三年级奥数4-倒推法解题(可编辑修改word版)

合集下载

4-04-倒推法解题4-讲义-教师

4-04-倒推法解题4-讲义-教师

第4讲倒推法【学习目标】1、学会用倒推法解题;2、激发学生的创新思维,培养学生学习的主动性。

【知识梳理】1、倒过来思考问题的方法,就是还原法;2、用还原法解题,关键是从最后一步结果出发,依照题意顺次逐步向前推理,每一步运算都变成原来的逆运算。

【典例精析】【例1】某数乘以5,加上3,再除以7,减去4,结果是5,这个数是12.5+4=9 9×7=63 63-3=60 60÷5=12【趁热打铁-1】将一个数做如下运算:乘以4,再加上112,减去20,最后除以4,这时得100.那么这个数是77.100×4=400 400+20=420 420-112=308 308÷4=77【例2】村姑卖鸡蛋,第一次卖出一篮的一半又二个;第二次卖出余下的一半又二个;第三次卖出再剩下的一半又二个,这时篮里只剩下二个蛋,问这篮鸡蛋有多少个?(2+2)×2=8(个)(8+2)×2=20(个)(20+2)×2=44(个)答:这篮鸡蛋有44个.【趁热打铁-2】艾迪、薇儿和大宽分练习册,艾迪得到了总数的一半,薇儿得到了余下的一半少1本,大宽得到了9本,这些练习册共有32本.(9-1)×2=16(本)16×2=32(本)【例3】两棵树上一共有25只鸟,先是左边树上的鸟有一半儿飞到了右边树上,然后右边树上的8只鸟又飞到了左边树上,这时左边树上的鸟比右边树上多3只.请问最开始左边树上有几只鸟?后左:(25+3)÷2=14(只)后右:(25-3)÷2=11(只)原左:(14-8)×2=12(只)答:最开始左边树上有12只鸟.【趁热打铁-3】王亮和李强各有画片若干张,如果王亮拿出和李强同样多的画片送给李强,李强再拿出和王亮同样多的画片送给王亮,这时两人各有24张。

王亮和李强原来各有画片多少张?24÷2=12(张)24+12=36(张)原来李强:36÷2=18(张)原来王亮:12+18=30(张)答:王亮原来有30张画片,李强有18张画片。

小学三年级奥数《还原问题》倒推法省公开课获奖课件说课

小学三年级奥数《还原问题》倒推法省公开课获奖课件说课
“你们看这个视频里面发生了什么事情?”学生回答:“孙悟空变出了很多桃子 。”教师:“对,那我们今天就来一起学习一下孙悟空这个变桃子的数学问题。 ”
进行新课
总结词:逐步引导、深入探究
教师引导学生用倒推法逐步解决孙悟空变桃子的数学问题,并详细说明倒推法的 思路和步骤。
通过练习和讨论,教师引导学生深入探究,发现规律,并逐步完善自己的知识体 系。
3
右侧包括:两道例题的解题过程和三道练习题 的题目及解题思路提示。
部分板书设计
倒推法的概念
倒推法的公式
倒推法是一种通过逆向思维解决问题的方法 ,即从最后一步开始逐步向前推算,通过还 原问题得到答案。
通过简单的代数运算来解决问题,公式为: a × b+c=d,倒推法公式为:d÷b-c=a。
倒推法的解题步骤
教具准备
PPT课件
通过精心设计的PPT课件,辅 助教学,提高教学效果。
实物教具
准备实际物品作为教具,如水果 、文具等,帮助学生更好地理解 问题。
板书设计
通过合理的板书设计,突出教学重 点、难点,帮助学生更好地掌握知 识。
04
说教学程序
导入新课
总结词
激发兴趣、建立联系
用西游记小故事视频引入,教师提问
教学难点
让学生理解倒推法的思路和步骤,并能够熟练运用倒推法解决较为复杂的问 题。
03
说教法
教学方法
倒推法
通过反向倒推的方式,引导学生从已知结果反推 出原来的数量或情况。
情境创设
通过设置具体的情境,帮助学生更好地理解问题 ,激发学习兴趣。
小组合作
组织学生进行小组合作,互相交流、讨论、解决 问题,培养学生的协作能力。
倒推法的应用

