17.2勾股定理的逆定理2、3—子龙
《勾股定理的逆定理》PPT免费课件(第2课时)

田的面积为( A )
A.7.5平方千米
B.15平方千米
C.75平方千米
D.750平方千米
课堂检测 基础巩固题
B
1.五根小木棒,其长度分别为7,15,20,24,25,现将他 们摆成两个直角三角形,其中摆放方法正确的是 ( D )
A.
B.
B
C.
D.
课堂检测
2.如图是医院、公园和超市的平面示意图,超市在医院的南偏东 25°的方向,且到医院的距离为300 m,公园到医院的距离为 400 m,若公园到超市的距离为500 m,则公园在医院的 ( B ) A.北偏东75°的方向上 B.北偏东65°的方向上 C.北偏东55°的方向上 D.无法确定
课堂检测
3.如图,某探险队的A组由驻地O点出发,以12km/h的速度前进,
同时,B组也由驻地O出发,以9km/h的速度向另一个方向前进,
2h后同时停下来,这时A,B两组相距30km.此时,A,B两组
行进的方向成直角吗?请说明理由.
解:∵出发2小时,A组行了12×2=24(km),
A
B组行了9×2=18(km),
Байду номын сангаас
巩固练习
解:由题意得,OB=12×1.5=18海里, OA=16×1.5=24海里, 又∵AB=30海里, ∴182+242=302,即OB2+OA2=AB2, ∴∠AOB=90°. ∵∠DOA=40°, ∴∠BOD=50°. 则另一艘舰艇的航行方向是北偏西50°.
探究新知
知识点 2 利用勾股定理的逆定理解答面积问题
应用 方法
航海问题
与勾股定理结合解决不规 则图形等问题
认真审题,画出符合题意的图 形,熟练运用勾股定理及其逆 定理来解决问题
勾股定理的逆定理ppt

为什么需要研究逆定理
逆定理在数学研究中具有重要的意义,它可以帮助我们更 好地理解和应用勾股定理。
逆定理可以用来判断一组正整数是否是勾股数,这在解决 一些数学问题时非常有用。
逆定理的应用场景
逆定理可以应用于一些几何问题中,例如勾股定理的一些变 式问题。
勾股定理逆定理的证明方法2
平面几何法
在平面上任取三个点$A、B、C$,使得$A、B、C$不共线,作$AB \perp BC$, 通过证明$AB^2 + BC^2 = AC^2$,从而证明原命题成立。
三角函数法
在三角形ABC中,设三个角分别为$A、B、C$,通过利用三角函数公式证明 $sin^2(A) + sin^2(B) = sin^2(C)$,从而得出原命题的结论。
逆定理在其他领域的应用
工程学
在工程学中,勾股定理的逆定理可以用于计算和确定物体的高度、距离等。 例如,在建筑、航天、航海等领域都有应用。
物理学
在物理学中,勾股定理的逆定理可以用于计算和确定力的合成与分解、运动 轨迹等。例如,在力学、电磁学等领域都有应用。
06
结论
逆定理的意义
1 2 3
几何学的应用
当这个公式成立时,我们可以得出结论:三角形的一个角是直角,即三角形是直 角三角形。
逆定理与原定理的关系
01
02
03
勾股定理的逆定理是原定理的一个逆 命题,即原定理的否定。
原定理和逆定理的条件和结论正好相 反,即原定理是“如果一个三角形是 直角三角形,那么它的三条边满足 a²+b²=c²”,而逆定理是“如果一个 三角形的三条边满足a²+b²=c²,那么 这个三角形是直角三角形”。
勾股定理的逆定理 课件

=2 =0
( 2 − 8)2 = 0
=
=2
=2 2
等腰三角形
2 + 2 = 2
直角三角形
等腰直角三角形
【例题3】如图,已知等腰三角形的底边 = 20,是腰上一点,且
= 16, = 12,求三角形的周长.
分析: 设 = , 则AB = = , ∴ = − 12.
这样的每一组数都称为勾股数.
