计数原理单元测试题

合集下载

计数原理单元测试卷一

计数原理单元测试卷一

计数原理单元测试卷一同学们,今天我们进行的是计数原理单元的测试,请大家认真审题,仔细作答。

现在,让我们开始今天的测试。

一、选择题(每题3分,共30分)1. 某班级有30名学生,需要选出5名代表参加校运会,有多少种不同的选法?A. 3000B. 300C. 150D. 1002. 如果一个事件可以由n个步骤组成,每个步骤有两种选择,那么完成这个事件共有多少种不同的方法?A. 2^nB. n^2C. 2nD. n!3. 某图书馆有100本书,需要选出10本进行展示,如果不考虑书籍的排列顺序,共有多少种不同的选法?A. 100B. 10C. 10^100D. 100!/(10!*90!)...(此处省略其他选择题)二、填空题(每空2分,共20分)1. 如果一个事件有5种可能的结果,每种结果发生的概率相等,那么这个事件的期望值是______。

2. 从5个不同的数字中选出3个数字进行排列,不考虑排列顺序,共有______种不同的组合。

...(此处省略其他填空题)三、简答题(每题10分,共20分)1. 请解释什么是排列和组合,并给出一个例子说明它们的区别。

2. 请解释什么是二项式定理,并给出一个应用二项式定理的例子。

四、计算题(每题15分,共30分)1. 某学校有5个班级,每个班级有50名学生。

现在需要从这5个班级中随机选出10名学生组成一个学习小组。

如果不考虑班级之间的差异,计算出有多少种不同的组合方式。

2. 假设有5个不同的球和5个不同的盒子,每个盒子只能放一个球。

计算出有多少种不同的放球方法。

五、论述题(共10分)请论述计数原理在日常生活中的应用,并给出至少两个具体的例子。

同学们,测试结束。

请检查自己的答案,确保没有遗漏。

希望你们都能取得好成绩。

如果有任何疑问,可以在课后与我讨论。

谢谢大家的努力和参与。

(完整版)(数学选修23)第一章计数原理测试题

(完整版)(数学选修23)第一章计数原理测试题

(数学选修2--3)第一章计数原理一、选择题1.将3个不同的小球放入4个盒子中,不同放法种数有〔〕A.81B.64C.12D.142.从4台甲型和5台乙型机中任意取出3台,其中至少有甲型与乙型机各1台,不同的取法共有〔〕A.140种3.5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有〔〕A.A33B.4A33C.A55A32A33D.A22A33A21A31A334.a,b,c,d,e共5个人,从中1名1名副,但a不能当副,不同的法数是〔B.16C.10D.65.有男、女学生共8人,从男生中2人,从女生中1人分参加数学、物理、化学三科,共有90种不同方案,那么男、女生人数分是〔〕A.男生2人,女生6人B.男生3人,女生5人C.男生5人,女生3人D.男生6人,女生2人.x186.在的展开式中的常数是〔〕23xB.7C.28D.287.(12x)5(2x)的展开式中x3的的系数是〔〕B.120C.100D.1002n8.x展开式中只有第六二式系数最大,展开式中的常数是〔〕x2A.180B.90C.45D.360二、填空题1.从甲、乙,⋯⋯,等6人中出4名代表,那么〔1〕甲一定当,共有种法.〔2〕甲一定不入,共有种法.〔3〕甲、乙二人至少有一人当,共有种法.2.4名男生,4名女生排成一排,女生不排两端,有种不同排法.3.由0,1,3,5,7,9六个数字成_____个没有重复数字的六位奇数.4.在(x3)10的展开式中,x6的系数是.5.在(1x2)20展开式中,如果第4r和第r 2的二式系数相等,r,T4r.6.在1,2,3,...,9的九个数字里,任取四个数字排成一个首末两个数字是奇数的四位数,的四位数有_________________个?7.用1,4,5,x四个不同数字成四位数,288,.所有些四位数中的数字的和x8.从1,3,5,7,9中任取三个数字,从0,2,4,6,8中任取两个数字,成没有重复数字的五位数,共________________个?三、解答1.判断以下是排列是合?并算出果.1〕高三年学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?2〕高二年数学外小10人:①从中一名正和一名副,共有多少种不同的法?②从中2名参加省数学,有多少种不同的法?2.7个排成一排,在以下情况下,各有多少种不同排法?1〕甲排,(2〕甲不排,也不排尾,〔3〕甲、乙、丙三人必须在一起,4〕甲、乙之间有且只有两人,5〕甲、乙、丙三人两两不相邻,6〕甲在乙的左边〔不一定相邻〕,7〕甲、乙、丙三人按从高到矮,自左向右的顺序,8〕甲不排头,乙不排当中。

(人教版)重庆市选修三第一单元《计数原理》测试题(包含答案解析)

(人教版)重庆市选修三第一单元《计数原理》测试题(包含答案解析)