三年级奥数课件-用倒推法解决问题-通用版

三年级奥数课件-用倒推法解决问题-通用版

5. 淘气在做一道减法时,把减数个位上的9看成了3,把 十位上的4看成了7,得到的结果是164,请你帮淘气算算 正确的答案应该是多少呢? 6. 山顶上有棵桃数,一只猴子偷吃桃子,第一天偷吃 了总数的一半多2个,第二天又偷吃了剩下的一半多2个, 这时还剩1个,问:树上ቤተ መጻሕፍቲ ባይዱ来有多少个桃子? 7.甲、乙、丙三人各有弹力球若干个。如果甲给乙4个, 乙给丙2个,丙给甲5个,现在三人的弹力球都是15个。他 们原来各有多少个? 8.有一盘梨,第一天上午吃了1个,下午又吃了余下的 一半,这时还剩1个,这个盘中共有多少个梨?
【试一试】 1、一根铁管,第1次截去2米,第2次截去剩下 的一半,还剩5米。这根铁管原来长多少米?
2、三(1)班进行大扫除。一半学生去支援一 年级,剩下的一半去扫清洁区,最后还有10人 留下扫教室。三(1)班共有学生多少人?
【例4】同学们玩扔沙袋游戏,甲乙两班共有140 只沙袋。如果甲班先给乙班5只,乙班又给甲班8 只,这时两班沙袋数相等。两班原有沙袋多少只? 【分析与解答】甲乙两班的沙袋经历了两次交换。 第二次交换后两班沙袋相等,又知沙袋总数为140 只,所以这时两班各有沙袋70只。解答时可以从 这里开始倒推。 甲班 乙班 最后结果 140÷2=70 140÷2=70 第二次交换前 70-8=62 70+8=78 第一次交换前(原来) 62+5=67 78-5=73 答:甲班原有沙袋67只,乙班原有沙 袋73只。
【读一读】
华罗庚的退步解题方法
我国已故著名的数学家华罗庚爷爷出生在一个摆杂货店 的家庭,从小体弱多病,但他凭借自己一股坚强的毅力和 崇高的追求,终于成为一代数学宗师。 少年时期的华罗庚就特别爱好数学,但数学成绩并不 突出。19岁那年,一篇出色的文章惊动了当时著名的数学 家熊庆来。从此在熊庆来先生的引导下,走上了研究数学 的道路。晚年为了国家经济建设,把纯粹数学推广应用到 工农业生产中,为祖国建设事业奋斗终生! 华爷爷悉心栽培年轻一代,让青年数学家茁壮成儿使 他们脱颖而出,工作之余还不忘给青多年朋友写一些科普 读物。下面就是华罗庚爷爷曾经介绍给同学们的一个有趣 的数学游戏:

三年级奥数题及答案-倒推法

三年级奥数题及答案-倒推法

三年级奥数题及答案-倒推法
导语:适当的学习奥数可以锻炼思维,是大有好处的,一般来说学,小学生从小学三年级开始比较合适,四、五年级入手也不算太晚。

这是小编今天为同学们带来的题,要认真做哦!
一次数学考试后,李军问于昆数学考试得多少分.于昆说:"用我得的分数减去8加上10,再除以7,最后乘以4,得56."小朋友,你知道于昆得多少分吗?
答案与解析:
分析这道题如果顺推思考,比较麻烦,很难理出头绪来.如果用倒推法进行分析,就像剥卷心菜一样层层深入,直到解决问题.
如果把于昆的叙述过程编成一道文字题:一个数减去8,加上10,再除以7,乘以4,结果是56.求这个数是多少?
把一个数用□来表示,根据题目已知条件可得到这样的等式:
{[(□-8)+10]÷7}×4=56.
如何求出□中的数呢?我们可以从结果56出发倒推回去.因为56是乘以4后得到的,而乘以4之前是56÷4=14.14是除以7后得到的,除以7之前是14×7=98.98是加10后得到的,加10以前是98-10=88.88是减8以后得到的,减8以前是88+8=96.这样倒推使问题得解.
解:{[(□-8)+10]÷7}×4=56
[(□-8)+10〕÷7=56÷4
答:于昆这次数学考试成绩是96分.
通过以上例题说明,用倒推法解题时要注意:
①从结果出发,逐步向前一步一步推理.
②在向前推理的过程中,每一步运算都是原来运算的逆运算.
③列式时注意运算顺序,正确使用括号.。