【例题2】在三角形中,三边长, , 满足( − )2 + = 2 + ( 2 − 8)2 = 0,
则此三角形为( C )
A.等边三角形 B.等腰三角形
C.等腰直角三角形
D.直角三角形
分析: ( − )2 + = 2 + ( 2 − 8)2 = 0
如定理 “两条直线平行,内错角相等”的逆定理为“内错角相等,两条直
线平行”.
而定理 “对顶角相等”没有逆定理.
【例题1】下列定理中没有逆定理的是( C )
A.直角三角形的两锐角互余
B.若三角形三边长, , (最大),满足2 + 2 = 2,则该三角形是直
角三角形
C.全等三角形的对应角相等
2
2
在∆和∆中,根据勾股定理,得
2
2 +
= ( 40)2 ,
2
42 + 2 = 160, ①
整理,得൝ 2
2
+ 4 2 = 100. ②
2
2
+ =5 .
2
①+②,得 2 + 2 = 52. 在∆中,由勾股定理,得
2 = 2 + 2 = 52.
17.2勾股定理的逆定理2—子龙

A B
CD 2 3 AC 2 19
D
在等腰△ABC中,AB=AC=13cm ,BC=10cm, 求△ABC的面积和AC边上的高.
AD 12
S ABC 60
120 A BE 13
A
A
E
两个直角三角形中,如果有一条公共边, 可利用勾股定理建立方程求解 C B C B .
已知:如图,四边形ABCD中,∠A =900,AB=3, BC=12 ,CD=13 , AD=4,求四边形ABCD的面积?
SABCD 6 30 36 SABCD 30 6 24
A 4 3 B
D
3 4 A 13 12 C
如图BE⊥AE, ∠A=∠EBC=60°,AB=4,BC= 2 3 CD= 3 ,DE=3,求证:AD⊥CD
D
3
90
3
C
60° A 4
2
E
2 3 2 3
2 3 60°
B
一个零件的形状如左图所示,按规定这个零件中 ∠A和∠DBC都应为直角。工人师傅量得这个零件各 边尺寸如右图所示,这个零件符合要求吗?此时四 边形ABCD的面积是多少? C C 13 D D 30 12 46 5 A B A3 B
SABCD 6 30 36
如图,在△ABC中,AB=AC,D点在CB延长线上, A 求证:AD2-AB2=BD· CD 证明:过A作AE⊥BC于E D 在Rt △ADE中, AD2=AE2+DE2 在Rt △ABE中, AB2=AE2+BE2 ∴ AD2-AB2=(AE2+DE2)-(AE2+BE2) = DE2- BE2 = (DE+BE)· ( DE- BE) = (DE+CE)· ( DE- BE) =BD· CD ∵AB=AC,∴BE=CE
人教版八年级数学下《17.2 勾股定理的逆定理 原(逆)命题、原(逆)定理》优质课教学设计_9

.17.2勾股定理的逆定理1.会理解并判断勾股数,掌握勾股定理的逆定理,并能灵活应用逆定理判定一个三角形是否为直角三角形.1.通过对勾股定理的逆定理的探索,经历知识发生、发展和形成的过程.2.通过用三角形的三边的数量关系来判断三角形的形状,体验数形结合方法的应用.1.通过用三边之间的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐辩证统一的关系.2.在对勾股定理的逆定理的探索中,培养了学生的交流、合作的意识和严谨的学习态度,同时感悟勾股定理和逆定理的应用价值.【重点】勾股定理的逆定理的应用.【难点】勾股定理的逆定理的证明.【教师准备】教学中出示的教学插图和例题.【学生准备】三角板、绳子.学生利用准备好的绳子,以小组为单位动手操作,观察,做出合理的推断.[设计意图]介绍前人经验,启发思考,使学生意识到数学来源于生活,同时明确了本节课研究的问题,既实行了数学史的教育,又锻炼了学生动手实践、观察探究的水平.导入二:你能说出勾股定理吗?并指出定理的题设和结论.学生独立回忆勾股定理,师生共同分析得出其题设和结论,教师引导指出勾股定理是从形的特殊性得出三边之间的数量关系.追问:你能把勾股定理的题设与结论交换得到一个新的命题吗?师生共同得出新的命题,教师指出其为勾股定理的逆命题.