一、选择题1.在二项式()12nx -的展开式中,所有项的二项式系数之和为256,则展开式的中间项的系数为( ) A .960- B .960 C .1120D .16802.若()()()()()201923201901232019122222x a a x a x a x a x -=+-+-+-+⋅⋅⋅+-,则01232019a a a a a -+-+⋅⋅⋅-的值为( )A .-2B .-1C .0D .13.将甲、乙、丙、丁四人分配到A 、B 、C 三所学校任教,每所学校至少安排1人,则甲不去A 学校的不同分配方法有( ) A .18种B .24种C .32种D .36种4.若0k m n ≤≤≤,且,,m n k N ∈,则0mn m k n k n k CC --==∑( )A .2m n +B .2mn m CC .2n mn C D .2m mn C5.已知二项式()nx x-的展开式中二项式系数之和为64,则该展开式中常数项为 A .-20B .-15C .15D .206.已知21nx x ⎛⎫ ⎪⎝⎭+的二项展开式的各项系数和为32,则二项展开式中x 的系数为( ) A .5 B .10 C .20 D .407.在()nx x+的展开式中,各项系数与二项式系数和之比为128,则4x 的系数为( ) A .21B .63C .189D .7298.在2310(1)(1)(1)x x x ++++⋅⋅⋅++的展开式中,含2x 项的系数为( ) A .45B .55C .120D .1659.在二项式3nx x ⎛⎫+ ⎪⎝⎭的展开式中,各项系数之和为A ,二项式系数之和为B ,若72A B +=,则n =( )A .3B .4C .5D .610.如图,用6种不同的颜色把图中A,B,C,D 四块区域涂色分开,若相邻区域不能涂同一种颜色,则不同涂法的种数为( )A .400B .460C .480D .49611.若()()()2202020202019201801220201111a x a x x a x x a x +-+-++-=,则012020a a a +++=( )A .1B .0C .20202D .2021212.以长方体1111ABCD A B C D -的任意三个顶点为顶点作三角形,从中随机取出2个三角形,则这2个三角形不共面的情兄有( )种A .1480B .1468C .1516D .1492二、填空题13.已知13nx x ⎛⎫- ⎪⎝⎭的展开式中第6项与第8项的二项式系数相等,则含10x 项的系数是___________.14.把4名中学生分别推荐到3所不同的大学去学习,每个大学至少收一名,全部分完,不同的分配方案数为________.15.方程10x y z ++=的正整数解的个数__________.16.4名志愿者被随机分配到、、A B C 三个不同的岗位服务,每个岗位至少有一名志愿者,则甲、乙两名志愿者没有分配到同一个岗位服务的概率为______. 17.(x +y )(2x -y )5的展开式中x 3y 3的系数为________.18.有4位同学参加学校组织的政治、地理、化学、生物4门活动课,要求每位同学各选一门报名(互不干扰),则地理学科恰有2人报名的方案有______.19.定义“规范01数列”{}n a 如下:{}n a 共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a 中0的个数不少于1的个数.若4m =,则不同的“规范01数列”共有____个.20.622x x ⎛ ⎝的展开式中3x 的系数为__________.(用数字作答)三、解答题21.设函数(,)(1)(0,0)x f x y my m y =+>>.(1)当3m =时,求()9,f y 的展开式中二项式系数最大的项;(2)已知(2,)f n y 的展开式中各项的二项式系数和比(,)f n y 的展开式中各项的二项式系数和大4032,若01(,)nn f n y a a y a y =++⋅⋅⋅+,且2135a =,求1i ni a =∑22.求值:(1)333364530C C C C +++⋅⋅⋅+; (2)12330303030302330C C C C +++⋅⋅⋅+.23.已知i ,m ,n 是正整数,且1i m n <≤<. (1)证明:i i i im n n A m A <; (2)证明:(1)(1)m n n m +<+. 24.已知()(n f x x =,()f x 的展开式的各二项式系数的和等于128,(1)求n 的值;(2)求()f x 的展开式中的有理项;(3)求()f x 的展开式中系数最大的项和系数最小的项.25.已知二项式1nx ⎫⎪⎭的展开式中各项的系数和为256. (1)求n ;(2)求展开式中的常数项.26.已知5nx⎛⎝.(1)当6n =时,求: ①展开式中的中间一项; ②展开式中常数项的值;(2)若展开式中各项系数之和比各二项式系数之和大240,求展开式中含x 项的系数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先根据条件求出8n =,再由二项式定理及展开式通项公式,即可得答案. 【详解】由已知可得:2256n =,所以8n =,则展开式的中间项为44458(2)1120T C x x =-=,即展开式的中间项的系数为1120. 故选:C .【点睛】本题考查由二项式定理及展开式通项公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.2.B解析:B 【分析】令1x =,即可求01232019a a a a a -+-+⋅⋅⋅-出的值. 【详解】解:在所给等式中,令1x =,可得等式为()20190123201912a a a a a -=-+-+⋅⋅⋅-,即012320191a a a a a -+-+⋅⋅⋅-=-. 故选:B. 【点睛】本题考查二项式定理的展开使用及灵活变求值,特别是解决二项式的系数问题,常采用赋值法,属于中档题.3.B解析:B 【分析】根据题意,分两种情况讨论:①其他三人中有一个人与甲在同一个学校,②没有人与甲在同一个学校,由加法原理计算可得答案. 【详解】解:根据题意,分两种情况讨论,①其他三人中有一个人与甲在同一个学校,有11232212C A A =种情况, ②没有人与甲在同一个学校,则有12223212C C A =种情况;则若甲要求不到A 学校,则不同的分配方案有121224+=种; 故选:B . 【点睛】本题考查排列、组合的应用,涉及分类加法原理的应用,属于中等题.4.D解析:D 【分析】先利用特殊值排除A,B,C ,再根据组合数公式以及二项式定理论证D 成立. 【详解】 令0m =得,CC C C 1mn m k n n k n n n k --===∑,在选择项中,令0m =排除A ,C ;在选择项中,令1m =,101110C C C C C C 2mn m k n n n k n n n n n k n -----==+=∑排除B ,()!!()!()!!()!mmn m k n knk k n k n CC n m m k k n k --==-=⋅---∑∑000!!2()!!!()!mm mm k m k m mn m n m n k k k n m C C C C C n m m k m k ====⋅=⋅==--∑∑∑,故选D 【点睛】本题考查组合数公式以及二项式定理应用,考查基本分析化简能力,属中档题.5.C解析:C 【分析】利用二项式系数之和为64解得6n =,再利用二项式定理得到常数项. 【详解】二项式(nx 的展开式中二项式系数之和为642646n n ⇒=⇒=36662166(((1)r r r r rr r x T C x C x --+-⇒=⋅=-当36042r r -=⇒=时,系数为15 故答案选C 【点睛】本题考查了二项式定理,先计算出6n =是解题的关键,意在考查学生的计算能力.6.B解析:B 【分析】首先根据二项展开式的各项系数和012232n n n n n n C C C C +++==,求得5n =,再根据二项展开式的通项为211()()r rn rr n T C x x-+=,求得2r,再求二项展开式中x 的系数.【详解】因为二项展开式的各项系数和012232n n n n n n C C C C +++==,所以5n =,又二项展开式的通项为211()()r rn rr n T C x x-+==3r r n n C x -,351r -=,2r所以二项展开式中x 的系数为2510C =.答案选择B .【点睛】本题考查二项式展开系数、通项等公式,属于基础题.7.C解析:C 【解析】分析:令1x =得各项系数和,由已知比值求得指数n ,写出二项展开式通项,再令x 的指数为4求得项数,然后可得系数.详解:由题意41282n n =,解得7n =,∴37721773r r r r r rr T C x C x --+==,令3742r-=,解得2r ,∴4x 的系数为2273189C =.故选C . 点睛:本题考查二项式定理,考查二项式的性质.在()n a b +的展开式中二项式系数和为2n ,而展开式中各项系数的和是在展开式中令变量值为1可得,二项展开式通项公式为1C r n r rr n T ab -+=. 8.D解析:D 【解析】分析:由题意可得展开式中含2x 项的系数为222223410C C C C +++⋯+ ,再利用二项式系数的性质化为 311C ,从而得到答案.详解:()()()2310111x x x ++++⋅⋅⋅++的展开式中含2x 项的系数为222232341011 165.C C C C C +++⋯+==故选D.点睛:本题主要考查二项式定理的应用,求展开式中某项的系数,二项式系数的性质,属于中档题.9.A解析:A 【解析】分析:先根据赋值法得各项系数之和,再根据二项式系数性质得B ,最后根据72B +=解出.n详解:因为各项系数之和为(13)4nn+=,二项式系数之和为2n , 因为72A B +=,所以4272283n n n n +=∴=∴=, 选A.点睛:“赋值法”普遍适用于恒等式,是一种重要的方法,对形如2(),()(,)n n ax b ax bx c a b R +++∈的式子求其展开式的各项系数之和,常用赋值法, 只需令1x =即可;对形如()(,)nax by a b +∈R 的式子求其展开式各项系数之和,只需令1x y ==即可.10.C解析:C 【解析】分析:本题是一个分类计数问题,只用三种颜色涂色时,有31116321C C C C 种方法,用四种颜色涂色时,有41126322C C C A 种方法,根据分类计数原理得到结果.详解:只用三种颜色涂色时,有31116321120C C C C =种方法, 用四种颜色涂色时,有41126432360C C C A =种方法,根据分类计数原理得不同涂法的种数为120+360=480. 故答案为C.点睛:(1)本题主要考查计数原理,考查排列组合的综合应用,意在考查学生对这些知识的掌握水平和分析推理能力.(2)排列组合常用的方法有一般问题直接法、相邻问题捆绑法、不相邻问题插空法、特殊对象优先法、等概率问题缩倍法、至少问题间接法、复杂问题分类法、小数问题列举法.11.C解析:C 【分析】 由()202011x x =+-⎡⎤⎣⎦结合二项式定理可得出2020kk a C =,利用二项式系数和公式可求得012020a a a +++的值.【详解】()2020201920182202001220202020(1)(1(1)11)x x a x a x x a x x a x +-+-++-=⎡⎤⎣⎦+-=,当02020k ≤≤且k ∈N 时,2020kk a C =,因此,01220202020202020202020012202020202a a a C C a C C =++++=+++⋅⋅⋅+.故选:C. 【点睛】关键点睛:本题考查二项式系数和的计算,解题的关键是熟悉二项式系数和公式0122nn n n n n C C C C ++++=,考查学生的转化能力与计算能力,属于基础题.12.B解析:B 【分析】根据平行六面体的几何特征,可以求出以平行六面体1111ABCD A B C D -的任意三个顶点为顶点作三角形的总个数,及从中随机取出2个三角形的情况总数,再求出这两个三角形共面的情况数,即可得到这两个三角形不共面的情况数,即可得到答案. 【详解】因为平行六面体1111ABCD A B C D -的8个顶点任意三个均不共线, 故从8个顶点中任取三个均可构成一个三角形共有38=56C 个三角形,从中任选两个,共有2561540C =种情况,因为平行六面体有六个面,六个对角面, 从8个顶点中4点共面共有12种情况, 每个面的四个顶点共确定6个不同的三角形,故任取出2个三角形,则这2个三角形不共面共有1540-12×6=1468种, 故选:B. 【点睛】本题考查了棱柱的结构特征,考查了组合数的计算,在解题过程中注意共面和不共面的情况,做到不重不漏,属于中档题.二、填空题13.【分析】首先由二项式系数相等求再根据通项公式求指定项的系数【详解】由条件可知所以所以的通项公式是令解得:所以函数的系数是故答案为:-4【点睛】易错点睛:本题考查二项式定理求指定项系数其中二项式系数与 解析:4-【分析】首先由二项式系数相等求n ,再根据通项公式求指定项的系数. 【详解】由条件可知57n n C C =,所以5712n =+=,所以1213x x ⎛⎫- ⎪⎝⎭的通项公式是12122112121133r rr r r rr T C x C x x --+⎛⎫⎛⎫=⋅⋅-=-⋅⋅ ⎪ ⎪⎝⎭⎝⎭, 令12210r -=,解得:1r =, 所以函数10x 的系数是112143C ⎛⎫-⋅=- ⎪⎝⎭. 故答案为:-4 【点睛】易错点睛:本题考查二项式定理求指定项系数,其中二项式系数与项的关系是第1r +项的系数是rn C ,这一点容易记错,需注意.14.36【分析】先从4个人中选出2人作为一个元素看成整体再把它同另外两个元素在三个位置全排列根据分步乘法原理得到结果【详解】从4名学生中选出2名学生作为一个整体有种再和另外两人分别推荐到3所不同的大学共解析:36 【分析】先从4个人中选出2人作为一个元素看成整体,再把它同另外两个元素在三个位置全排列,根据分步乘法原理得到结果. 【详解】从4名学生中选出2名学生作为一个整体,有24C 种,再和另外两人分别推荐到3所不同的大学,共有234336C A =种分配方案.故答案为:36 【点睛】本题考查分步乘法计数原理,利用了捆绑法,属于中档题.15.【分析】本题转化为把10个球放在三个不同的盒子里有多少种方法利用隔板法即可求得答案【详解】问题中的看作是三个盒子问题则转化为把个球放在三个不同的盒子里有多少种方法将个球排一排后中间插入两块隔板将它们 解析:36【分析】本题转化为把10个球放在三个不同的盒子里,有多少种方法,利用隔板法,即可求得答案. 【详解】问题中的x y z 、、看作是三个盒子,问题则转化为把10个球放在三个不同的盒子里,有多少种方法.将10个球排一排后,中间插入两块隔板将它们分成三堆球,使每一堆至少一个球. 隔板不能相邻,也不能放在两端,只能放在中间的9个空内.∴共有2936C =种.故答案为:36 【点睛】本题解题关键是掌握将正整数解的问题转化为组合数问题,考查了分析能力和转化能力,属于中档题.16.【分析】要保证每个岗位至少一人人所以首先将四个人分成三组在将三组全排列求出总事件数然后再将甲乙分到不同两组得出甲乙不在同一岗位的基本事件数总而得出概率【详解】因为每个岗位至少有一人所以要将四个人分成解析:56【分析】要保证每个岗位至少一人人,所以首先将四个人分成三组,在将三组全排列求出总事件数,然后再将甲乙分到不同两组,得出甲乙不在同一岗位的基本事件数,总而得出概率. 【详解】因为每个岗位至少有一人,所以要将四个人分成三组,则只能是211、、所以总事件数为: 2113421322=36C C C A A ⋅⋅⋅, 甲乙不在同一岗位的基本事件数:()11232223+=30C C C A ⋅⋅ 所以甲、乙两名志愿者没有分配到同一个岗位服务的概率305=366P =, 故答案为:56. 【点睛】本题考查等可能性事件的概率,利用排列组合公式求出基本事件的总数和满足某个事件的基本事件个数是解答本题的关键.17.40【分析】先求出的展开式的通项再求出即得解【详解】设的展开式的通项为令r=3则令r=2则所以展开式中含x3y3的项为所以x3y3的系数为40故答案为:40【点睛】本题主要考查二项式定理求指定项的系解析:40 【分析】先求出5(2)x y -的展开式的通项,再求出43,T T 即得解.【详解】设5(2)x y -的展开式的通项为555155(2)()(1)2r rr r r r r r r T C x y C x y ---+=-=-,令r=3,则32323454=40T C x y x y =--, 令r=2,则23232358=80T C x y x y =,所以展开式中含x 3y 3的项为233233(40)(80)40x x y y x y x y ⋅-+⋅=.所以x 3y 3的系数为40. 故答案为:40 【点睛】本题主要考查二项式定理求指定项的系数,意在考查学生对这些知识的理解掌握水平.18.【分析】由排列组合及分步原理得到地理学科恰有2人报名的方案即可求解得到答案【详解】由题意先在4位同学中选2人选地理学科共种选法再将剩下的2人在政治化学生物3门活动课任选一门报名共3×3=9种选法故地 解析:54【分析】由排列组合及分步原理得到地理学科恰有2人报名的方案,即可求解,得到答案. 【详解】由题意,先在4位同学中选2人选地理学科,共246C =种选法,再将剩下的2人在政治、化学、生物3门活动课任选一门报名,共3×3=9种选法, 故地理学科恰有2人报名的方案有6×9=54种选法, 故答案为54. 【点睛】本题主要考查了排列、组合,以及分步计数原理的应用,其中解答中认真审题,合理利用排列、组合,以及分步计数原理求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.19.14【解析】由题意得必有则具体的排法列表如下:由图可知不同的规范01数列共有14个故答案为14解析:14 【解析】由题意,得必有10a =,81a =,则具体的排法列表如下:由图可知,不同的“规范01数列”共有14个. 故答案为14.20.60【解析】的展开式的通项公式为令得∴的系数为故答案为60解析:60 【解析】622x x ⎛ ⎝的展开式的通项公式为()3666216612222xrr x r r r r T C x C x x ---+⎛⎛⎫==-⋅ ⎪ ⎝⎭⎝ 令3632r -=得2r∴3x 的系数为2622612602C -⎛⎫-⋅⋅= ⎪⎝⎭故答案为60三、解答题21.(1)4511206T y =,5633618T y =;(2)4095. 【分析】(1)根据二项式的性质知二项式系数最大项为第5、第6项,代入通项计算;(2)利用展开式中各项的二项式系数和公式列出等式求解n ,代入(,)f n y 由2135a =列等式求解m ,即可利用赋值法求1i ni a =∑.【详解】(1)9(9,)(13)f y y =+,二项式系数最大项为第5、第6项,44459(3)11206T C y y ==,55569(3)33618T C y y ==.(2)由题意:2224032n n -=,即()()2642630nn-+=,解得6n =,6260126(6,)(1)f y my a a y a y a y =+=+++⋅⋅⋅+,则2226135a C m ==,29m =,解得3m =或3-(舍去),则6(6,)(13)f y y =+,令1y =可得601264a a a a =+++⋅⋅⋅,所以661260126011414095n i ii i a aa a a a a a a a ====++⋅⋅⋅=+++⋅⋅⋅-=-=∑∑.【点睛】本题考查二项式定理,涉及二项式系数最大项、展开式中二项式系数和、赋值法求展开式中项的系数和,属于中档题. 22.(1)31464;(2)29302⋅. 【分析】(1)根据组合数性质11m m mn n n C C C -++=即可得结果; (2)根据组合数性质0122n n n n n n C C C C ++++=即可得结果;【详解】(1)333343333456304456301C C C C C C C C C +++⋅⋅⋅+=++++⋅⋅⋅+-4311C =-31464=(2)()12330012293030303029292929233030C C C C C C C C +++⋅⋅⋅+=+++⋅⋅⋅+29302=⋅ 【点睛】本题主要考查了通过组合数的性质计算式子的值,熟练掌握运算性质是解题的关键,属于中档题.23.(1)证明过程见解析;(2)证明过程见解析. 【分析】(1)根据排列数的公式,结合不等式的性质进行证明即可;(2)根据二项式定理,结合(1)中的结论、排列数、组合数的公式进行证明即可. 【详解】(1)由排列数的公式得:(1)(2)(1)121i m i A m m m m i m m m m i m mmm m m m m m---+---+==⋅⋅, (1)(2)(1)121i n i A n n n n i n n n n i n nnn n n n n n---+---+==⋅⋅, 当1i m n <≤<,1,2,31k i =-时,()()()=0m k n k n m k m n k k m n m k n km n mn mn m n ---------=<⇒<, 由不等式的性质可知: 121m m m m i m m mm ---+⋅⋅<121n n n n i n n nn---+⋅⋅,即i m i A m <i i i m ni i n i n A nm A A <⇒; (2)由二项式定理可知:0(1),(1)mnmi i ni imn i i n n Cm m C ==+=⋅+=⋅∑∑,因为,!!i iiim n mn A A C C i i ==,由(1)知:i i i i m n n A m A <, 所以有i i i im n n C m C <,又因为000011111,,0i in m n m n m C n C m C n C nm m C ====>(1)i m n <≤<,所以(1)(1)n mii ii n m nm i i m C n Cm n ==⋅>⋅⇒+>+∑∑.【点睛】本题考查了排列数、组全数公式的应用,考查了二项式定理,考查了不等式的性质,考查推理论证能力和数学运算能力.24.(1)7n =;(2)71=T x ,3435T x =-,177-=T x ;(3)系数最大的项为第五项53535T x =;系数最小的项为第4项3435T x =-【分析】(1)根据()f x 的展开式的各二项式系数的和等于2128n =求解. (2)先得到()f x 的展开式中的通项公式47317(1)r r rr TC x-+=-,再令473r-为整数求解. (3)由通项公式知:第1r +项的系数为7(1)⋅-r r C ,若该系数最大,则r 为偶数,且7rC 最大求解.若该系数最小,则r 为奇数,且7rC 最大求解. 【详解】 (1)已知()(n f x x =,()f x ∴的展开式的各二项式系数的和等于2128n =,7n ∴=.(2)()f x 的展开式中的通项公式为47317(1)-+=⋅-⋅r r rr T C x,令473r-为整数,可得0r =,3,6, 故展开式的有理项为71=T x ,3435T x =-,177-=T x . (3)第1r +项的系数为7(1)⋅-r r C ,当该系数最大时,r 为偶数,且7rC 最大,此时,4r =, 故()f x 的展开式中系数最大的项为第五项53535T x =; 当该系数最小时,r 为奇数,且7rC 最大,此时,3r =, 故()f x 的展开式中系数最小的项为第4项3435T x =-.【点睛】本题主要考查二项展开式的通项公式,二项式系数的性质,项的系数,还考查了运算求解的能力,属于中档题. 25.(1)8;(2)28. 【分析】⑴观察1nx ⎫⎪⎭可知,展开式中各项系数的和为256,即112...256nn n n n C C C C ++++=,解出得到n 的值⑵利用二次展开式中的第1r +项,即通项公式11rn rrr nT C x -+⎛⎫= ⎪⎝⎭,将第一问的n 代入,并整理,令x 的次数为0,解出r ,得到答案 【详解】(1)由题意,得112...256nn n n n C C C C ++++=,即2n =256,解得n =8.(2)该二项展开式中的第1r +项为T r +1=8483881rr rr r CC x x --⎛⎫⋅=⋅ ⎪⎝⎭,令843r-=0,得r =2,此时,常数项为238T C ==28.【点睛】本题主要考的是利用赋值法解决展开式的系数和问题,考查了利用二次展开式的通项公式解决二次展开式的特定项问题. 26.(1)①322500x -;②375;(2)150.【分析】(1)当6n =时,利用二项式定理,二项展开式的通项公式,可求出特定的项以及常数项的值;(2)根据展开式中各项系数之和比各二项式系数之和大于240求出n 的值,再利用二项展开式的通项公式,求出展开式中含x 项的系数. 【详解】(1)①当6n =时,65x⎛- ⎝的展开式共有7项,展开式中的中间一项为()33333322465201252500T C x x x -⎛=⋅⋅=-⨯=- ⎝;②展开式的通项公式为()()36662166515r r rr rr r r T C x C x---+⎛=⋅⋅=⋅-⋅⋅ ⎝, 令3602r -=,得4r =,所求常数项的值为()442615375C ⋅-⋅=; (2)若展开式中各项系数之和比各二项式系数之和大于240,而展开式中各项系数之和为4n ,各二项式系数之和为2n , 则42240nn,即()()2152160n n+-=,解得4n =.所以,展开式通项为()()34442144515rr rr rr r r T C x C x---+⎛=⋅⋅=⋅-⋅⋅ ⎝, 令3412r -=,解得2r ,因此,展开式中含x 项的系数为()222415150C ⋅-⨯=. 【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于中档题.。

苏州市选修三第一单元《计数原理》测试(有答案解析)

苏州市选修三第一单元《计数原理》测试(有答案解析)