4-奥数练习-倒推法解题

4-奥数练习-倒推法解题

1.某数扩大7倍后,再缩小2倍,加上8减去6,等于51,求某数?
2.一根电线一半一半地剪去,剪了4次,剩下的正好是2米。

这根电线原来长
多少米?
3.小明、小军和小华共制作科技模型36件。

如果小明给小军6件,小军给小
华4件,他们三人制作的科技模型的件数正好相等。

问他们原来各制作多少件?
4.瓶内装有酒精,倒进500克以后又倒出一半,又倒进500克,这时瓶内有酒
精1200克。

问瓶内原有酒精多少克?
5.幸福小学暑假毕业学生86人,开学招进新生148人,同时又转入学生7人,
转出3人,这时全校共有学生654人,问暑假前幸福小学有多少学生?
6.一条幼虫长成成虫,每天长大一倍,40天长到40厘米,问第36天长多少厘米?
7.某人去银行取款,第一次取了存款的一半多5元,第二次取了余下的一半多
10元,最后剩下125元,求他原来有多少元?
8. 池塘的水面上生长着浮萍,浮萍所占面积每天增加一倍,经过15天把池溏占满了,求它几天占池塘的4
1?
9.。

小学奥数--倒推法练习题(学生版)

小学奥数--倒推法练习题(学生版)

小学奥数专项练习题-----(倒推法)A组1、一个数加上1,乘以8,减去8,结果还是8,这个数是。

2、某次数学考试中,小强的分数如果减去6,再除以10,然后加上6再乘以8,正好是120分。

那么小强这次考试的成绩是。

3、甲乙丙三个数,从甲数中取出20加到乙数,然后从乙数中取18加到丙数,最后从丙数中取出25加到甲数,这时三个数都恰好是160。

那么甲数原来是。

4、三堆苹果各有若干个。

先从第一堆中拿出与第二堆个数相同的苹果放入第二堆,再从第二堆中拿出与第三堆个数相同的苹果放入第三堆,最后再从第三堆中拿出与这时第一堆个数相同的苹果放入第一堆。

这时三堆苹果都正好是16个。

原来第一堆苹果有个。

5、三个盒子里的珠宝数不等,第一次从甲盒里拿出一些珠宝放入乙丙两盒内,使乙丙两盒里的珠宝数各增加一倍;第二次从乙盒里拿出一些珠宝放入甲丙两盒内,使甲丙两盒里的珠宝数各增加一倍;第三次从丙盒里拿出一些珠宝放入甲乙两盒内,使甲乙两盒里的珠宝数各增加一倍。

这时三个盒里都是48颗珠宝。

最初甲盒子里有颗珠宝。

6、甲乙丙三人各有铜板若干枚,开始甲把自己的铜板拿出一部分给了乙丙,使乙丙的铜板数各增加一倍,后来乙把自己的铜板拿出一部分给了甲丙,使甲丙的铜板数各增加一倍,最后丙也把自己的铜板拿出一部分给了甲乙,使甲乙的铜板数各增加一倍。

这时三人的铜板数都是8枚。

原来最少的人有枚铜板。

7、现有排成一列的七个数,从第三个数起,每个数都是它前面两个数的乘积。

如果最后两个数分别是16、64,那么第一个数是。

8、池塘水面渐渐被长出的睡莲所覆盖了,睡莲长得很快,每天覆盖的面积增加一倍,30天可覆盖整个池塘。

那么覆盖半个池塘需要天。

9、一种水生植物覆盖某湖面的面积每天增大一倍,18天覆盖整个湖面,那么经过16天覆盖整个湖面的。

10、一种微生物,每小时可增加一倍,现在一批这样的微生物,10小时可增加到100万个。

那么增加到25万个需要小时。

11、某人去银行取款,第一取出存款总数的一半还多5元,第二次取了余下的一半还多5元,这时他银行中的存款还剩下130元。

小学数学三年级奥数教案《奥数解析用倒推法解应用题》

小学数学三年级奥数教案《奥数解析用倒推法解应用题》

三年级奥数解析:用倒推法解应用题综述:有些应用题解法的思考,是从应用题所叙述事情的最后结果出发,利用已知条件一步一步倒着分析推理。

追根究底,逐步靠拢所求,直到解决问题。

这种思考问题的方法,通常我们把它叫做倒推法.故事为铺垫例题:张二痞平时好吃懒做,还一心想发财,一天,他依在一棵大槐树上正幻想着如何发财,突然来了一位白发苍的老人,看透了他的心事,笑了笑对他说:“小伙子,我知道你在想什么,想发财,我可以帮助。

”张二痞高兴得跳起来:“真的!你帮我发了才,一定感谢你。

"老人说:“我知道你身上有钱,但不多,这样吧,把你身上的钱往身后树洞里一放,我吹一口气,你的钱就会增加一倍,然后你给我32元作为报酬。

”小伙子照样办了,钱果然增长了一倍,他恳求老人再来一次,钱一放,吹口气,又增加一倍,付给老人32元………经过四次之后,张二痞从树洞里取出32元,付给了老人,他变得两手空空的了。