追问:“如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.”能否把它作为判定直角三角形的依据呢?本节课我们一起来研究这个问题.[设计意图]通过对前面所学知识的归纳总结,自然合理地引出勾股定理的逆定理.1.勾股定理的逆定理思路一①如果改变一下三条边的结数,是否还能摆放出同样形状的三角形吗?②画图看一看,三角形的三边长分别为2.5 cm,6 cm,6.5 cm,观察三角形的形状.再换成4 cm,7.5 cm,8.5 cm试试看.③三角形的三边具有怎样的关系,才得到上面同样的结论?教师根据学生的思考结果,对第③个问题总结归纳,提出猜想:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.[设计意图]由特殊到一般,归纳猜想出“如果三角形三边长a,b,c满足a2+b2=c2,那么这个三角形就为直角三角形”的结论,培养学生动手操作水平和寻求解决数学问题的一般方法.思路二下面的三组数分别是一个三角形的三边长a,b,c.5,12,13;7,24,25;8,15,17.①这三组数都满足a2+b2=c2吗?②分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?学生以小组为单位,按给出的三组数作出三角形,得出结论:①这三组数都满足a2+b2=c2;②以每组数为边长作出的三角形都是直角三角形.师生进一步通过实际操作,猜想结论:如果三角形三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.[设计意图]本活动通过让学生按已知数据作出三角形,并测量三角形三个内角的度数来进一步获得一个三角形是直角三角形的相关边的条件,猜想得出结论.学生独立思考回答问题,命题1的题设是直角三角形的两直角边长分别为a,b,斜边长为c,结论是a2+b2=c2;命题2的题设是三角形的三边长a,b,c满足a2+b2=c2,结论是这个三角形是直角三角形.教师引导学生分析得出这两个命题的题设和结论正好是相反的.归纳出互逆命题概念:两个命题的题设和结论正好相反,像这样的两个命题叫做互逆命题,如果其中一个叫原命题,那么另一个就叫做它的逆命题.提问:请同学们举出一些互逆命题,并思考:原命题准确,它的逆命题是否也准确呢?举例说明.学生分组讨论合作交流,然后举手发言,教师适时记下一些互逆命题,其中既包含有原命题、逆命题都成立的互逆命题,也包括原命题成立逆命题不成立的互逆命题.如:①对顶角相等和相等的角是对顶角;②两直线平行,内错角相等和内错角相等,两直线平行;③全等三角形的对应角相等和对应角相等的三角形是全等三角形.追问:在大家举出的互逆命题中原命题和逆命题都成立吗?学生举手发言回答,另一学生纠错.同时教师引导学生明确:①任何一个命题都有逆命题.②原命题准确,逆命题不一定准确;原命题不准确,逆命题可能准确.③原命题与逆命题的关系就是命题中题设与结论“互换”的关系.[设计意图]让学生在合作交流的基础上明确互逆命题的概念,在互动的过程中掌握互逆命题的真假性是各自独立的.这个三角形是直角三角形”吗?教师引导学生分析命题的题设及结论,让学生独立画出图形,写出已知和求证.已知:如图所示,△ABC中,AB=c,AC=b,BC=a,且a2+b2=c2.求证:∠C=90°.追问:要证明△ABC是直角三角形,只要证明∠C=90°,由已知能直接证吗?教师引导,如果能证明△ABC与一个以a,b为直角边长的Rt△A'B'C'全等.那么就证明了△ABC是直角三角形,为此,能够先构造Rt△A'B'C',使A'C'=b,B'C'=a,∠C'=90°,再让学生小组讨论得出证明思路,证明了猜想的准确性.教师适时板书出规范的证明过程.证明:如图所示,作直角三角形A'B'C',使∠C'=90°,B'C'=a,A'C'=b,由勾股定理得A'B'===c,∴A'B'=AB,B'C'=BC,A'C'=AC,∴△ABC≌△A'B'C',∴∠C=∠C'=90°,∴△ABC是直角三角形.教师在此基础上进一步指出,如果一个定理的逆命题经过证明是准确的,那么它也是一个定理,我们把上面所形成的这个定理叫做勾股定理的逆定理,称这两个定理为互逆定理.