一、选择题1.已知()272901291(21)(1)(1)(1)()x x a a x a x a x x R +-=+-+-++-∈.则1a =( ) A .-30B .30C .-40D .402.对任意正整数n ,定义n 的双阶乘!!n 如下:当n 为偶数时,()()!!24642n n n n =--⨯⨯;当n 为奇数时,()()!!24531n n n n =--⨯⨯.现有四个命题:①()()2009!!2008!!2009!=;②2008!!21004!=⨯;③2008!!个位数为0;④2009!!个位数为5.其中正确的个数为( ) A .1B .2C .3D .43.把五个标号为1到5的小球全部放入标号为1到4的四个盒子中,并且不许有空盒,那么任意一个小球都不能放入标有相同标号的盒子中的概率是( ) A .320B .720C .316D .254.若()352()x x a -+的展开式的各项系数和为32,则实数a 的值为( )A .-2B .2C .-1D .15.若0k m n ≤≤≤,且,,m n k N ∈,则0mn m k n k n k CC --==∑( )A .2m n+B .2mn m CC .2n mn C D .2m mn C6.已知*n N ∈,设215nx x ⎛⎫- ⎪⎝⎭的展开式的各项系数之和为M ,二项式系数之和为N ,若992M N -=,则展开式中x 的系数为( )A .-250B .250C .-500D .5007.甲、乙二人均从5种不同的食品中任选一种或两种吃,则他们一共吃到了3种不同食品的情况有( ) A .84种B .100种C .120种D .150种8.在2310(1)(1)(1)x x x ++++⋅⋅⋅++的展开式中,含2x 项的系数为( ) A .45B .55C .120D .1659.若,m n 均为非负整数,在做m n +的加法时各位均不进位(例如,134********+=),则称(),m n 为“简单的”有序对,而m n +称为有序数对(),m n 的值,那么值为2964的“简单的”有序对的个数是( ) A .525 B .1050C .432D .86410.若2132020x x C C -+=,则x 的值为( )A .4B .4或5C .6D .4或611.某电视台的一个综艺栏目对六个不同的节目排演出顺序,最前只能排甲或乙,最后不能排甲,则不同的排法共有( ) A .240种B .288种C .192种D .216种12.若()()()2202020202019201801220201111a x a x x a x x a x +-+-++-=,则012020a a a +++=( )A .1B .0C .20202D .20212二、填空题13.有2个不同的红球和3个不同的黄球,将这5个球放入4个不同的盒子中,要求每个盒子至少放一个球,且同色球不能放在同一个盒子中,则不同的放置方法有________种.(用数字作答)14.512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数之和为2,则该展开式中4x 的系数为___________.15.若变量x ,y 满足约束条件202020x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,22n x y =+-,则n取最大值时,1nx ⎛⎫ ⎪⎝⎭二项展开式中的常数项为______.16.有4位同学参加学校组织的政治、地理、化学、生物4门活动课,要求每位同学各选一门报名(互不干扰),则地理学科恰有2人报名的方案有______.17.已知()()()()()23n2012111...+1...*n n x x x x a a x a x a x n N +++++++=++++∈,且012126n a a a a +++⋯+=,那么n的展开式中的常数项为______.18.已知33210n n A A =,那么n =__________.19.已知(12)n x +展开式中只有第4项的二项式系数最大,则21(1)(12)n x x++展开式中常数项为_______.20.设S 为一个非空有限集合,记||S 为集合S 中元素的个数,若集合S 的两个子集A 、B 满足:||A B k =并且A B S =,则称子集{,}A B 为集合S 的一个“k —覆盖”(其中0||k S ≤≤),若||S n =,则S 的“k —覆盖”个数为________三、解答题21.已知n的二项展开式的各二项式系数的和与各项系数的和均为256. (1)求展开式中有理项的个数; (2)求展开式中系数最大的项.22.已知在n 的展开式中第5项为常数项.(1)求n 的值;(2)求展开式中含有2x 项的系数; (3)求展开式中所有的有理项. 23.设()52501252x 1a a x a x a x -=++++,求:(1)015a a a +++;(2)015a a a +++;(3)135a a a ++;(4)()()22024135a a a a a a ++-++.24.记2nx x ⎛⎫+ ⎪⎝⎭(*n ∈N )的展开式中第m 项的系数为m b . (1)求m b 的表达式; (2)若3412b b =,求n ; (3)若6n =,求展开式中的常数项. 25.已知()23*23n n A C n N =∈.(1)求n 的值;(2)求12nx x ⎛⎫- ⎪⎝⎭展开式中2x 项的系数. 26.已知4530nnA C =,设()nf x x ⎛= ⎝. (Ⅰ)求n 的值;(Ⅱ)求()f x 的展开式中的常数项.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】令1t x =-,得29012927(22)(21)()a a t t t t a t a t x R =++++++∈+,进而得含t 的项为767722(2)tC C t +,从而得解.【详解】令1t x =-,则有:27290129[(1)1][2(1)1]()t t a a t a t a t x R +++-=++++∈,即29012927(22)(21)()a a t t t t a t a t x R =++++++∈+,7(21)t +展开式的通项公式为:77(2)r r C t -,所以29012927(22)(21)()a a t t t t a t a t x R =++++++∈+中含t 的项为:767722(2)30tC C t t +=.故选:B. 【点睛】关键点点睛:本题解题的关键是令1t x =-,转化为求27(22)(21)t t t +++的展开中含t 的项.2.C解析:C 【分析】利用双阶乘的定义以及阶乘的定义可判断①的正误;化简2008!!可判断②的正误;由2008!!能被10整除可判断③的正误;由2009!!能被5整除且为奇数可判断④的正误.综合可得出结论. 【详解】对于命题①,由双阶乘的定义得2009!!1352009=⨯⨯⨯⨯,2008!!2462008=⨯⨯⨯⨯,所以,()()2009!!2008!!1234200820092009!=⨯⨯⨯⨯⨯⨯=,命题①正确;对于命题②,()()()()2008!!246200821222321004=⨯⨯⨯⨯=⨯⨯⨯⨯⨯⨯⨯⨯100421004!=⨯,命题②错误;对于命题③,2008!!2468102008=⨯⨯⨯⨯⨯⨯,则2008!!能被10整除,则2008!!的个位数为0,命题③正确; 对于命题④,2009!!1352009=⨯⨯⨯⨯能被5整除,则2009!!的个位数为0或5,由于2009!!为奇数,所以,2009!!的个位数为5,命题④正确.故选:C. 【点睛】本题考查双阶乘的新定义,考查计算能力,属于中等题.3.B解析:B 【分析】由题意可以分两类,第一类第5球独占一盒,第二类,第5球不独占一盒,根据分类计数原理得到答案. 【详解】解:第一类,第5球独占一盒,则有4种选择;如第5球独占第一盒,则剩下的三盒,先把第1球放旁边,就是2,3,4球放入2,3,4盒的错位排列,有2种选择,再把第1球分别放入2,3,4盒,有3种可能选择,于是此时有236⨯=种选择; 如第1球独占一盒,有3种选择,剩下的2,3,4球放入两盒有2种选择,此时有236⨯=种选择,得到第5球独占一盒的选择有4(66)48⨯+=种,第二类,第5球不独占一盒,先放14-号球,4个球的全不对应排列数是9;第二步放5号球:有4种选择;9436⨯=,根据分类计数原理得,不同的方法有364884+=种.而将五球放到4盒共有2454240C A ⨯=种不同的办法,故任意一个小球都不能放入标有相同标号的盒子中的概率84724020P == 故选:B . 【点睛】本题主要考查了分类计数原理,关键是如何分步,属于中档题.4.D解析:D 【分析】根据题意,用赋值法,在()352()x x a -+中,令1x =可得()521(1)32a -+=,解可得a的值,即可得答案. 【详解】 根据题意,()352()xx a -+的展开式的各项系数和为32,令1x =可得:()521(1)32a -+=, 解可得:1a =, 故选:D . 【点睛】本题考查二项式定理的应用,注意特殊值的应用.5.D解析:D 【分析】先利用特殊值排除A,B,C ,再根据组合数公式以及二项式定理论证D 成立. 【详解】 令0m =得,CC C C 1mn m k n n k n n n k --===∑,在选择项中,令0m =排除A ,C ;在选择项中,令1m =,101110C C C C C C 2mn m k n n n k n n n n n k n -----==+=∑排除B ,()!!()!()!!()!mmn m k n knk k n k n CC n m m k k n k --==-=⋅---∑∑000!!2()!!!()!mm mm k m k m mn m n m n k k k n m C C C C C n m m k m k ====⋅=⋅==--∑∑∑,故选D 【点睛】本题考查组合数公式以及二项式定理应用,考查基本分析化简能力,属中档题.6.A解析:A 【分析】分别计算各项系数之和为M ,二项式系数之和为N ,代入等式得到n ,再计算x 的系数. 【详解】215nx x ⎛⎫- ⎪⎝⎭的展开式取1x =得到4n M = 二项式系数之和为2n N = 429925n n M N n -=-=⇒=5251031551(5)()5(1)r r r r r r r r T C x C x x---+=-=- 取3r = 值为-250故答案选A 【点睛】本题考查了二项式定理,计算出n 的值是解题的关键.7.C解析:C 【分析】由分步乘法计数原理先由5种食物中选择3种,共35C 种情况; 第二步,将3种食物编号,用列举法列举所有情况即可; 【详解】由分步乘法计数原理:第一步:由5种食物中选择3种,共35C 种情况; 第二步:将3种食物编号为A,B,C ,则甲乙选择的食物的情况有:()AB C ,,()AB AC ,,()AB BC ,,()AC B ,,()AC BC ,,()BC A ,,()A BC ,,()BC AC ,,()B AC ,,()BC AB ,,()AC AB ,,()C AB ,共12种情况,因此他们一共吃到了3种不同食品的情况有3512C 120=种.故选C【点睛】本题主要考查分步乘法计数原理,按定义逐步计算,最后求乘积即可,属于常考题型.8.D解析:D 【解析】分析:由题意可得展开式中含2x 项的系数为222223410C C C C +++⋯+ ,再利用二项式系数的性质化为 311C ,从而得到答案.详解:()()()2310111x x x ++++⋅⋅⋅++的展开式中含2x 项的系数为222232341011 165.C C C C C +++⋯+==故选D.点睛:本题主要考查二项式定理的应用,求展开式中某项的系数,二项式系数的性质,属于中档题.9.B解析:B 【分析】由题意知本题是一个分步计数原理,第一位取法两种为0,1,2,第二位有10种取法,从0,1,2,3,4,5,6,7,8,9 ,第三位有7种取法,从0,1,2,3,4,5,6取一个数字,第四为有5种,从0,1,2,3,4取一个数字,根据分步计数原理得到结果. 【详解】由题意知本题是一个分步计数原理, 第一位取法3种为0,1, 2,第二位有10种为0,1,2,3,4,5,6,7,8,9 , 第三位有7种为0,1,2,3,4,5,6, 第四为有5种为0,1,2, 3,4根据分步计数原理知共有3×10×7×5=1050个 故选:B. 【点睛】解答排列、组合问题的角度:解答排列、组合应用题要从“分析”、“分辨”、“分类”、“分步”的角度入手. (1)“分析”就是找出题目的条件、结论,哪些是“元素”,哪些是“位置”; (2)“分辨”就是辨别是排列还是组合,对某些元素的位置有、无限制等; (3)“分类”就是将较复杂的应用题中的元素分成互相排斥的几类,然后逐类解决; (4)“分步”就是把问题化成几个互相联系的步骤,而每一步都是简单的排列、组合问题,然后逐步解决.10.D解析:D 【解析】因为2132020x x C C -+=,所以213x x -=+ 或21320x x -++=,所以4x = 或6x =,选D.11.D解析:D 【详解】最前排甲,共有55A 120=种;最前排乙,最后不能排甲,有种,根据加法原理可得,共有种,故选D .考点:排列及计数原理的应用.12.C解析:C 【分析】 由()202011x x =+-⎡⎤⎣⎦结合二项式定理可得出2020kk a C =,利用二项式系数和公式可求得012020a a a +++的值.【详解】()2020201920182202001220202020(1)(1(1)11)x x a x a x x a x x a x +-+-++-=⎡⎤⎣⎦+-=,当02020k ≤≤且k ∈N 时,2020kk a C =,因此,01220202020202020202020012202020202a a a C C a C C =++++=+++⋅⋅⋅+.故选:C. 【点睛】关键点睛:本题考查二项式系数和的计算,解题的关键是熟悉二项式系数和公式0122nn n n n n C C C C ++++=,考查学生的转化能力与计算能力,属于基础题.二、填空题13.【分析】由题意可得一个盒子里有2个球一定为1红1黄其余盒子每个盒子放一个根据分步计数原理可得【详解】解:这5个球放入4个不同的盒子中要求每个盒子至少放一个球且同色球不能放在同一个盒子中则一个盒子里有 解析:144【分析】由题意可得一个盒子里有2个球,一定为1红1黄,其余盒子每个盒子放一个,根据分步计数原理可得. 【详解】解:这5个球放入4个不同的盒子中,要求每个盒子至少放一个球, 且同色球不能放在同一个盒子中,则一个盒子里有2个球,一定为1红1黄,其余盒子每个盒子放一个,故有11134233144C C C A =种,故答案为:144. 【点睛】本题考查了分步计数原理,运用组合数的运算,理解题目意思是关键..14.-48【分析】令x=1解得a=1再利用的通项公式进而得出【详解】令x=1=2解得a=1又的通项公式令5−2r=35−2r=5解得r=1r=0∴该展开式中的系数为=−80+32=−48故答案为:−48解析:-48 【分析】令x =1,解得a =1,再利用512x x ⎛⎫- ⎪⎝⎭的通项公式,进而得出. 【详解】令x =1,()()5112a +-=2,解得a =1.又512x x ⎛⎫- ⎪⎝⎭的通项公式()5521512r r rr r T C x --+=-⋅,令5−2r =3,5−2r =5. 解得r =1,r =0.∴该展开式中4x 的系数为()()141505512+12C C --=−80+32=−48, 故答案为:−48. 【点睛】本题考查二项式定理的应用,根据通项公式求系数,属于中等题.15.240【分析】首先利用约束条件得到可行域结合的几何意义求出其最大值然后对二项式的通项求常数项【详解】作出可行域如图:由变形为当此直线经过图中时直线在轴的截距最大最大所以的最大值为所以二项展开式中的通解析:240 【分析】首先利用约束条件得到可行域,结合z 的几何意义求出其最大值,然后对二项式的通项求常数项. 【详解】 作出可行域如图:由22n x y =+-变形为22y x n =-++,当此直线经过图中(2,4)B 时,直线在y 轴的截距最大,n 最大, 所以n 的最大值为22426⨯+-=,所以12n x x ⎛⎫ ⎪⎝⎭二项展开式中的通项为6362661(22rr rr rrC x C xx --⎛⎫= ⎪⎝⎭,当4r =此项为常数项, 所以常数项为4462240C =; 故答案为:240. 【点睛】本题考查了简单线性规划问题与二项式定理的运用;关键是利用数形结合正确求出n ,然后由二项展开式通项求常数项.16.【分析】由排列组合及分步原理得到地理学科恰有2人报名的方案即可求解得到答案【详解】由题意先在4位同学中选2人选地理学科共种选法再将剩下的2人在政治化学生物3门活动课任选一门报名共3×3=9种选法故地 解析:54【分析】由排列组合及分步原理得到地理学科恰有2人报名的方案,即可求解,得到答案. 【详解】由题意,先在4位同学中选2人选地理学科,共246C =种选法,再将剩下的2人在政治、化学、生物3门活动课任选一门报名,共3×3=9种选法, 故地理学科恰有2人报名的方案有6×9=54种选法, 故答案为54. 【点睛】本题主要考查了排列、组合,以及分步计数原理的应用,其中解答中认真审题,合理利用排列、组合,以及分步计数原理求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.17.-20【分析】由题意令x =1可得n =6再利用二项展开式的通项公式求得展开式中的常数项【详解】∵已知且∴令可得∴那么的展开式的通项公式为令求得可得展开式中的常数项为故答案为﹣20【点睛】本题主要考查二解析:-20 【分析】由题意令x =1,可得n =6,再利用二项展开式的通项公式,求得展开式中的常数项. 【详解】∵已知()()()()()232*0121111nnn x x x x a a x a x a x n N++++++⋯++=+++⋯+∈,且012126n a a a a +++⋯+=,∴令1x =,可得()210122122222212612n n n n a a a a +-+++⋯+=++⋯+==-=-,∴6n =,那么6n =的展开式的通项公式为()3161r rr r T C x -+=⋅-⋅, 令30r -=,求得3r =,可得展开式中的常数项为3620C -=-,故答案为﹣20. 【点睛】本题主要考查二项式定理的应用,赋值法,求展开式的系数和,项的系数,准确计算是关键,属于基础题.18.8【详解】分析:利用排列数公式展开解方程即可详解:解得即答案为8点睛:本题考查排列数公式的应用属基础题解析:8 【详解】分析:利用排列数公式展开,解方程即可. 详解:33210n n A A = ,()()()()221221012,n n n n n n ∴--=-- ()()22152,n n -=-解得8n =. 即答案为8.点睛:本题考查排列数公式的应用,属基础题.19.61【解析】分析:根据题设可列出关于的不等式求出代入可求展开式中常数项为详解:的展开式中只有第4项的二项式系数最大即最大解得又则展开式中常数项为点睛:在二项展开式中有时存在一些特殊的项如常数项有理项解析:61 【解析】分析:根据题设可列出关于n 的不等式,求出6n =,代入可求21(1)(12)n x x++展开式中常数项为61. 详解:(12)n x +的展开式中,只有第4项的二项式系数最大,即3n C 最大,3234n n n nC C C C ⎧>∴⎨>⎩,解得57n <<, 又*,6n N n ∈∴=, 则21(1)(12)n x x++展开式中常数项为02266261C C +⋅=. 点睛:在二项展开式中,有时存在一些特殊的项,如常数项、有理项、系数最大的项等等,这些特殊项的求解主要是利用二项展开式的通项公式1r T +.20.【分析】当时共有种情况当时共有种情况由此可计算得到答案【详解】由题意当时即中有个元素所以共有种情况此时集合中剩下个元素其子集个数为个即共有种情况所以的—覆盖个数为故答案为:【点睛】本题主要考查组合数解析:2k n kn C -⋅【分析】 当||A B k =时,共有k n C 种情况,当A B S =时,共有2n k -种情况,由此可计算得到答案. 【详解】 由题意,当||AB k =时,即A B 中有k 个元素,所以共有kn C 种情况,此时集合S 中剩下n k -个元素,其子集个数为2n k -个, 即AB S =共有2n k -种情况,所以S 的“k —覆盖”个数为2k n kn C -⋅. 故答案为:2k n kn C -⋅【点睛】本题主要考查组合数的应用和集合子集个数的应用,考查学生分析解决问题的能力,属于中档题.三、解答题21.(1)3;(2)70x 或1220412x - 【分析】(1)根据二项式系数和的性质,以及二项式系数和为256,可得2256n =,解出8n =,再由通项公式163418k k k k Ta C x-+=,0,1,2,,8k =,分析即得;(2)根据各项系数的和均为256,可得()81256a +=,解出3a =-或1a =,再由通项公式分情况进行计算即得. 先通过二项展开式的各二项式系数的和与各项系数的和均为256求出n .【详解】(1)n的二项展开式的各二项式系数的和为2n,各项系数的和为()1n a +,由已知得2256n =,故8.n =此时n展开式的通项为:163418k k k k T a C x -+=,0,1,2,,8k =,当0,4,8k =时,该项为有理项,故有理项的个数为3. (2)由()81256a +=,得3a =-或 1.a = 当1a =时,展开式通项为163418k kk TC x-+=,0,1,2,,8k =,故二项式系数最大时系数最大,即第5项系数最大,即系数最大的项为45870T C x x ==;当3a =-时,163418(3)k kk k TC x-+=-,0,1,2,,8k =,展开式系数最大的项是奇数项,其中41T x =,523252T x =,55670T x =,12720412T x-=,296561T x -=,故展开式中系数最大的项为第7项,即系数最大的项为12720412T x-=.综上,展开式中系数最大的项为70x 或1220412x -. 【点睛】本题考查二项式系数的性质,以及通项公式的应用,要注意二项式系数与各项的系数的区别,考查分析计算能力,属于中档题. 22.(1)8;(2)4-;(3)24x -,358,2116x- 【分析】(1)先写出展开式的通项公式2311()2n rr r r nT C x -+=-,由展开式中第5项为常数项,则当4r =时,有203n r-=,从而求出n 出的值. (2)由(1)中得到8n =,则含有2x 项,即8223r-=,得到1r =,从而求出答案. (3)展开式中所有的有理项,则82308r r r Z -⎧∈Z ⎪⎪≤≤⎨⎪∈⎪⎩,可得r 可取1,4,7,可得到答案.【详解】(1)展开式的通项公式为2311(()2n rr n rrr r r nnT C C x --+==-.因为第5项为常数项. 所以4r =时,有203n r-=,解得8n =. (2)令223n r-=,由(1)8n =,解1r =, 故所求系数为181()42C -=-(3)有题意得,82308r r r Z -⎧∈Z ⎪⎪≤≤⎨⎪∈⎪⎩,令82()3r k k Z -=∈,则833422k r k -==- 所以k 可取2,0,2-,即r 可取1,4,7它们分别为24x -,358,2116x -. 【点睛】本题考查二项式展开式的通项公式应用,求展开式中某项的系数,属于中档题. 23.(1)1;(2)243;(3)122;(4)243- 【分析】(1)令x=1即得015a a a +++的值;(2)在521x +()中,令1x =得解;(3) 先求出f(1)-f(-1)即得解;(4)求f(1)·f(-1)即得解. 【详解】∵()52501232x 1a a x a x a x -=++++, (1)令1x =,可得015a a a 1+++=;(2)在521x +()中,令1x =,可得015a a a 243+++=;(3)令f(x)=()5250125 2x 1a a x a x a x -=++++,f(1)=015 a a a 1+++=,所以f(-1)=012345243a a a a a a -+-+-=-, 所以f(1)-f(-1)=2135()244a a a ++=, 所以135122a a a ++=.(4)22024135a a a a a a ++-++()()012345012345a a a a a a a a a a a a =+++++-+-+-()()1?11243243f f =-=⨯-=-.【点睛】本题主要考查二项式展开式的系数的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.24.(1)112m m m n b C --=;(2)5;(3)160【分析】(1)先求出其通项公式,进而求出结论; (2)结合通项公式以及组合数的性质即可求解; (3)先求出其通项公式,令指数为零,进而求出结论. 【详解】(1)2()nx x+的展开式中第m 项为11111222()2m n m m m m n m n n C x C x x--+----+=;112m m m n b C --∴=.(2)由3412b b =,得22331222n n C C =;即23n n C C =;5n ∴=.(3)当6n =时,2()nx x+展开式中的通项公式6621662()2r r r r rr r T C x C x x--+==,依题意得620r -=,3r =,所以展开式中的常数项是33462160T C ==. 【点睛】本题主要考查二项式定理的应用,二项式展开式的通项公式,二项式系数的性质,属基础题.25.(1)6n =;(2)240. 【分析】(1)根据排列数和组合数公式,列方程;(2)写出二项展开式的通项公式,求出2x 系数为()4462C -,即可得到答案;【详解】解:(1)因为2323n n A C =所以()()()3122132n n n n n ---=⨯即42n =- 所以6n =(2)由(1)得12nx x ⎛⎫- ⎪⎝⎭中6n =, 所以612x x ⎛⎫- ⎪⎝⎭中,()()626166122kkkk kk k T C x C x x --+⎛⎫=-=- ⎪⎝⎭,所以262k -=,所以4k =,所以2x 系数为()4462240C -=.【点睛】本题考查排列数和组合数公式的计算、二项式定理求指定项的系数,考查逻辑推理能力、运算求解能力,求解时注意二项式系数与系数的区别. 26.(Ⅰ)8n =;(Ⅱ)728T .【分析】(Ⅰ)利用排列数,组合数公式化简4530n n A C =即可得n 的值.(Ⅱ)写出()f x 的展开式的通项公式,令x 的指数为0即可得到常数项. 【详解】(Ⅰ)由已知4530n n A C =得:!30!4!5!5!n n n n ,!30!45!1205!n n n n n解得:8n =.(Ⅱ)8x ⎛⎝展开式的通项为488318831kk kkkk k T C xCxx由4803k 得6k =,即()f x 的展开式中的常数项为728T .【点睛】本题考查排列数组合数公式的应用,考查求解二项展开式中的常数项,考查计算能力,属于基础题.。