十分沮丧。

老人把钱还给张二痞说:“小伙子,要发财,还得靠自己勤劳.”说完老人不见。

这是怎么一回事?张二痞原来有多少钱?我们用“○”表示小伙子原来的钱数,按照上面说的,就会得到下面的图示:从上图就会发现,如果顺着算是很是很难算出原来的钱数,如果我们从最后的结果,倒推回去,就很容易算出原来的钱数,如果给老人32元,最后一次从树洞里取出的钱就是32元,第4次放进去的钱就是32÷2=16元了,照这样倒推回去,就得到下面的图示:2-32 ×2-32(4) (3)(2) (1)这样倒着推算的结果是张二痞原来只有30元。

有些问题,从已知条件出发,向所求的问题顺着推算得到答案是很困难的,如果从应用题所叙述的叙述的最后结果出发,倒着向前一步一步分析推算,直到解决问题,解起来就容易得多,这种利用已知条件,按照题目叙述的过程向相反的方向倒着推理思考、解答问题的方法,通常叫做“倒推法".例1 小聪问小明:“你今年几岁?”小明回答说:“用我的年龄数减去8,乘以7,加上6,除以5,正好等于4。

(word完整版)三年级奥数错中求解用对应法解题

(word完整版)三年级奥数错中求解用对应法解题

错中求解专题简析:在进行加、减、乘、除运算时,要认真审题,不能抄错题目,不能漏掉数字。

计算时要仔细小心,不能丝毫马虎,否则就会造成错误。

解答这类题,往往要采用倒推的方法,从错误的结果入手分析错误的原因,最后利用和差的变化求出加数或被减数、减数,利用积、商的变化求出因数或被除数、除数。

例题1 小马虎在做一道加法题时,把一个加数十位的5错看成2,另一个加数个位上的4错看成1,结果计算的和为241。

正确的和是多少?思路导航:把一个加数十位上的5看成2,少了3个10,这样和就减少了30;把另一个加数个位上的4看作1,少了3个1,这样和就少了3。

小马虎算出的和比原来的和少了30+3=33,所以正确的和是241+33=274。

练习一1,小明在做一道加法时,把一个加数个位上的2看作了4,另一个加数个位上的7看作9,结果计算的和为215。

正确的和为多少?2,小马虎在做一道加法题时,把一个加数个位上的3看作了5,十位上的4看作7,得到结果为376。

正确的和是多少?3,小粗心在计算一道加法题时,把一个加数个位上的7看作1,十位上的3看作8,结果为342。

正确的和是多少?例题2小马虎在做一道减法时,把减数十位上的2看作了5,结果得到的差是342,正确的差是多少?思路导航:十位上的2表示2个十,十位上的5表示5个十,把十位上的2看作5,就是把20看作50,减数从20变为50,增加了30,所得的差减少了30,应在342中增加30,才是正确的差。

340+30=372练习二1,小马虎在做减法题时,把被减数十位上的3错写成8,结果得到的差是284。

正确的差是多少?2,在减法算式中,错把减数个位上的3写成了5,结果得到的差是254。

正确的差是多少?3,小丽在做一道减法时,错把被减数十位上的2看作7,减数个位上的5看作8,结果得到的差是592。

正确的差是多少?例题3 小马虎在计算一道题目时,把某数乘3加20,误看成某数除以3减20,得数是72。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

引入 : 一个数 +/-/÷变成 18,这个数是多少? 通货膨胀猪肉价格翻了一倍一斤 28 元,问原来价格多少?
例 1: 小军说:用我的年龄减去 9,再乘 7,加上 6,然后除以 5,正好等于 4.你知道小军现在多少岁吗
பைடு நூலகம்
练一练 1: 李大伯说:我得年纪加上 8,除以 4,减去 15,用 10 乘,恰好是 20,请问李大伯多少岁
课题
倒推法解题
教学目标
再掌握画图和列表的策略解决问题的基础上, 用“倒过来推想 ”的策略解决相关实际问 题,学会运用 “倒过来推想 ”的策略寻找解决问题的思路,并能根据问题的具体情况确
定合理的解题步骤,从而有效地解决问题。 重 点 学会运用 “倒过来推想 ”的策略解决实际问题

点 根据具体问题确定合理的解题步骤
例 2:
练一练 2:
小东做一道加法题,将其中一个加数“个位上的 4 看成 8”,把另一个加数“十位的 7 看成 1”,结 果是 152,求这道题的正确答案是多少
练一练 3(1)
2
(2) 例 4:
练一练 4:
3
例 5:
练一练 5:
你学会了吗
1
4
2
3.
5
4.
6
作业
1 2 3
7
相关文档
最新文档