[设计意图]引导学生用图形和数学符号语言表示文字命题,构造直角三角形,让学生体会这种证明思路的合理性,协助学生突破难点.2.例题讲解(教材例1)判断由线段a,b,c组成的三角形是不是直角三角形:(1)a=15,b=8,c=17;(2)a=13,b=14,c=15.学生独立完成,教师适时指导,并规范地书写解题过程.在此活动中,教师协助学生分析得到:要判断一个三角形是不是直角三角形,可根据勾股定理及其逆定理,关键是对两条较小边长的平方和与最大边长的平方实行比较,只有相等时才是直角三角形.解:(1)因为a2+b2=152+82=289,c2=172=289,所以152+82=172,根据勾股定理的逆定理,这个三角形是直角三角形.(2)因为a2+b2=132+142=365,c2=152=225,所以132+142≠152,(1)3,4,;(2)6,8,;(3)7,24,;(4)5,12,;(5)9,12, .[设计意图]通过练习,学会使用勾股定理逆定理判断一个三角形是否为直角三角形.[知识拓展]勾股定理的逆定理是直角三角形的判定方法之一,利用它判定是否为直角三角形的一般步骤:①确定最大边长c;②计算a2+b2和c2的值,若a2+b2=c2,则此三角形是直角三角形;若a2+b2<c2,则此三角形是钝角三角形;若a2+b2>c2,则此三角形是锐角三角形.(教材例2)某港口P位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16 n mile,“海天”号每小时航行12 n mile.它们离开港口一个半小时后分别位于点Q,R处,且相距30 n mile.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?引导学生认真审题,弄清已知是什么,解决的问题是什么.学生通过思考举手回答,教师在黑板上列出:已知两艘轮船的航速,它们的航行时间以及相距的路程,“远航”号的航向——东北方向;解决的问题是“海天”号的航向.引导学生尝试画图,教师在黑板上或多媒体中画出示意图.引导学生分析:图中的E,N分别表示东、北两个方向.要求出“海天”号的航行方向,只要求出∠RPQ的度数,而∠1=45°,利用角的和差得出∠2的度数.解:根据题意,由已知得PQ=16×1.5=24,PR=12×1.5=18,QR=30.因为242+182=302,即PQ2+PR2=QR2,所以∠QPR=90°,由“远航”号沿东北方向航行可知∠1=45°,所以∠2=∠QPR-∠1=45°,即“海天”号沿西北方向航行.[设计意图]学生在规范化的解答过程及练习中,提升对勾股定理逆定理的理解以及实际应用的水平.师生共同回顾本节课所学主要内容:(1)已知一个三角形的三边长,利用勾股定理的逆定理来判定这个三角形是不是直角三角形.(2)一个命题一定有逆命题,一个定理不一定有逆定理.(3)三个数满足勾股数的两个条件:①三个数必须满足较小的两个数的平方和等于最大的一个数的平方;②三个数必须都是正整数.(4)解题时,注意勾股定理与其逆定理的区别.勾股定理是在直角三角形中使用的,而勾股定理的逆定理是判断一个三角形是不是直角三角形的.1.(2019·毕节中考)下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是 ()A.,,B.1,,C.6,7,8D.2,3,4解析:A中,()2+()2≠()2,不能构成直角三角形,故错误;B中,12+()2=()2,能构成直角三角形,故准确;C中,62+72≠82,不能构成直角三角形,故错误;D中,22+32≠42,不能构成直角三角形,故错误.故选B.2.若△ABC的三边长a,b,c满足(a-b)(a2+b2-c2)=0,则△ABC是 ()A.等腰三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形解析:根据题意可得a=b或a2+b2-c2=0,所以△ABC可能为等腰三角形,也可能为直角三角形.故选C.3.