(人教版)杭州市选修三第一单元《计数原理》测试题(含答案解析)

(人教版)杭州市选修三第一单元《计数原理》测试题(含答案解析)

一、选择题1.已知()272901291(21)(1)(1)(1)()x x a a x a x a x x R +-=+-+-++-∈.则1a =( ) A .-30 B .30 C .-40D .402.若2021220210122021(12)x a a x a x a x -=++++,则1232021a a a a ++++=( )A .1B .1-C .2D .2-3.()7322121x x ⎛⎫+- ⎪⎝⎭展开式中常数项是( ) A .15B .-15C .7D .-74.把五个标号为1到5的小球全部放入标号为1到4的四个盒子中,并且不许有空盒,那么任意一个小球都不能放入标有相同标号的盒子中的概率是( ) A .320B .720C .316D .255.某学校高三年级有两个文科班,四个理科班,现每个班指定1人,对各班的卫生进行检查.若每班只安排一人检查,且文科班学生不检查文科班,理科班学生不检查自己所在的班,则不同安排方法的种数是( ) A .48B .72C .84D .1686.若0k m n ≤≤≤,且,,m n k N ∈,则0mn m k n k n k CC --==∑( )A .2m n+B .2mn m CC .2n mn C D .2m mn C7.六安一中高三教学楼共五层,甲、乙、丙、丁四人走进该教学楼2~5层的某一层楼上课,则满足且仅有一人上5楼上课,且甲不在2楼上课的所有可能的情况有( )种 A .27B .81C .54D .1088.212nx x ⎛⎫ ⎪⎝⎭-的展开式中二项式系数之和是64,含6x 项的系数为a ,含3x 项系数为b ,则a b -=( ) A .200 B .400 C .-200D .-4009.杨辉三角是二项式系数在三角形中的一种几何排列,是中国古代数学的杰出研究成果之一.在欧洲,左下图叫帕斯卡三角形,帕斯卡在1654年发现的这一规律,比杨辉要迟393年,比贾宪迟600年.某大学生要设计一个程序框图,按右下图标注的顺序将表上的数字输出,若第5次输出数“1”后结束程序,则空白判断框内应填入的条件为( )A .3n >B .4n <C .3n <D .4n >10.在下方程序框图中,若输入的a b 、分别为18、100,输出的a 的值为m ,则二项式342()(1)x m x x x+⋅-+的展开式中的常数项是A .224B .336C .112D .56011.在()nx x的展开式中,各项系数与二项式系数和之比为128,则4x 的系数为( ) A .21 B .63C .189D .72912.若2132020x x C C -+=,则x 的值为( )A .4B .4或5C .6D .4或6二、填空题13.二项式261(2)x x-的展开式中的常数项是_______.(用数字作答)14.设122012(1)(1)(1)n n n x x x a a x a x a x ++++++=++++,其中n *∈N ,且2n ≥,若0121022n a a a a ++++=,则n =_____15.在()()()238111x x x ++++++的展开式中,含2x 项的系数是_______________.16.在32nx x ⎫⎪⎭的二项展开式中,只有第5项的二项式系数最大,则该二项展开式中的常数项等于_____. 17.若()316*2323C n n C n N ++=∈,()20123nn n x a a x a x a x -=++++且,则()121nn a a a -+-+-的值为____________.18.二项式92(x展开式中3x 的系数为__________.19.二项式6ax ⎛ ⎝⎭的展开式中5x20a x dx =⎰________. 20.若()202022020012202032x a a x a x a x +=++++,则1352019a a a a ++++被12整除的余数为______.三、解答题21.若7767610(31)x a x a x a x a -=++++,求(1)127a a a +++;(2)1357a a a a +++; (3)0246a a a a +++.22.已知2nx ⎛⎝展开式前三项的二项式系数和为22.(1)求展开式中的常数项; (2)求展开式中二项式系数最大的项.23.(1)求91x ⎛- ⎝的展开式的常数项; (2)若1nx ⎛ ⎝的展开的第6项与第7项的系数互为相反数,求展开式的各项系数的绝对值之和.24.设()52501252x 1a a x a x a x -=++++,求:(1)015a a a +++;(2)015a a a +++;(3)135a a a ++;(4)()()22024135a a a a a a ++-++. 25.已知()10210012101mx a a x a x a x +=++++中,0m ≠,且63140a a +=.(1)求m ;(2)求246810a a a a a ++++.26.已知4530n n A C =,设()nf x x ⎛= ⎝. (Ⅰ)求n 的值;(Ⅱ)求()f x 的展开式中的常数项.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】令1t x =-,得29012927(22)(21)()a a t t t t a t a t x R =++++++∈+,进而得含t 的项为767722(2)tC C t +,从而得解.【详解】令1t x =-,则有:27290129[(1)1][2(1)1]()t t a a t a t a t x R +++-=++++∈,即29012927(22)(21)()a a t t t t a t a t x R =++++++∈+,7(21)t +展开式的通项公式为:77(2)r r C t -,所以29012927(22)(21)()a a t t t t a t a t x R =++++++∈+中含t 的项为:767722(2)30tC C t t +=.故选:B. 【点睛】关键点点睛:本题解题的关键是令1t x =-,转化为求27(22)(21)t t t +++的展开中含t 的项.2.D解析:D 【分析】分别令0x =和1x =,即可解出所求. 【详解】解:由2021220210122021(12)x a a x a x a x -=+++⋯+, 令0x =得01a =;令1x =得01220211a a a a -=+++⋯+, 1220212a a a ∴++⋯+=-.故选:D . 【点睛】本题考查赋值法在研究二项展开式中系数的问题,同时考查方程思想在解题中的作用.属于中档题.3.B解析:B 【分析】先求得7211x ⎛⎫- ⎪⎝⎭展开式的通项公式,分别令r =4,5,6,7,求得对应的四项,又()3264226128x x x x +=+++,则()7322121x x ⎛⎫+- ⎪⎝⎭展开式中所有x 的零次幂的系数和即为常数项,计算化简,即可得结果. 【详解】7211x ⎛⎫- ⎪⎝⎭的通项公式为721417721()(1)(1)r r r r r r r T C C x x --+=⋅⋅-=⋅-⋅,令4r =,得446657(1)35T C x x --=⋅-⋅=, 令=5r ,得554467(1)21T C x x --=⋅-⋅=-, 令6r =,得662277(1)7T C x x --=⋅-⋅=, 令7r =,得77087(1)1T C x =⋅-⋅=-,又()3264226128x x x x +=+++,所以()7322121x x ⎛⎫+- ⎪⎝⎭展开式中常数项为351(21)6712(1)815⨯+-⨯+⨯+-⨯=-, 故选:B 【点睛】本题考查利用赋值法解决展开式中常数项的问题,考查分析理解,计算求值的能力,属中档题.4.B解析:B 【分析】由题意可以分两类,第一类第5球独占一盒,第二类,第5球不独占一盒,根据分类计数原理得到答案. 【详解】解:第一类,第5球独占一盒,则有4种选择;如第5球独占第一盒,则剩下的三盒,先把第1球放旁边,就是2,3,4球放入2,3,4盒的错位排列,有2种选择,再把第1球分别放入2,3,4盒,有3种可能选择,于是此时有236⨯=种选择; 如第1球独占一盒,有3种选择,剩下的2,3,4球放入两盒有2种选择,此时有236⨯=种选择,得到第5球独占一盒的选择有4(66)48⨯+=种,第二类,第5球不独占一盒,先放14-号球,4个球的全不对应排列数是9;第二步放5号球:有4种选择;9436⨯=,根据分类计数原理得,不同的方法有364884+=种.而将五球放到4盒共有2454240C A ⨯=种不同的办法,故任意一个小球都不能放入标有相同标号的盒子中的概率84724020P == 故选:B . 【点睛】本题主要考查了分类计数原理,关键是如何分步,属于中档题.5.D解析:D 【分析】分两步,第一步选2名理科班的学生检查文科班,第二步,理科班检查的方法,需要分三类,根据分布和分类计数原理可得. 【详解】第一步:选2名理科班的学生检查文科班,有2412A =种第二步:分三类①2名文科班的学生检查剩下的2名理科生所在的班级,2名理科生检查另2名理科生所在的班级,有22224A A =种②2名文科班的学生检查去文科班检查的2名理科生所在班级,剩下的2名理科生互查所在的班级,有21212A A =种③2名文科生一人去检查去文科班检查的2名理科生所在的班级的一个和一人去检查剩下的2名理科生其中一个所在的班级,有1112228A A A =种根据分步分类技术原理可得,共有()12428168⨯++=不同的安排方法 故选:D 【点睛】本题考查的是分步分类计数原理及排列组合的知识,怎么将一个复杂的事情进行合理的分步分类去完成是解题的关键.6.D解析:D 【分析】先利用特殊值排除A,B,C ,再根据组合数公式以及二项式定理论证D 成立. 【详解】 令0m =得,CC C C 1mn m k n n k n n n k --===∑,在选择项中,令0m =排除A ,C ;在选择项中,令1m =,101110C C C C C C 2mn m k n n n k n n n n n k n -----==+=∑排除B ,()!!()!()!!()!mmn m k n knk k n k n CC n m m k k n k --==-=⋅---∑∑000!!2()!!!()!mm mm k m k m mn m n m n k k k n m C C C C C n m m k m k ====⋅=⋅==--∑∑∑,故选D 【点睛】本题考查组合数公式以及二项式定理应用,考查基本分析化简能力,属中档题.7.B解析:B 【分析】以特殊元素甲为主体,根据分类计数原理,计算出所有可能的情况,求得结果. 【详解】甲在五楼有33种情况,甲不在五楼且不在二楼有11232354C C ⨯=种情况,由分类加法计数原理知共有542781+=种不同的情况, 故选B. 【点睛】该题主要考查排列组合的有关知识,需要理解排列组合的概念,根据题目要求分情况计数,属于简单题目.8.B解析:B 【分析】由展开式二项式系数和得n =6,写出展开式的通项公式,令r=2和r=3分别可计算出a 和b 的值,从而得到答案. 【详解】由题意可得二项式系数和2n =64,解得n =6.∴212n x x ⎛⎫ ⎪⎝⎭-的通项公式为:()()6261231661212rr r r r r rr T C x C x x ---+⎛⎫=-=- ⎪⎝⎭, ∴当r=2时,含x 6项的系数为()2262612240C a --==, 当r=3时,含x 3项的系数为()3363612160C b --=-=,则400a b -=, 故选B . 【点睛】本题考查二项式定理的通项公式及其性质,考查推理能力与计算能力,属于基础题.9.C解析:C 【分析】利用()!!!in n C i n i =-,执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出的值为22C ,即可得到输出条件. 【详解】利用()!!!in n C i n i =-,执行程序框图,当0n =时,输出的是00C ; 当1n =时,输出的是0111,C C ; 当2n =时,012222,,C C C ;当3n =时,输出的是01233333,,,C C C C ,因为第5次输出数“1”,即2n =,输出22C 后结束程序, 所以3n =时不满足条件,结束程序,所以,空白判断框内应填入的条件为3n <,故选C. 【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.10.D解析:D 【分析】由程序图先求出m 的值,然后代入二项式中,求出展开式中的常数项 【详解】由程序图可知求输入18100a b ==,的最大公约数,即输出2m =则二项式为())348332812161x x x x x x x ⎛⎫⎛⎫+⋅-=+++ ⎪ ⎪⎝⎭⎝⎭)81的展开通项为()82181r rr r T C x-+=-要求展开式中的常数项,则当取38x 时,令832r-= 解得2r =,则结果为288224C =,则当取12x 时,令812r-=,解得6r =,则结果为6812336C =,故展开式中的常数项为224336560+=,故选D【点睛】本题考查了运用流程图求两个数的最大公约数,并求出二项式展开式中的常数项,在求解过程中注意题目的化简求解,属于中档题11.C解析:C 【解析】分析:令1x =得各项系数和,由已知比值求得指数n ,写出二项展开式通项,再令x 的指数为4求得项数,然后可得系数.详解:由题意41282n n =,解得7n =,∴37721773r r r r r rr T C x C x --+==,令3742r-=,解得2r ,∴4x 的系数为2273189C =.故选C . 点睛:本题考查二项式定理,考查二项式的性质.在()n a b +的展开式中二项式系数和为2n ,而展开式中各项系数的和是在展开式中令变量值为1可得,二项展开式通项公式为1C r n r rr n T ab -+=. 12.D解析:D 【解析】 因为2132020x x C C -+=,所以213x x -=+ 或21320x x -++=,所以4x = 或6x =,选D.