顶角。

2. 相交弦定理:相交弦所截的弧在他们的对应边上互相等于的。

3. 切线定理:切线与圆在切点处垂直。

4. 切线定理:切线与半径的夹角是直角。

5. 切线定理:切线长度等于切点到圆心的距离。

五、圆的常见问题1. 已知圆心和一点,求圆的方程。

2. 已知圆心和半径,求圆的方程。

3. 已知圆上的点与圆心的位置关系,求圆的方程。

4. 已知圆上的两点,求圆的方程。

5. 求圆的切点。

6. 求圆的切线方程。

7. 求圆的面积和周长。

8. 求圆内切四边形的面积。

9. 求圆的弧长和扇形面积。

以上就是关于圆的知识点总结,希望对大家的学习和理解有所帮助。

初中数学圆的知识点总结

初中数学圆的知识点总结

初中数学圆的知识点总结初中数学圆的知识点总结【一】一、圆1、圆的有关性质在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫圆,固定的端点O 叫圆心,线段OA叫半径。

由圆的意义可知:圆上各点到定点〔圆心O〕的间隔等于定长的点都在圆上。

就是说:圆是到定点的间隔等于定长的点的集合,圆的内部可以看作是到圆。

心的间隔小于半径的点的集合。

圆的外部可以看作是到圆心的间隔大于半径的点的集合。

连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。

圆上任意两点间的局部叫圆弧,简称弧。

圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆,大于半圆的弧叫优弧;小于半圆的弧叫劣弧。

由弦及其所对的弧组成的圆形叫弓形。

圆心一样,半径不相等的两个圆叫同心圆。

可以重合的两个圆叫等圆。

同圆或等圆的半径相等。

在同圆或等圆中,可以互相重合的弧叫等弧。

二、过三点的圆l、过三点的圆过三点的圆的作法:利用中垂线找圆心定理不在同一直线上的三个点确定一个圆。

经过三角形各顶点的圆叫三角形的外接圆,外接圆的圆心叫外心,这个三角形叫圆的内接三角形。

2、反证法反证法的三个步骤:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾得出假设不正确,从而肯定命题的结论正确。

例如:求证三角形中最多只有一个角是钝角。

证明:设有两个以上是钝角那么两个钝角之和》180°与三角形内角和等于180°矛盾。

不可能有二个以上是钝角。

即最多只能有一个是钝角。

三、垂直于弦的直径圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

推理1:平分弦〔不是直径〕的直径垂直于弦,并且平分弦所对两条弧。

弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一个条弧。

推理2:圆两条平行弦所夹的弧相等。

四、圆心角、弧、弦、弦心距之间的关系圆是以圆心为对称中心的中心对称图形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中圆的知识点归纳 Prepared on 24 November 2020
《圆》章节知识点复习
一、点与圆的位置关系
1、点在圆内 ⇒ d r < ⇒ 点C 在圆内;
2、点在圆上 ⇒ d r = ⇒ 点B 在圆上;
3、点在圆外 ⇒ d r > ⇒ 点A 在圆外; 二、直线与圆的位置关系
1、直线与圆相离 ⇒ d r > ⇒ 无交点;
2、直线与圆相切 ⇒ d r = ⇒ 有一个交点;
3、直线与圆相交 ⇒ d r < ⇒ 有两个交点; 三、圆与圆的位置关系
外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-; 四、垂径定理
垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:
① AB 是直径 ②AB CD ⊥ ③CE DE =
④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。

推论2:圆的两条平行弦所夹的弧相
B
A
D
等。

即:在⊙O 中,∵AB ∥CD ∴弧AC =弧BD 五、圆心角定理
圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。

此定理也称1推3定理,即上述四个结论中,
只要知道其中的1个相等,则可以推出其它的3个结论, 即:①AOB DOE ∠=∠;②AB DE =;
③OC OF =;④ 弧BA =弧BD 六、圆周角定理
1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。

即:∵AOB ∠和ACB ∠是弧AB 所对的圆心角和圆周角 ∴2AOB ACB ∠=∠ 2、圆周角定理的推论:
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧;
即:在⊙O 中,∵C ∠、D ∠都是所对的圆周角 ∴C D ∠=∠
推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。

即:在⊙O 中,∵AB 是直径 或∵90C ∠=︒ ∴90C ∠=︒ ∴AB 是直径 推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

即:在△ABC 中,∵OC OA OB ==
∴△ABC 是直角三角形或90C ∠=︒
B
A
B
A O
注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。

七、圆内接四边形
圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。

即:在⊙O 中,
∵四边形ABCD 是内接四边形 ∴180C BAD ∠+∠=︒
180B D ∠+∠=︒
八、切线的性质与判定定理
(1)切线的判定定理:过半径外端且垂直于半径的直线是切线; 两个条件:过半径外端且垂直半径,二者缺一不可 即:∵MN OA ⊥且MN 过半径OA 外端
∴MN 是⊙O 的切线 (2)性质定理:切线垂直于过切点的半径(如上图)
推论1:过圆心垂直于切线的直线必过切点。

推论2:过切点垂直于切线的直线必过圆心。

以上三个定理及推论也称二推一定理:
即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。

九、切线长定理 切线长定理:
从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。

即:∵PA 、PB 是的两条切线 ∴PA PB =
PO 平分BPA ∠ 十、两圆公共弦定理
圆公共弦定理:两圆圆心的连线垂直并且平分这两个圆的公共弦。

如图:12O O 垂直平分AB 。

即:∵⊙1O 、⊙2O 相交于A 、B 两点 ∴12O O 垂直平分AB 十一、弦切角定理
顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。

弦切角等于它所夹的弧所对的。

十二、扇形、圆柱和圆锥的相关计算公式 1、扇形:(1)弧长公式:180
n R
l π=
; 213602
n R S lR π==
(2)扇形面积公式:
n :圆心角 R :扇形多对应的圆的半径 l :扇形弧长 S :扇形面积
2、圆柱:
(1)圆柱侧面展开图
2S S S =+侧表底=222rh r ππ+
(2)圆柱的体积:2
V r h π= 3、圆锥
(1)S S S =+侧表底=2Rr r ππ+
(2)圆锥的体积:21
3
V r h π=
B A
O1
O2
B1
R
r
C B
A
O
S l
B
O
母线长
底面圆周长
C 1
D 1D
C
B A。

相关文档
最新文档