下列说法中准确的有 ()(1)在一个三角形中,如果一边上的中线等于这条边的一半,那么这条边所对的角是直角;(2)命题“在一个三角形中,有一个角是30°,那么它所对的边是另一边的一半”的逆命题是真命题;(3)勾股定理的逆定理是:如果两条直角边长的平方和等于斜边长的平方,那么这个三角形是直角三角形;(4)△ABC的三边之比是1∶1∶,则△ABC是直角三角形.A.1个B.2个C.3个D.4个解析:(1)准确,(2)错误,(3)错误,(4)准确,故有两个说法是准确的.故选B.4.如图(1)所示的是一块地,已知AD=4 m,CD=3 m,AD⊥DC,AB=13 m,BC=12 m,求这块地的面积.解:如图(2)所示,连接AC.∵AD⊥DC,∴在Rt△ACD中,AD2+CD2=AC2,∴AC===5(m).∵AC2+BC2=52+122=132=AB2,∴△ABC为直角三角形,∴这块地的面积为S=S△ABC-S△ACD=AC·CB-AD·DC=×5×12-×3×4=24(m2).17.2勾股定理的逆定理1.勾股定理的逆定理(1)归纳猜想(2)原命题、逆命题(3)勾股定理的逆定理的证明2.例题讲解例1例2一、教材作业【必做题】教材练习第33页第1,2,3题;教材第34页习题17.2第1,2,3,4题.【选做题】教材第34页习题17.2第7题.本节课以“提出问题——解决问题”为主线,以学生的自主探索学习为中心,从解决问题的完成情况看,知识目标完全达到,水平目标基本实现,情感目标基本实现.在本节课教学中,充分发挥学生在教学中的主体作用,教师不能一味地“讲知识”,而是应用启发式的原则,给学生指明学习目标和方向,让学生去自主探究,注重了知识上的即时巩固,也侧重了学生各方面的素质的培养.在重难点的突破上,还应加一些递进的习题,降低题的难度,使优生学好,中等生也能跟上.同时,缺少了板书示范,不利于学生养成良好的书写习惯.。
勾股定理的逆定理

17.2《勾股定理的逆定理》教学设计导读:本节课安排在勾股定理之后,主要内容包括,勾股定理的逆定理及其应用、互逆命题(定理)及勾股数的概念,其中前者是重点,勾股定理逆定理的证明是难点。
勾股定理的逆定理既是对直角三角形的再认识,也是判断一个三角形是不是直角三角形(确定直角)的一种方法。
一、内容和内容解析1.内容勾股定理的逆定理证明及简单应用,原命题、逆命题的概念既及互关系。
2.内容解析勾股定理的逆定理:如果三角形的三边长a、b、c满足a2﹢b2﹦c2,那么这个三角形是直角三角形。
勾股定理的逆定理是利用三边长关系来判断三角形是直角三角形的一种方法。
勾股定理的逆命题是真命题,勾股定理和它的的逆定理是互为逆定理的关系,两个定理的题设和结论正好相反。
应该注意,对于一般命题,原命题为真命题,它的逆命题不一定为真命题。
在命题的研究中,研究一个命题的逆命题是一种常用的研究方法。
基于以上分析,可以确定本节课的教学重点是:探究并证明勾股定理的逆定理。
二、目标和目标解析1.目标(1)理解,并应用勾股定理的逆定理,经历“实验测量-猜想-论证”的定理探究过程,体会“构造法”证明数学命题的基本思想。
(2)通过勾股定理逆定理的证明体会有特殊到一般和数形结合思想方法在问题解决中的作用。
(3)了解逆命题的概念,并了解原命题为真命题,它的逆命题不一定为真命题。
2.目标解析目标(1)要求经历勾股定理的逆定理的探究及证明过程,并理解通过构造一个直角三角形,证明此三角形和原三角形全等,从而证明三角形为直角三角形的方法,要求能应用勾股定理的逆定理来判断一个三角形是直角三角形。
目标(2)培养学生学生数学思想方法和罗辑思维的能力。
目标(3)能根据原命题写出它的逆命题,并了解原命题为为真命题,它的逆命题不一定为真命题。
理解判断逆命题为假命题只要举出反例即可,但要说明逆命题为真命题必须通过证明。
三、教学问题诊断分析证明勾股定理逆定理的实质,是通过a2﹢b2﹦c2 证明三角形中有一个角为90。
人教版八年级下册数学:17.2.2-勾股定理的逆定理课件

过了2秒后行驶了50米,此时测得小汽车与车速检测仪
间的距离为40米. 问:2秒后小汽车在车速检测仪的哪
个方向?这辆小汽车超速了吗?