二、填空题13.60【分析】根据二项式展开式的通项公式求解【详解】有题意可得二项式展开式的通项为:令可得此时【点睛】本题考查二项式定理的应用考查通项公式考查计算能力属于基础题解析:60 【分析】根据二项式展开式的通项公式求解. 【详解】有题意可得,二项式展开式的通项为:()62612316612(1)2rrrr r r rr T C xC xx ---+⎛⎫=-=- ⎪⎝⎭令1230r -=可得4r = ,此时2456260T C ==.【点睛】本题考查二项式定理的应用,考查通项公式,考查计算能力,属于基础题.14.9【分析】记函数利用等比数列求和公式即可求解【详解】由题:记函数即故答案为:9【点睛】此题考查多项式系数之和问题常用赋值法整体代入求解体现出转化与化归思想解析:9 【分析】记函数122012()(1)(1)(1)n n n f x x x x a a x a x a x =++++++=++++,012222(1)2n n f a a a a =+++=++++,利用等比数列求和公式即可求解. 【详解】由题:记函数212012()(1)(1)(1)n n n f x a a x a x a x x x x =++++=++++++,021222(12)(21)212n nn f a a a a -=++++++=-=+, 即1221022n +-=,121024,9n n +==故答案为:9 【点睛】此题考查多项式系数之和问题,常用赋值法整体代入求解,体现出转化与化归思想.15.84【分析】通过求出各项二项展开式中项的系数利用组合数的性质求出系数和即可得结果【详解】的展开式中含项的系数为:故答案是:84【点睛】该题考查的是有关二项式对应项的系数和的问题涉及到的知识点有指定项解析:84 【分析】通过求出各项二项展开式中2x 项的系数,利用组合数的性质求出系数和即可得结果. 【详解】()()()238111x x x ++++++的展开式中,含2x 项的系数为:2222222322222223456783345678C C C C C C C C C C C C C C ++++++=++++++399878432C ⨯⨯===⨯, 故答案是:84. 【点睛】该题考查的是有关二项式对应项的系数和的问题,涉及到的知识点有指定项的二项式系数,组合数公式,属于简单题目.16.112【分析】由题意可得再利用二项展开式的通项公式求得二项展开式常数项的值【详解】的二项展开式的中只有第5项的二项式系数最大通项公式为令求得可得二项展开式常数项等于故答案为112【点睛】本题主要考查解析:112 【分析】由题意可得8n =,再利用二项展开式的通项公式,求得二项展开式常数项的值. 【详解】2)nx的二项展开式的中,只有第5项的二项式系数最大,8n∴=,通项公式为4843318(2)(2)n r rr r r rr nT C x C x--+=-=-,令843r-=,求得2r,可得二项展开式常数项等于284112C⨯=,故答案为112.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.17.175【分析】先利用二项式系数的性质求得n=4再令x=﹣1可得a0﹣a1+a2﹣…+(﹣1)nan的值再令x=0可得a0=81即可求解【详解】由C233n+1=C23n+6(n∈N*)可得3n+1+解析:175【分析】先利用二项式系数的性质求得n=4,再令x=﹣1可得a0﹣a1+a2﹣…+(﹣1)n a n的值,再令x=0可得a0=81,即可求解.【详解】由C233n+1=C23n+6(n∈N*)可得 3n+1+(n+6)=23,或 3n+1=n+6,解得n=4 或n52=(舍去).故(3﹣x)4=a0+a1x+a2x2+…+a4 x4,令x=﹣1可得a0﹣a1+a2﹣…+(﹣1)n a n=44=256,再令x=0可得a0=81,∴﹣a1+a2﹣…+(﹣1)n a n=256-81=175,故答案为 175.【点睛】本题主要考查二项式定理的应用,注意根据题意,分析所给代数式的特点,通过给二项式的x赋值,求展开式的系数和问题,属于中档题.18.【分析】由题意求得二项展开式的通项利用展开式的通项即可求解的系数得到答案【详解】由题意二项式展开式的通项为令解得所以即中的系数为【点睛】本题主要考查了二项展开式的指定项的系数的求解其中熟记二项展开式解析:18【分析】由题意,求得二项展开式的通项,利用展开式的通项,即可求解3x的系数,得到答案.【详解】由题意,二项式92x⎛⎝展开式的通项为(()93992199212rr rrr r rrT C C xx---+⎛⎫=⋅⋅=-⋅⋅⋅⎪⎝⎭令3932r -=,解得8r =,所以()81833191218r T C x x +=-⋅⋅⋅=,即中3x 的系数为18. 【点睛】本题主要考查了二项展开式的指定项的系数的求解,其中熟记二项展开式的通项,利用通项求解指定项的系数是解答此类问题的关键,着重考查了推理与运算能力,属于基础题.19.【解析】分析:先根据二项展开式的通项求得的系数进而得到的值然后再根据微积分基本定理求解即可详解:二项式的展开式的通项为令可得的系数为由题意得解得∴点睛:解答有关二项式问题的关键是正确得到展开式的通项解析:13【解析】分析:先根据二项展开式的通项求得5x 的系数,进而得到a 的值,然后再根据微积分基本定理求解即可.详解:二项式66ax ⎛⎫+ ⎪ ⎪⎝⎭的展开式的通项为666166()(),0,1,2,,6r r r r r r rr T C ax a C x r ---+===,令1r =,可得5x5156a C =,5=, 解得1a =.∴12310011|33x dx x ==⎰. 点睛:解答有关二项式问题的关键是正确得到展开式的通项,然后根据题目要求求解.定积分计算的关键是确定被积函数的原函数,然后根据微积分基本定理求解.20.0【分析】根据题意给自变量赋值取和两个式子相减得到的值用二项展开式可以看出被12整除的结果得到余数【详解】在已知等式中取得取得两式相减得即因为能被12整除所以则被12整除余数是0故答案为:0【点睛】解析:0 【分析】根据题意,给自变量x 赋值,取1x =和1x =-,两个式子相减,得到1352019a a a a +++的值,用二项展开式可以看出被12整除的结果,得到余数.【详解】在已知等式中,取1x =得202001220205a a a a ++++=,取1x =-得01220201a a a a -+-+=, 两式相减得202013520192()51a a a a +++=-,即()202013520191512a a a a +++=⨯-,因为()()()1010202010101111512512412222⨯-=⨯-=⨯+- ()01010110091010101010101010101124242422C C C C =⨯++++-()0101011009110101010101012424242C C C =⨯+++能被12整除,所以则1352019a a a a ++++被12整除,余数是0.故答案为:0. 【点睛】本题考查二项式定理的应用和带余除法,本题解题的关键是利用赋值的方法、利用二项式定理得到式子的结果,属于中等题.三、解答题21.(1)129(2)8256(3)-8128 【分析】(1)利用赋值法令0x =得0a ,再令1x =即可得到结果. (2)令1x =和1x =-,将得到的两个式子作差可得结果. (3)令1x =和1x =-,将得到的两个式子相加可得结果. 【详解】(1)令0x =,则01a =-,令1x =,则128270167==++++a a a a .∴129721=+++a a a .(2)令1x =,则128270167==++++a a a a . 令1x =-,则701234567)4(-=+-+-+-+-a a a a a a a a ,两式相减得:()713572128(4)16512a a a a +++=--=,则1357=8256a a a a +++.(3)令1x =,则128270167==++++a a a a . 令1x =-,则701234567)4(-=+-+-+-+-a a a a a a a a ,两式相加得:()02462=a a a a +++()7128416256+-=-,则02468128a a a a +++=- 【点睛】本题考查赋值法求二项展开式的各项系数和,考查计算能力,属于基础题. 22.(1)60(2)32160x【分析】(1)根据2nx⎛ ⎝展开式前三项的二项式系数和为22,由01222n n n C C C ++=,解得6n =,再得到2nx⎛+ ⎝展开式的通项1r T +366262rr r C x --=,令3602r -=求解. (2)根据6n =,得到展开式中二项式系数最大的项为第四项,再利用通项公式求解.. 【详解】(1)因为2nx⎛⎝展开式前三项的二项式系数和为22,所以01222n n n C C C ++=,即(1)1222n n n -++=, 所以2420n n +-=, 解得6n =或7n =-(舍去).所以2nx⎛+ ⎝展开式的通项为:16216(2)rr r r T C x x --+⎛⎫= ⎪⎝⎭366262r r r C x --=,令3602r -=,得4r =, 所以展开式中的常数项为41T +=4206260C x =.(2)因为6n =,所以展开式中二项式系数最大的项为第四项,即3133322316(2)160T C x x x -+⎛⎫== ⎪⎝⎭.【点睛】本题主要考查二项式定理的通项公式,二项式系数,还考查了运算求解的能力,属于中档题.23.(1)84 (2)2048 【分析】(1)利用二项展开式的通项公式,令x 的次数为0,即可求出常数项.(2)通过第6项与第7项的系数互为相反数,可得11n =,111(x的各项系数绝对值之和与111(x的各系数之和相等,令x=1,即可得到答案.【详解】解:(1)因为91(x 的通项是39921991()((1)r r r r r r r T C C x x--+==-,当r=6时可得展开式的常数项,即常数项是6679(1)84T C =-=.(2)1(n x 的通项为3211()((1)r n r n r r r r r n n T C C x x--+==-,则第6项与第7项分别为15526n nT C x-=-和697nn T C x -=,它们的系数分别为5n C -和6n C .因为第6项与第7项的系数互为相反数,所以56n n C C =,则11n =,因为111(x 的各项系数绝对值之和与111(x 的各系数之和相等,令1x =,得111(x的各项系数的绝对值之和为1122048=.【点睛】本题考查二项式定理的应用,考查二项式展开式通项公式和二项式系数的应用,属于基础题.24.(1)1;(2)243;(3)122;(4)243- 【分析】(1)令x=1即得015a a a +++的值;(2)在521x +()中,令1x =得解;(3) 先求出f(1)-f(-1)即得解;(4)求f(1)·f(-1)即得解. 【详解】∵()52501232x 1a a x a x a x -=++++, (1)令1x =,可得015a a a 1+++=;(2)在521x +()中,令1x =,可得015a a a 243+++=;(3)令f(x)=()5250125 2x 1a a x a x a x -=++++,f(1)=015 a a a 1+++=,所以f(-1)=012345243a a a a a a -+-+-=-, 所以f(1)-f(-1)=2135()244a a a ++=, 所以135122a a a ++=.(4)22024135a a a a a a ++-++()()012345012345a a a a a a a a a a a a =+++++-+-+-()()1?11243243f f =-=⨯-=-.【点睛】本题主要考查二项式展开式的系数的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.25.(1)2m =-(2)29524 【分析】(1)由二项式定理求出第4项和第7项的系数,代入已知可得m ;(2)令1x =得所有项系数和,令1x =-得奇数项系数和与偶数项系数和的差,两者结合后可得偶数项系数和,0a 是常数项易求,从而可得246810a a a a a ++++, 【详解】(1)因为10i ii a C m =,1,2,310i =,依题意得:66331010140C m C m +=,331098710981404321321m m ⨯⨯⨯⨯⨯⎛⎫+=⎪⨯⨯⨯⨯⨯⎝⎭因为0m ≠,所以38m =-,得2m =-. (2)()102100121012x a a x a x a x -=+++令1x =得:()10012345678910121a a a a a a a a a a a ++++++++++=-=.① 令1x =-得:()1010012345678910123a a a a a a a a a a a -+-+-+-+-+=+=.② 由①+②得:()10024*******a a a a a a +++++=+,即100246810132a a a a a a ++++++=. 又()001021a C =-=,所以1010246810133112952422a a a a a +-++++=-==【点睛】本题考查二项式定理的应用和赋值法,考查推理论证能力、运算求解能力,考查化归与转化思想,导向对发展数学抽象、逻辑推理、数学运算等核心素养的关注. 26.(Ⅰ)8n =;(Ⅱ)728T .【分析】(Ⅰ)利用排列数,组合数公式化简4530n n A C =即可得n 的值.(Ⅱ)写出()f x 的展开式的通项公式,令x 的指数为0即可得到常数项. 【详解】(Ⅰ)由已知4530n n A C =得:!30!4!5!5!n n n n ,!30!45!1205!n n n n n解得:8n =.(Ⅱ)8x⎛⎝展开式的通项为488318831k kk kk kkT C x C xx由4803k得6k=,即()f x的展开式中的常数项为728T.【点睛】本题考查排列数组合数公式的应用,考查求解二项展开式中的常数项,考查计算能力,属于基础题.。

常德市选修三第一单元《计数原理》测试(含答案解析)

常德市选修三第一单元《计数原理》测试(含答案解析)

一、选择题1.4(1)x +的展开式中2x 的系数是( )A .8B .7C .6D .42.有5名同学从左到右站成一排照相,其中中间位置只能排甲或乙,最右边不能排甲,则不同的排法共有( ) A .42种 B .48种C .60种D .72种3.已知(x x ﹣a x)5的展开式中,常数项为10,则a =( ) A .﹣1B .1C .﹣2D .24.根据中央对“精准扶贫”的要求,某市决定从3名男性党员、2名女性党员中选派2名去甲村调研,则既有男性又有女性的不同选法共有( ) A .7种B .6种C .5种D .4种5.把五个标号为1到5的小球全部放入标号为1到4的四个盒子中,并且不许有空盒,那么任意一个小球都不能放入标有相同标号的盒子中的概率是( ) A .320B .720C .316D .256.某煤气站对外输送煤气时,用1至5号五个阀门控制,且必须遵守以下操作规则: ①若开启3号,则必须同时开启4号并且关闭2号; ②若开启2号或4号,则关闭1号; ③禁止同时关闭5号和1号. 则阀门的不同开闭方式种数为( ) A .7 B .8 C .11 D .147.设2019220190122019(12)x a a x a x a x -=+++⋅⋅⋅+,则201920182017012201820192222a a a a a ⋅+⋅+⋅+⋅⋅⋅+⋅+的值为( )A .20192B .1C .0D .-18.如图所示的阴影部分由方格纸上3个小方格组成,我们称这样的图案为L 形(每次旋转90°仍为L 形的图案),那么在56⨯个小方格组成的方格纸上可以画出不同位置的L 形需案的个数是()A .36B .64C .80D .969.在二项式(2n x x的展开式中,当且仅当第5项的二项式系数最大,则系数最小的项是A .第6项B .第5项C .第4项D .第3项10.在2310(1)(1)(1)x x x ++++⋅⋅⋅++的展开式中,含2x 项的系数为( ) A .45B .55C .120D .16511.在某互联网大会上,为了提升安全级别,将5名特警分配到3个重要路口执勤,每个人只能选择一个路口,每个路口最少1人,最多3人,且甲和乙不能安排在同一个路口,则不同的安排方法有( ) A .180种B .150种C .96种D .114种12.在622x x ⎛⎫- ⎪⎝⎭的展开式中,常数项为( ) A .15-B .15C .60-D .60二、填空题13.若变量x ,y 满足约束条件202020x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,22n x y =+-,则n取最大值时,1nx ⎛⎫ ⎪⎝⎭二项展开式中的常数项为______.14.设122012(1)(1)(1)n n n x x x a a x a x a x ++++++=++++,其中n *∈N ,且2n ≥,若0121022n a a a a ++++=,则n =_____15.有4位同学参加学校组织的政治、地理、化学、生物4门活动课,要求每位同学各选一门报名(互不干扰),则地理学科恰有2人报名的方案有______. 16.若()316*2323C n n C n N ++=∈,()20123nn n x a a x a x a x -=++++且,则()121nn a a a -+-+-的值为____________.17.设0(cos sin )a x x dx π=-⎰,则二项式6(的展开式中含2x 项的系数为______.18.已知33210n n A A =,那么n =__________.19.若二项式nx ⎛⎝展开式中各项系数的和为64,则该展开式中常数项为____________.20.25(32)x x ++的展开式中3x 的项的系数是________.三、解答题21.已知()2*12nx n N x ⎛⎫-∈ ⎪⎝⎭的展开式中所有偶数项的二项式系数和为64. (1)求展开式中二项式系数最大的项;(2)求221122nx x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭展开式中的常数项. 22.用0,1,2,3,4,5这六个数字,完成下面三个小题. (1)若数字允许重复,可以组成多少个不同的五位偶数;(2)若数字不允许重复,可以组成多少个能被5整除的且百位数字不是3的不同的五位数;(3)若直线方程0ax by +=中的a ,b 可以从已知的六个数字中任取2个不同的数字,则直线方程表示的不同直线共有多少条?23.已知)23nx展开式中各项系数和比它的二项式系数和大992,其中,2n N n +∈≥.(Ⅰ)求n 的值;(Ⅱ)求其展开式中的有理项.24.(1)求91x ⎛- ⎝的展开式的常数项;(2)若1nx ⎛ ⎝的展开的第6项与第7项的系数互为相反数,求展开式的各项系数的绝对值之和.25.记2nx x ⎛⎫+ ⎪⎝⎭(*n ∈N )的展开式中第m 项的系数为m b .(1)求m b 的表达式; (2)若3412b b =,求n ; (3)若6n =,求展开式中的常数项.26.已知22)nx的展开式中,只有第六项的二项式系数最大 (1)求该展开式中常数项;(2)求展开式中系数最大的项为第几项?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据二项式定理展开式的通项公式,令2r 即可得出答案.【详解】4(1)x +的展开式中,14,(0,1,2,3,4)r r r r T x +==,令2r ,2x ∴的系数为246C =.故选:C . 【点睛】本题考查二项式定理的应用,考查推理能力与计算能力,属于基础题.2.A解析:A 【分析】根据题意,分2种情况讨论:①甲在最中间,将剩余的4人全排列,②乙在中间,分析可得此时的排法数目,由加法原理计算可得答案. 【详解】根据题意,中间只能排甲或乙,分2种情况讨论:①甲在中间将剩余的4人全排列,有4424A =种情况,②乙在中间,甲不能在最右端,有3种情况,将剩余的3人全排列,安排在剩下的三个位置,此时有33318A ⨯=种情况,则一共有241842+=种排法。

(典型题)高中数学选修三第一单元《计数原理》测试题(包含答案解析)

(典型题)高中数学选修三第一单元《计数原理》测试题(包含答案解析)