小汽车在车 速检测仪的2秒后
你觉的此题解对了吗?
50米
小汽车
北偏西60° 方向 25米/秒=90千米/时 40米 >70千米/时∴小汽车超速了
30米 北 30°
60°
车速检测仪
∠B=90°
B
答:C在B地的正北方向.
13cm
A 12cm
2、有一电子跳蚤从坐标原点O出发向正东方向跳1cm,
又向南跳2cm,再向西跳3cm,然后又跳回原点,问电
子跳蚤跳回原点的运动方向是怎样的?所跳距离是多
少厘米?
y
电子跳蚤跳回原点 的运动方向是
东北方向;
所跳距离是 2 2 厘
米.
O1 x
22 2 2 2
(1)类似这样的关系6,8,10;9,12,15是否 也是勾股数?如何验证?
(2)通过对以上勾股数的研究,你有什么样的 猜想?
结论:若a,b,c是一组勾股数,那么ak,bk,ck (k为正整数)也是一组勾股数.
北
Q
30
R S 东 12×1.5=1485° 16×1.5=24 P
港口
解:根据题意画图,如图所示:
N
PQ=16×1.5=24
Q
PR=12×1.5=18
30
S
QR=30 ∵242+182=302,
R
16×1.5=24
12×1.5=18 45°45°
即 PQ2+PR2=QR2 ∴∠QPR=900
P
E
3
3、小明向东走80m后,又向某一方向走60m后,再沿
勾股定理的逆定理

勾股定理的逆定理内容如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形。
最长边所对的角为直角勾股定理的逆定理是判断三角形为锐角或钝角的一个简单的方法。
若c为最长边,且a^2+b^2=c^2,则△ABC是直角三角形。
如果a^2+b^2>c^2,则△ABC是锐角三角形。
如果a^2+b^2<c^2,则△ABC是钝角三角形。
证明方法已知△ABC的三边AB=c,BC=a,CA=b,且满足a^2+b^2=c^2,证明∠C=90°。
证法1:同一法。
证法的思路是做一个直角三角形,然后证明它和已知三角形全等,从而已知三角形也是直角三角形。
构造一个直角三角形A'B'C',使∠C'=90°,a'=a,b'=b。
那么,根据勾股定理,c'^2=a'^2+b'^2=a^2+b^2=c^2,从而c'=c。
在△ABC和△A'B'C'中,a=a'b=b'c=c'∴△ABC≌△A'B'C'。
因而,∠C=∠C'=90°。
(证毕)证法2:余弦定理。
由于余弦定理是由勾股定理推出的,故可以用来证明其逆定理而不算循环论证。
根据余弦定理,在△ABC中,cosC=(a^2+b^2-c^2)/2ab。
由于a^2+b^2=c^2,故cosC=0;又因为C小于平角,从而C=90°。
(证毕)证法3:相似三角形。
证法的思路是将已知三角形分割成两块,然后证明它们互补的两角相等,从而这两角都是直角。
在AB边上截取点D使∠DCB=∠A。
在△CDB与△ACB中,∠B=∠B,∠DCB=∠A,∴△CDB∽△ACB(两角对应相等)。
∴BC/BA=BD/BC,从而BD=a^2/c。
又由CD/AC=CB/AB知,CD=ab/c。
另一方面,AD=AB-BD=c-a^2/c=b^2/c(因为c^2=a^2+b^2),在△ACD与△CBD中,DC/AD=(ab/c) / (b^2/c)=a/b,BC/AC=a/b,BD/CD=(a^2/c) / (ab/c)=a/b,∴△ACD∽△CBD(三边对应成比例)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
40米
2秒后
P76练习3: 练1、A、B、C三地的两两距离如图所示,A地在B地 的正东方向,C在B地的什么方向? 解:∵ BC2+AB2=52+122=169 C AC2 =132=169 13cm 2 2 2 ∴BC +AB =AC 5cm 即△ABC是直角三角形 A ∠B=90° B 12cm 答:C在B地的正北方向. 练2、有一电子跳蚤从坐标原点O出发向正东方向跳 1cm,又向南跳2cm,再向西跳3cm,然后又跳回原 点,问电子跳蚤跳回原点的运动方向是怎样的?所 跳距离是多少厘米?