一、选择题1.4(1)x +的展开式中2x 的系数是( )A .8B .7C .6D .42.712x x ⎛⎫- ⎪⎝⎭的展开式中5x 的系数为( ) A .448B .448-C .672D .672-3.将5种不同的花卉种植在如图所示的四个区域中,每个区域种植一种花卉,且相邻区域花卉不同,则不同的种植方法种数是( ).A .420B .180C .64D .254.回文联是我国对联中的一种.用回文形式写成的对联,既可顺读,也可倒读.不仅意思不变,而且颇具趣味.相传,清代北京城里有一家饭馆叫“天然居”,曾有一副有名的回文联:“客上天然居,居然天上客;人过大佛寺,寺佛大过人.”在数学中也有这样一类顺读与倒读都是同一个数的自然数,称之为“回文数”.如44,585,2662等;那么用数字1,2,3,4,5,6可以组成4位“回文数”的个数为( ) A .30B .36C .360D .12965.已知(x a x)5的展开式中,常数项为10,则a =( ) A .﹣1B .1C .﹣2D .26.若0k m n ≤≤≤,且m ,n ,k ∈N ,则0CC mn m k n k n k --==∑( )A .2m n +B .C 2n mmC .2C nmnD .2C m mn7.若()()()()()201923201901232019122222x a a x a x a x a x -=+-+-+-+⋅⋅⋅+-,则01232019a a a a a -+-+⋅⋅⋅-的值为( )A .-2B .-1C .0D .18.已知10件产品中,有7件合格品,3件次品,若从中任意抽取5件产品进行检查,则抽取的5件产品中恰好有2件次品的抽法有( ) A .35种B .38种C .105种D .630种9.若0k m n ≤≤≤,且,,m n k N ∈,则0mn m k n k n k CC --==∑( )A .2m n +B .2mn m CC .2n mn C D .2m mn C10.如图所示的阴影部分由方格纸上3个小方格组成,我们称这样的图案为L 形(每次旋转90°仍为L 形的图案),那么在56⨯个小方格组成的方格纸上可以画出不同位置的L 形需案的个数是()A .36B .64C .80D .9611.已知自然数k ,则(18)(19)(20)(99)k k k k ----…等于( ) A .1899kk C --B .8299k C -C .1899kk A --D .8299k A -12.将编号为1,2,3,4,5,6,7的小球放入编号为1,2,3,4,5,6,7的七个盒子中,每盒放一球,若有且只有三个盒子的编号与放入的小球的编号相同,则不同的放法种数为( ) A .315B .640C .840D .5040二、填空题13.二项式261(2)x x -的展开式中的常数项是_______.(用数字作答)14.()3621()x x x-的展开式中的常数项为_____.(用数字作答)15.在()()()238111x x x ++++++的展开式中,含2x 项的系数是_______________.16.有3名大学毕业生,到5家招聘员工的公司应聘,若每家公司至多招聘一名新员工,且3名大学毕业生全部被聘用,若不允许兼职,则共有________种不同的招聘方案.(用数字作答)17.若二项式nx x ⎛⎝展开式中各项系数的和为64,则该展开式中常数项为____________.18.622x x ⎛ ⎝的展开式中3x 的系数为__________.(用数字作答)19.把4件不同的产品摆成一排.若其中的产品A 与产品B 都摆在产品C 的左侧,则不同的摆法有____种.(用数字作答)20.已知关于x 的方程log (01)xa a x a =<<的实数根的个数为n ,若1101(1)(1)(3)n x x a a x +++=++2101121011(3)(3)(3)a x a x a x +++++++,则1a 的值为______.三、解答题21.已知二项式*1()(,2)2nx n N n x∈≥,若该二项式的展开式中前三项的系数的绝对值成等差数列. (1)求正整数n 的值;(2)求展开式中二项式系数最大项,并指出是第几项? 22.设函数(,)(1)(0,0)x f x y my m y =+>>.(1)当3m =时,求()9,f y 的展开式中二项式系数最大的项;(2)已知(2,)f n y 的展开式中各项的二项式系数和比(,)f n y 的展开式中各项的二项式系数和大4032,若01(,)nn f n y a a y a y =++⋅⋅⋅+,且2135a =,求1i ni a =∑23.计算:(1)2490n n A A =;(2)383321nn nn C C -++.24.已知()10210012101mx a a x a x a x +=++++中,0m ≠,且63140a a +=.(1)求m ;(2)求246810a a a a a ++++.25.已知二项式10x⎛⎝的展开式.(1)求展开式中含4x 项的系数;(2)如果第3r 项和第2r +项的二项式系数相等,求r 的值.26.在①只有第6项的二项式系数最大,②第4项与第8项的二项式系数相等,③所有二项式系数的和为102,这三个条件中任选一个,补充在下面(横线处)问题中,解决下面两个问题.已知()123012321nn n x a a x a x a x a x -=++++⋅⋅⋅+(n *∈N ),若()21nx -的展开式中,______. (1)求n 的值;(2)求123n a a a a +++⋅⋅⋅+的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据二项式定理展开式的通项公式,令2r 即可得出答案.【详解】4(1)x +的展开式中,14,(0,1,2,3,4)r r r r T x +==,令2r ,2x ∴的系数为246C =.故选:C . 【点睛】本题考查二项式定理的应用,考查推理能力与计算能力,属于基础题.2.B解析:B 【分析】求出展开式的通项公式,利用x 的次数为5进行求解即可. 【详解】展开式的通项公式77727171(2)(1)2rr rr r r r rx T C x C x---+⎛⎫=-=- ⎪⎝⎭, 由725r -=得1r =,所以展开式中5x 的系数为1717(1)2764448C --⋅=-⨯=-,故选:B . 【点睛】该题考查的是有关二项式定理的问题,涉及到的知识点有求二项展开式指定项的系数,属于简单题目.3.B解析:B 【分析】由于规定一个区域只涂一种颜色,相邻的区域颜色不同,可分步进行,区域A 有5种涂法,B 有4种涂法,讨论A ,D 同色和异色,根据乘法原理可得结论. 【详解】由题意,由于规定一个区域只涂一种颜色,相邻的区域颜色不同,可分步进行 区域A 有5种涂法,B 有4种涂法,A ,D 不同色,D 有3种,C 有2种涂法,有5432120⨯⨯⨯=种, A ,D 同色,D 有1种涂法,C 有3种涂法,有54360⨯⨯=种, 共有180种不同的涂色方案. 故选:B . 【点睛】本题考查计数原理的应用,解题关键是分步和分类的方法选取,属于中等题.4.B解析:B 【分析】依据回文数对称的特征,可知有两种情况:1、在6个数字中任取1个组成16C 个回文数;2、在6个数字中任取2个26C 种取法,又由两个数可互换位置22A 种,即2262C A 个回文数;结合两种情况即可求出组成4位“回文数”的个数 【详解】由题意知:组成4位“回文数”∴当由一个数组成回文数,在6个数字中任取1个:16C 种 当有两组相同的数,在6个数字中任取2个:26C 种又∵在6个数字中任取2个时,前两位互换位置又可以组成另一个数 ∴2个数组成回文数的个数:22A 种故,在6个数字中任取2个组成回文数的个数:2262C A综上,有数字1,2,3,4,5,6可以组成4位“回文数”的个数为:2262C A +16C =36 故选:B 【点睛】本题考查了排列组合,根据回文数的特征—对称性,先由分类计数得到取数的方法数,再由分步计数得到各类取数中组成回文数的个数,最后加总即为所有组成4位“回文数”的个数5.A解析:A 【分析】先求出二项式展开式的通项公式,再令x 的幂指数等于0,求得r 的值,即可求得展开式中的常数项的值,再根据常数项为10,求得a 的值. 【详解】5()a x x x -的展开式中,通项公式为15552155()()()rr r r r rr a T C x x C a x x--+==--,令15502r-=,求得3r =, 可得常数项为335()10C a -=,求得1a =-. 故选:A 【点睛】本题主要考查二项式定理的应用,考查根据展开式的某一项求参数的值,意在考查学生对这些知识的理解掌握水平.6.D解析:D 【分析】根据已知条件,运用组合数的阶乘可得:n m k m kn k n n m C C C C --=,再由二项式系数的性质,可得所要求的和. 【详解】()()()()()()()()!!!!!!!!!!!!!!!!n m k n knm kn mn k n n C Cn m m k k n k n m m k k n m C C m n m k m k ---=⋅=-⋅-⋅--⋅-⋅=⋅=⋅-⋅-则()012mmn m k m k m m m m n knn m n m m m n k k CC C C C C C C C --====⋅+++=∑∑故选:D 【点睛】本题考查了组合数的计算以及二项式系数的性质,属于一般题.7.B解析:B 【分析】令1x =,即可求01232019a a a a a -+-+⋅⋅⋅-出的值. 【详解】解:在所给等式中,令1x =,可得等式为()20190123201912a a a a a -=-+-+⋅⋅⋅-,即012320191a a a a a -+-+⋅⋅⋅-=-. 故选:B. 【点睛】本题考查二项式定理的展开使用及灵活变求值,特别是解决二项式的系数问题,常采用赋值法,属于中档题.8.C解析:C 【分析】根据题意,分2步进行分析,第一步从3件次品中抽取2件次品,第二步从7件正品中抽取3件正品,根据乘法原理计算求得结果. 【详解】根据题意,分2步进行分析:①.从3件次品中抽取2件次品,有23C 种抽取方法,;②.从7件正品中抽取3件正品,有37C 种抽取方法, 则抽取的5件产品中恰好有2件次品的抽法有2337105C C ⨯=种; 故选:C .【点睛】本题考查排列组合的实际应用,注意是一次性抽取,抽出的5件产品步需要进行排列.9.D解析:D 【分析】先利用特殊值排除A,B,C ,再根据组合数公式以及二项式定理论证D 成立.令0m =得,CC C C 1mn m k n n k n n n k --===∑,在选择项中,令0m =排除A ,C ;在选择项中,令1m =,101110C C C C C C 2mn m k n n n k n n n n n k n -----==+=∑排除B ,()!!()!()!!()!mmn m k n knk k n k n CC n m m k k n k --==-=⋅---∑∑000!!2()!!!()!mm mm k m k m mn m n m n k k k n m C C C C C n m m k m k ====⋅=⋅==--∑∑∑,故选D 【点睛】本题考查组合数公式以及二项式定理应用,考查基本分析化简能力,属中档题.10.C解析:C 【分析】把问题分割成每一个“田”字里,求解. 【详解】每一个“田”字里有4个“L ”形,如图因为56⨯的方格纸内共有4520⨯=个“田”字,所以共有20480⨯=个“L ”形.. 【点睛】本题考查排列组合问题,关键在于把“要做什么”转化成“能做什么”,属于中档题.11.D解析:D 【解析】分析:直接利用排列数计算公式即可得到答案. 详解:()()()()()()829999!181920...9917!k k k k k k A k ------==-.故选:D.点睛:合理利用排列数计算公式是解题的关键.12.A解析:A 【分析】分两步进行,第一步先选三个盒子的编号与放入的小球的编号相同,第二步再将剩下的4个小球放入与小球编号不同的盒子中,然后利用分布计数原理求解.有三个盒子的编号与放入的小球的编号相同有3735C =种放法,剩下的4个小球放入与小球编号不同的盒子有11339C C ⋅=种放法,所以有且只有三个盒子的编号与放入的小球的编号相同,则不同的放法种数为359315⨯=种, 故选:A 【点睛】本题主要考查组合应用题以及分布计数原理,属于中档题.二、填空题13.60【分析】根据二项式展开式的通项公式求解【详解】有题意可得二项式展开式的通项为:令可得此时【点睛】本题考查二项式定理的应用考查通项公式考查计算能力属于基础题解析:60 【分析】根据二项式展开式的通项公式求解. 【详解】有题意可得,二项式展开式的通项为:()62612316612(1)2rrr r r r rr T C xC xx ---+⎛⎫=-=- ⎪⎝⎭令1230r -=可得4r = ,此时2456260T C ==.【点睛】本题考查二项式定理的应用,考查通项公式,考查计算能力,属于基础题.14.180【分析】根据二项式定理结合展开式通项即可确定的指数形式将多项式展开即可确定常数项【详解】的展开式中的通项公式而分别令解得或∴的展开式中的常数项故答案为:180【点睛】本题考查了二项式定理通项展解析:180 【分析】根据二项式定理,结合展开式通项即可确定x 的指数形式.将多项式展开,即可确定常数项. 【详解】62x ⎫⎪⎭的展开式中的通项公式 363216622kkkk k k k T C C x x --+⎛⎫==⋅⋅ ⎪⎝⎭,而()666332221)x x x x x =-⎫⎫⎫-⎪⎪⎪⎭⎭⎭ 分别令3332k -=-,3302k -=,解得4k =,或2k =.∴()6321x x ⎫-⎪⎭的展开式中的常数项44226622180C C -=. 故答案为:180. 【点睛】本题考查了二项式定理通项展开式的应用,多项式的乘法展开式,常数项的求法,属于中档题.15.84【分析】通过求出各项二项展开式中项的系数利用组合数的性质求出系数和即可得结果【详解】的展开式中含项的系数为:故答案是:84【点睛】该题考查的是有关二项式对应项的系数和的问题涉及到的知识点有指定项解析:84 【分析】通过求出各项二项展开式中2x 项的系数,利用组合数的性质求出系数和即可得结果. 【详解】()()()238111x x x ++++++的展开式中,含2x 项的系数为:2222222322222223456783345678C C C C C C C C C C C C C C ++++++=++++++399878432C ⨯⨯===⨯, 故答案是:84. 【点睛】该题考查的是有关二项式对应项的系数和的问题,涉及到的知识点有指定项的二项式系数,组合数公式,属于简单题目.16.【解析】分析:根据排列定义求结果详解:将5家招聘员工的公司看作5个不同的位置从中任选3个位置给3名大学毕业生则本题即为从5个不同元素中任取3个元素的排列问题所以不同的招聘方案共有=5×4×3=60( 解析:60【解析】分析:根据排列定义求结果.详解:将5家招聘员工的公司看作5个不同的位置,从中任选3个位置给3名大学毕业生,则本题即为从5个不同元素中任取3个元素的排列问题.所以不同的招聘方案共有35A =5×4×3=60(种).点睛:本题考查排列定义,考查基本求解能力.17.15【解析】二项式展开式中各项系数的和为64令得的通项为令常数项为故答案为【方法点晴】本题主要考查二项展开式定理的通项系数及各项系数和的求法属于简单题二项展开式定理的问题也是高考命题热点之一关于二项解析:15【解析】二项式nx ⎛+ ⎝展开式中各项系数的和为64,∴令1x =,得6264,8,n n x ⎛== ⎝的通项为36622166r r r r r r T C x x C x ---+=⋅=,令360,42r r -==,常数项为4615C =,故答案为15.【方法点晴】本题主要考查二项展开式定理的通项、系数及各项系数和的求法,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式1C r n r rr n T a b -+=;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.18.60【解析】的展开式的通项公式为令得∴的系数为故答案为60解析:60 【解析】62x ⎛ ⎝的展开式的通项公式为()366621661222xrr x r r r r T C x C x ---+⎛⎛⎫==-⋅ ⎪ ⎝⎭⎝ 令3632r -=得2r∴3x 的系数为2622612602C -⎛⎫-⋅⋅= ⎪⎝⎭故答案为6019.8【解析】当在最右边位置时由种排法符合条件;当在从右数第二个位置时由种排法符合条件把件不同的产品摆成一排若其中的产品与产品都摆在产品的左侧则不同的摆法有种故答案为解析:8 【解析】当C 在最右边位置时,由336A = 种排法符合条件;当C 在从右数第二个位置时,由222A =种排法符合条件,把4件不同的产品摆成一排.若其中的产品A 与产品B 都摆在产品C 的左侧,则不同的摆法有6+2=8种,故答案为8.20.【分析】利用图象法判断出关于的方程的实数根的个数由此求得利用结合二项式展开式求得【详解】当时画出和的图象如下图所示由图可知两个函数图象有个交点所以关于的方程的实数根个数为1所以所以所以故答案为:【点 解析:11265【分析】利用图象法判断出关于x 的方程log (01)xa a x a =<<的实数根的个数,由此求得n ,利用132x x +=+-,结合二项式展开式求得1a . 【详解】当01a <<时,画出x y a =和log ay x =的图象如下图所示,由图可知两个函数图象有1个交点,所以关于x 的方程log (01)xa a x a =<<的实数根个数为1,所以1n =.所以()()()()11111113232n x x x x +++=+-++-,所以10101111(2)11265a C =+-=.故答案为:11265【点睛】本小题主要考查方程的根的个数判断,考查二项式展开式,属于中档题.三、解答题21.(1)8;(2)2358x -,展开式中二项式系数最大项为第五项. 【分析】(1)根据二项展开式的通项,分别求得123,,T T T ,结合等差中项公式,列出方程,即可求解;(2)根据二项式系数的性质,即可求解. 【详解】(1)由二项式*1()(,2)2nx n N n x∈≥, 可得021212123111,,222nn n nn n T C x T C x T C x x x x --⎛⎫⎛⎫⎛⎫=-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 因为展开式中前三项的系数的绝对值成等差数列,可得10211224n n n C C C ⨯⨯=+, 整理得1(1)142n n n -=+,即2980n n -+=,解得1n =或8n =.因为*,2n N n ∈≥,所以8n =.(2)当8n =时,展开式中二项式系数最大项为第五项44425813528T C x x -⎛⎫=-= ⎪⎝⎭.【点睛】对于二项式中的项的求解方法:(1)求二项式的特定项问题,实质是在考查通项r n rr r n T C ab -=的特点,一把需要建立方程求得r 的值,在将r 的值代回通项,主要r 的取值范围(0,1,2,,)k n =;(2)若n 为偶数时,中间一项(第12n+项)的二项式系数最大; (3)若n 为奇数时,中间一项(第12n +项和第112n ++项)的二项式系数最大. 22.(1)4511206T y =,5633618T y =;(2)4095. 【分析】(1)根据二项式的性质知二项式系数最大项为第5、第6项,代入通项计算;(2)利用展开式中各项的二项式系数和公式列出等式求解n ,代入(,)f n y 由2135a =列等式求解m ,即可利用赋值法求1i ni a =∑.【详解】(1)9(9,)(13)f y y =+,二项式系数最大项为第5、第6项,44459(3)11206T C y y ==,55569(3)33618T C y y ==.(2)由题意:2224032n n -=,即()()2642630nn-+=,解得6n =,6260126(6,)(1)f y my a a y a y a y =+=+++⋅⋅⋅+,则2226135a C m ==,29m =,解得3m =或3-(舍去),则6(6,)(13)f y y =+,令1y =可得601264a a a a =+++⋅⋅⋅,所以661260126011414095n i ii i a aa a a a a a a a ====++⋅⋅⋅=+++⋅⋅⋅-=-=∑∑.【点睛】本题考查二项式定理,涉及二项式系数最大项、展开式中二项式系数和、赋值法求展开式中项的系数和,属于中档题. 23.(1)12;(2)466. 【分析】(1)由排列数公式化简后再解方程可得;(2)由组合数性质求得n 的范围,求得n ,再利用组合性质变形后计算. 【详解】(1)由2490n n A A =,得90(1)(1)(2)(3)n n n n n n -=---,且4n ≥,解得12n =;(2)由题意383321n nn n -≤⎧⎨≤+⎩,*n N ∈,解得10n =.∴383321n n n n C C -++283021303130313029314662C C C C ⨯=+=+=+=. 【点睛】本题考查排列数公式和组合数公式,掌握排列数和组合数性质是解题关键.在组合数中一定要注意上标不大于下标. 24.(1)2m =-(2)29524 【分析】(1)由二项式定理求出第4项和第7项的系数,代入已知可得m ;(2)令1x =得所有项系数和,令1x =-得奇数项系数和与偶数项系数和的差,两者结合后可得偶数项系数和,0a 是常数项易求,从而可得246810a a a a a ++++, 【详解】(1)因为10iii a C m =,1,2,310i =,依题意得:66331010140C m C m +=,331098710981404321321m m ⨯⨯⨯⨯⨯⎛⎫+=⎪⨯⨯⨯⨯⨯⎝⎭因为0m ≠,所以38m =-,得2m =-. (2)()102100121012x a a x a x a x -=+++令1x =得:()10012345678910121a a a a a a a a a a a ++++++++++=-=.① 令1x =-得:()1010012345678910123a a a a a a a a a a a -+-+-+-+-+=+=.② 由①+②得:()10024*******a a a a a a +++++=+,即10024*******a a a a a a ++++++=. 又()001021a C =-=,所以1010246810133112952422a a a a a +-++++=-==【点睛】本题考查二项式定理的应用和赋值法,考查推理论证能力、运算求解能力,考查化归与转化思想,导向对发展数学抽象、逻辑推理、数学运算等核心素养的关注. 25.(1)3360;(2)1 【分析】(1)写出二项展开式的通项公式,当x 的指数是4时,可得到关于k 方程,解方程可得k 的值,从而可得展开式中含4x 项的系数;(2)根据上一问写出的通项公式,利用第3r 项和第2r +项的二项式系数相等,可得到一个关于r 的方程,解方程即可得结果. 【详解】(1)设第k +1项为T k +1=令10-k =4,解得k =4,故展开式中含x 4项的系数为()441023360C =-.(2)∵第3r 项的二项式系数为,第r +2项的二项式系数为,∵=,故3r -1=r +1或3r -1+r +1=10,解得r =1或r =2.5(不合题意,舍去),∴r =1. 26.(1)10;(2)1031- 【分析】(1)分别选择不同方案,根据展开式系数关系即可求出; (2)令0x =和1x =-可求出. 【详解】(1)选择条件①,若()21nx -的展开式中只有第6项的二项式系数最大,则52n=, 10n ∴=;选择条件②,若()21nx -的展开式中第4项与第8项的二项式系数相等,则37n n C C =,10n ∴=;选择条件②,若()21nx -的展开式中所有二项式系数的和为102,则1022n,10n ∴=;(2)由(1)知10n =,则()101231001231021x a a x a x a x a x -=++++⋅⋅⋅+, 令0x =,得01a =,令1x =-,则100123101012331a a a a a a a a a +=-+-+⋅⋅++⋅⋅⋅⋅++=+,101231031a a a a ∴+++⋅⋅⋅+=-.【点睛】本题考查二项展开式系数关系,属于基础题.。