D
90
7
24
25
C 15
A
90
20
B
变式
如图BE⊥AE, ∠A=∠EBC=60°,AB=4,BC= 2 3 CD= 3 , DE=3,求证:AD⊥CD
D
3
90
3
C
60° A 4
2
E
2 3 2 3
2 3 60°
B
1. 已 知 : 在 △ ABC 中 , AB = 13cm , BC = 10cm , BC 边 上 的 中 线 AD = 12cm.求证:AB=AC. A
A
8 6 15
8 6
D
17
10 B C
15
补充练习1:
1、在△ABC中,AD是BC边上的高,若 AB=l0,AD=8,AC=17,求△ABC的面积.
10
8
17 CB=9 36
S△ABC=84或36
BD=6 CD=15 CB=21 84
补充练习2:
RtΔABC中,AB比BC多2,AC=6,如图折叠, 使C落到AB上的E处,求CD的长度,
B
E
C
= DE2- BE2 = (DE+BE)· ( DE- BE) = (DE+CE)· ( DE- BE) =BD· CD
例6、如图,把长方形纸片ABCD折叠,使 顶点A与顶点C重合在一起,EF为折痕。 若AB=9,BC=3,试求以折痕EF为边长的正 方形面积。
E C
D
A
G
F
B
5
3 O
10
x 9-x
A
方程思想:直角三 角形中,已知一条 边,以及另外两条 6 边的数量关系时, 可利用勾股定理建 立方程求解. C x X=3
6 x
D
10
E
4
8-x
B
8
变式练习1:如图,在直角坐标系中, △ABC 的顶点A为(0,6),B为(8,0),AD平分 ∠BAC交x轴于点D, DE⊥AB于E. (1)求△ABD的面积; y (2)求点E的坐标. X=3 E( 24/5 , 12/5 ) x
E
变式4、已知:如图,△ABC中,AB=26, BC=25,AC=17,求△ABC的面积.
X=4.76 AD=16.32 25-x
A
B
Dx
C
方程思想:两个直角三角形中,如果有一 条公共边,可利用勾股定理建立方程求解.
新支点P42第8题
A E
D A B C
例7、已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2. 求四边形ABCD的面积.
AB 500 500 3
OB
北 A
2
500 3 500 3
2
O
60° 45°
500 3
500
C东
500 3
5002
3 3 500 6
500 6
B
甲、乙两只捕捞船同时从A港出海捕鱼.甲船以 15 2km/h的速度沿北偏西60°方向前进,乙船以15km/h 的速度沿东北方向前进.甲船航行2小时到达C处时发现渔 具丢在乙船上,于是快速(匀速)沿北偏东75°方向追赶, 结果两船在B处相遇. (1)甲船从C处追赶上乙船用了多少时间? (2)甲船追赶乙船的速度是多少千米/时? 3) 2 15 15 3 北 速度 (30 30 B 北
园的中心,在森林公园附近有 B .C 两个村庄,现要 在 B.C 两村庄之间修一条长为 1000 m 的笔直公 路将两村连通,经测得 ∠B=60°,∠C=30°,问此 公路是否会穿过该森林公园?请通过计算说明.
400
A
x x 250 60° 30° C B D 1000
3 CD 3x BD x 3 3 x 3x 1000 3
A
F
D C
D
B
S ABCD 6 3
4 2
B
DM 2 3
M
BM 4 3
C
变式训练1:如图,在平面直角坐标系中,点C的 坐标为(0,4),∠B=90°,∠BCO=60°,AB=2, 求点B的坐标.
B(4 3 3, 3 )
C
y
B O A x
例8、如图,在Rt△ABC中,∠C=90°,AD平 分∠BAC, AC=6cm,BC=8cm,(1)求线段CD 的长;(2)求△ABD的面积15 .
B
3
4
E1 C
AEF 是直角三角形
∴AF⊥EF.
例4、一个零件的形状如左图所示,按规定这个零 件中∠A和∠DBC都应为直角。工人师傅量得这个零 件各边尺寸如右图所示,这个零件符合要求吗?此 时四边形ABCD的面积是多少? C C 13 D D 30 12 46 5 A B A3 B
SABCD 6 30 36
3 433
变式
如图,点A是一个半径为 400 m的圆形森林公园 的中心,在森林公园附近有 B .C 两个村庄,现要在 B.C 两村庄之间修一条长为 1000 m 的笔直公路 将两村连通,经测得 AB=600m,AC=800m,问此公 路是否会穿过该森林公园?请通过计算说明.
50米
30米
小汽车
北
30° 60°
车速检测仪
在城市街路上速度不得超过70千米/ 时,一辆小汽车某一时刻行驶在路边 车速检测仪的北偏东30°距离30米处, 过了2秒后行驶了50米,此时小汽车 与车速检测仪间的距离为40米. 问: 小汽车 2秒后小汽车在车速检测仪的哪个方 向?这辆小汽车超速了吗? 30米 北 30° 小汽车在车速检测仪的 50米 北偏西60°方向或南偏 车速检测仪 东60°方向 60° 25米/秒=90千米/时 >70千米/时∴小汽车超速了
练4、在O处的某海防哨所发现在它的北偏东60°方向 相距1000米的A处有一艘快艇正在向正南方向航行,经 过若干小时后快艇到达哨所东南方向的B处, 求:(1)此时快艇航行了多少米(即AB 的长)? (2)距离哨所多少米(即OB的长) ?
OC 10002 5002 5002 22 1 500 3
13 12
B
13
5
C
5
90 90 D
P76第4题
例 2 、求证:m2-n2,m2+n2,2mn (m>n,m,n是正整数)是直角三角形的三条 边长。
分析:先来判断m2-n2,m2+n2,2mn三边 哪条最长,可以代m,n为满足条件的特殊值 来试,如m=5,n=4.则分别为9,40,41, 则 m2+n2 最大。
逆定理:如果三角形的三边长a、b、c满足 a2 + b2 = c2 那么这个三角形是直角三角形。
知识&回顾☞
实际应用
1.两军舰同时从港口O出发执行任务,甲舰 以30海里/小时的速度向西北方向航行,乙舰以 40海里/小时的速度向西南方向航行,问1小时 北 后两舰相距多远?
甲(A)
30
西
50
O
东
40
乙(B) 南
设BC为x AB=x+2 x=8 AB=10
C D
设CD为m BD=8-m DE=m BE=10-6=4
B
E
A
m=3
作业:新支点P47 第二课时
回顾与思考 勾股定理的逆定理的内容和作用是什么? 逆定理: 如果三角形的三边长a、b、c满足 a2 + b 2 = c2 那么这个三角形是直角三角形。 作用: 判定直角三角形
练2、有一电子跳蚤从坐标原点O出发向正东方向跳 1cm,又向南跳2cm,再向西跳3cm,然后又跳回原点, 问电子跳蚤跳回原点的运动方向是怎样的?所跳距离 y 是多少厘米?
电子跳蚤跳回原点 的运动方向是 东北方向; 所跳距离是 2 2 厘 米.
O 1
2 2
2
2
3
2
x
练3、小明向东走80m后,又向某一方向走60m后,再 沿另一方向又走100m回到原地.小明向东走80m后又 向哪个方向走的?
知识&回顾☞
2.两军舰同时从港口O出发执行任务,甲舰以30
海里/小时的速度向西北方向航行,乙舰以一定 的速度向西南方向航行,它们离开港口2小时后 测得两船的距离为100千米,求轮船B的速度是 甲(A) 北 多少?
60
西
100
O
东
80
乙(B) 南
例1、已知:如图,四边形ABCD中,AB=20, BC=15,CD=7,AD=24,∠B=90° 求证:∠A+∠C=180°
C
BD=2
AD=6+2=8
4
A B
CD 2 3 AC 2 19
D
变式3、在等腰△ABC中,AB=AC=13cm , BC=10cm,求△ABC的面积和AC边上的高.
AD 12
S ABC 60
120 A BE 13
A
A
两个直角三角形中,如果有一条公共边,可 利用勾股定理建立方程求解 . B C B C B D
3
x
1
变式1: △ABC中,AB=10,AC=17,BC边上的高线 AD=8,求线段BC的长和△ABC的面积.