(新教材)人教A版数学选择性必修第三册单元测试:第06章 计数原理(A卷基础卷)(学生版+解析版)

(新教材)人教A版数学选择性必修第三册单元测试:第06章 计数原理(A卷基础卷)(学生版+解析版)

(新教材)人教A版数学选择性必修第三册单元测试第六章计数原理(A卷基础卷)考试时间:100分钟;学校:___________姓名:___________班级:___________考号:___________一.选择题(共8小题)1.(2020春•河西区期中)一件工作可以用2种方法完成,有5人只会用第1种方法完成,另有4人只会用第2种方法完成,从中选出1人来完成这件工作,则不同的选法种数是()A.9 B.10 C.20 D.402.(2020春•和平区校级期末)某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在第四位,节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有()A.16种B.18种C.24种D.36种3.(2020春•通州区期末)甲、乙等7人排成一排,甲在最中间,且与乙不相邻,那么不同的排法种数是()A.96 B.120 C.360 D.4804.(2020春•重庆期末)有6名医生到3个医院去作新冠肺炎治疗经验交流,则每个医院至少去一名的不同分派方法种数为()A.216 B.729 C.540 D.4205.(2020•北京)在(2)5的展开式中,x2的系数为()A.﹣5 B.5 C.﹣10 D.106.(2020•济宁模拟)在的展开式中,常数项为()A.B.C.D.7.(2020春•天津期末)若(n∈N*)的展开式中常数项为第9项,则n的值为()A.7 B.8 C.9 D.108.(2020春•东城区期末)若从1,2,3,…,9这9个整数中同时取3个不同的数,其和为奇数,则不同的取法共有()A.36种B.40种C.44种D.48种9.(2020春•东海县期中)下列各式中,等于n!的是()A.A B.A C.nA D.m!C10.(2020春•常州期中)若的展开式中第3项与第8项的系数相等,则展开式中二项式系数最大的项为()A.第3项B.第4项C.第5项D.第6项11.(2019春•日照期中)将四个不同的小球放入三个分别标有1、2、3号的盒子中,不允许有空盒子的放法有多少种?下列结论正确的有()A.C C C C B.C AC.C C A D.1812.(2020春•宝应县期中)若(2x+1)10=a0+a1x+a2x2+…a10x10,x∈R,则()A.a0=1 B.a0=0C.a0+a1+a2+…+a10=310D.a0+a1+a2+…+a10=3三.填空题(共4小题)13.(2020•上城区校级模拟)在二项式的展开式中,二项式系数之和是,含x4的项的系数是.14.(2020•甘肃模拟)某班星期一共八节课(上午、下午各四节,其中下午最后两节为社团活动),排课要求为:语文、数学、外语、物理、化学、各排一节,从生物、历史、地理、政治四科中选排一节.若数学必须安排在上午且与外语不相邻(上午第四节和下午第一节不算相邻),则不同的排法有种.15.(2020春•南郑区校级期中)中国古代中的“礼、乐、射、御、书、数”合称“六艺”“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“数”必须排在前三节,且“射“和“御“两门课程相邻排课,则“六艺”课程讲座不同的排课顺序共有种.16.(2020春•西城区校级期中)设有编号为1,2,3,4,5的五把锁和对应的五把钥匙.现给这5把钥匙也分别贴上编为1,2,3,4,5的五个标签,则有种不同的姑标签的方法;若想使这5把钥匙中至少有2把能打开贴有相同标签的锁,则有种不同的贴标签的方法.(用数字作答)17.(2019春•武汉期中)现有5本书和3位同学,将书全部分给这三位同学.(1)若5本书完全相同,每个同学至少有一本书,共有多少种分法?(2)若5本书都不相同,共有多少种分法?(3)若5本书都不相同,每个同学至少有一本书,共有多少种分法?18.(2019春•黄浦区校级期中)从6名男医生和3名女医生中选出5人组成一个医疗小组,请解答下列问题:(1)如果这个医疗小组中男女医生都不能少于2人,共有多少种不同的建组方案?(用数字作答)(2)男医生甲要担任医疗小组组长,所以必选,而且医疗小组必须男女医生都有,共有多少种不同的建组方案?(3)男医生甲与女医生乙不被同时选中的概率.(化成最简分数)19.(2020春•栖霞市月考)有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数.(1)选5人排成一排;(2)排成前后两排,前排4人,后排3人;(3)全体排成一排,甲不站排头也不站排尾;(4)全体排成一排,女生必须站在一起;(5)全体排成一排,男生互不相邻.20.(2019春•台州期末)已知(1+x)n的展开式中第4项和第8项的二项式系数相等.(Ⅰ)求n的值和这两项的二项式系数;(Ⅱ)在(1+x)3+(1+x)4+…+(1+x)n+2的展开式中,求含x2项的系数(结果用数字表示).21.(2020•南通模拟)已知(1+2x)n=a0+a1x+a2x2+…+a n x n(n∈N*).(1)当n=6时,求a0+a2+a4+a6的值;(2)化简:C22k.(新教材)人教A版数学选择性必修第三册单元测试:第六章计数原理(A卷基础卷)参考答案与试题解析一.选择题(共8小题)1.(2020春•河西区期中)一件工作可以用2种方法完成,有5人只会用第1种方法完成,另有4人只会用第2种方法完成,从中选出1人来完成这件工作,则不同的选法种数是()A.9 B.10 C.20 D.40【解答】解:利用第一种方法有:种,利用第二种方法有:种方法.、故共有:5+4=9种完成工作.故选:A.2.(2020春•和平区校级期末)某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在第四位,节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有()A.16种B.18种C.24种D.36种【解答】解:由题意知,甲丙的位置固定,先排乙,再把剩余的节目全排列,故台晚会节目演出顺序的编排方案共有有A31A33=18种.故选:B.3.(2020春•通州区期末)甲、乙等7人排成一排,甲在最中间,且与乙不相邻,那么不同的排法种数是()A.96 B.120 C.360 D.480【解答】解:从出甲乙之外的5人中选2人排在甲的两边并和甲相邻,剩下的全排即可,故有A52A44=480种,故选:D.4.(2020春•重庆期末)有6名医生到3个医院去作新冠肺炎治疗经验交流,则每个医院至少去一名的不同分派方法种数为()A.216 B.729 C.540 D.420【解答】解:根据题意,分2步进行计算:①先将6名医生分为3组,若分为1、1、4的三组,有C64=15种分组方法,若分为1、2、3的三组,有C63C32=60种分组方法,若分为2、2、2的三组15种分组方法,则有15+60+15=90种分组方法;②将分好的三组对应三个医院,有A33=6种情况,则每个医院至少去一名的不同分派方法种数为90×6=540种;故选:C.5.(2020•北京)在(2)5的展开式中,x2的系数为()A.﹣5 B.5 C.﹣10 D.10【解答】解:(2)5的展开式中,通项公式为T r+1•(﹣2)r•,令2,求得r=1,可得x2的系数为•(﹣2)=﹣10,故选:C.6.(2020•济宁模拟)在的展开式中,常数项为()A.B.C.D.【解答】解:因为(x)6的通项公式为:T r+1•x6﹣r•()r=()r••x6﹣2r;6﹣2r=0时,r=3;6﹣2r=﹣1时,r不存在;∴的展开式中,常数项为:()3•3;故选:A.7.(2020春•天津期末)若(n∈N*)的展开式中常数项为第9项,则n的值为()A.7 B.8 C.9 D.10【解答】解:∵(n∈N*)的展开式中的第9项T9•(﹣3)8•2n﹣8•x2n﹣20为常数项,故有2n﹣20=0,∴n=10,故选:D.8.(2020春•东城区期末)若从1,2,3,…,9这9个整数中同时取3个不同的数,其和为奇数,则不同的取法共有()A.36种B.40种C.44种D.48种【解答】解:根据题意,将9个数分为2组,一组为奇数:1、3、5、7、9,一组为偶数:2、4、6、8,若取出的3个数和为奇数,分2种情况讨论:①取出的3个数全部为奇数,有C53=10种情况,②取出的3个数有1个奇数,2个偶数,有C51C42=30种情况,则和为奇数的情况有10+30=40种.故选:B.二.多选题(共4小题)9.(2020春•东海县期中)下列各式中,等于n!的是()A.A B.A C.nA D.m!C【解答】解:n!,A正确;(n+1)!,B错误;n n•(n﹣1)!=n!,C正确;m!m!•n!,D错误;故选:AC.10.(2020春•常州期中)若的展开式中第3项与第8项的系数相等,则展开式中二项式系数最大的项为()A.第3项B.第4项C.第5项D.第6项【解答】解:∵的展开式中第3项与第8项的系数相等,∴;所以n=9,则展开式中二项式系数最大的项为第五项和第六项;故选:CD.11.(2019春•日照期中)将四个不同的小球放入三个分别标有1、2、3号的盒子中,不允许有空盒子的放法有多少种?下列结论正确的有()A.C C C C B.C AC.C C A D.18【解答】解:根据题意,四个不同的小球放入三个分别标有1〜3号的盒子中,且没有空盒,则三个盒子中有1个中放2个球,剩下的2个盒子中各放1个,有2种解法:(1)分2步进行分析:①、先将四个不同的小球分成3组,有C42种分组方法;②、将分好的3组全排列,对应放到3个盒子中,有A33种放法;则没有空盒的放法有C A种;(2)分2步进行分析:①、在4个小球中任选2个,在3个盒子中任选1个,将选出的2个小球放入选出的小盒中,有C C种情况②、将剩下的2个小球全排列,放入剩下的2个小盒中,有A22种放法;则没有空盒的放法有C C A22种;故选:BC.12.(2020春•宝应县期中)若(2x+1)10=a0+a1x+a2x2+…a10x10,x∈R,则()A.a0=1 B.a0=0C.a0+a1+a2+…+a10=310D.a0+a1+a2+…+a10=3【解答】解:因为(2x+1)10=a0+a1x+a2x2+…a10x10,x∈R,令x=0可得:a0=1;令x=1可得a0+a1+a2+…a10=310;故选:AC.三.填空题(共4小题)13.(2020•上城区校级模拟)在二项式的展开式中,二项式系数之和是32,含x4的项的系数是10.【解答】解:在二项式的展开式中,二项式系数之和是25=32,通项公式为T r+1•(﹣1)r•x10﹣3r,令10﹣3r=4,求得r=2,可得含x4的项的系数是10,故答案为:32;10.14.(2020•甘肃模拟)某班星期一共八节课(上午、下午各四节,其中下午最后两节为社团活动),排课要求为:语文、数学、外语、物理、化学、各排一节,从生物、历史、地理、政治四科中选排一节.若数学必须安排在上午且与外语不相邻(上午第四节和下午第一节不算相邻),则不同的排法有种1344.【解答】解:从生物、历史、地理、政治四科中选排一节,有4种方法,若数学排第一节,则英语可以排3,4,5,6节,其余全排列,此时有4×A,若数学排第二节,则英语可以排4,5,6节,其余全排列,此时有3×A,若数学排第三节,则英语可以排1,5,6节,其余全排列,此时有3×A,若数学排第四节,则英语可以排1,2,5,6节,其余全排列,此时有4×A,则共有4(4×A3×A3×A4×A)=4×14×A4×14×24=1344,故答案为:134415.(2020春•南郑区校级期中)中国古代中的“礼、乐、射、御、书、数”合称“六艺”“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“数”必须排在前三节,且“射“和“御“两门课程相邻排课,则“六艺”课程讲座不同的排课顺序共有120种.【解答】解:根据题意,“数”必须排在前三节,据此分3种情况讨论:①“数”排在第一节,“射“和“御“两门课程联排的情况有4×A22=8种,剩下的三门课程有A33=6种情况,此时有8×6=48种排课顺序;②“数”排在第二节,“射“和“御“两门课程联排的情况有3×A22=6种,剩下的三门课程有A33=6种情况,此时有6×6=36种排课顺序;③“数”排在第三节,“射“和“御“两门课程联排的情况有3×A22=6种,剩下的三门课程有A33=6种情况,此时有6×6=36种排课顺序;则有48+36+36=120种排课顺序;故答案为:12016.(2020春•西城区校级期中)设有编号为1,2,3,4,5的五把锁和对应的五把钥匙.现给这5把钥匙也分别贴上编为1,2,3,4,5的五个标签,则有120种不同的姑标签的方法;若想使这5把钥匙中至少有2把能打开贴有相同标签的锁,则有31种不同的贴标签的方法.(用数字作答)【解答】解:根据题意,现给这5把钥匙也贴上编号为1,2,3,4,5的五个标签,则有A55=120种不同的贴标签的方法:若这5把钥匙中至少有2把能打开贴有相同标签的锁,分3种情况讨论:①5把都可以打开贴有相同标签的锁,即5个标签全部贴对,有1种贴标签的方法;②5把钥匙中有3把可以打开贴有相同标签的锁,即有3个标签贴对,有C53=10种贴标签的方法;③5把钥匙中有2把可以打开贴有相同标签的锁,即有2个标签贴对,有2C52=20种贴标签的方法;则一共有1+10+20=31种贴标签的方法;故答案为:120,31.四.解答题(共5小题)17.(2019春•武汉期中)现有5本书和3位同学,将书全部分给这三位同学.(1)若5本书完全相同,每个同学至少有一本书,共有多少种分法?(2)若5本书都不相同,共有多少种分法?(3)若5本书都不相同,每个同学至少有一本书,共有多少种分法?【解答】解:(1)根据题意,若5本书完全相同,将5本书排成一排,中间有4个空位可用,在4个空位中任选2个,插入挡板,有C42=6种情况,即有6种不同的分法;(2)根据题意,若5本书都不相同,每本书可以分给3人中任意1人,都有3种分法,则5本不同的书有3×3×3×3×3=35=243种;(3)根据题意,分2步进行分析:①将5本书分成3组,若分成1、1、3的三组,有C53=10种分组方法,若分成1、2、2的三组,有15种分组方法,则有10+15=25种分组方法;②将分好的三组全排列,对应3名学生,有A33=6种情况,则有25×6=150种分法.18.(2019春•黄浦区校级期中)从6名男医生和3名女医生中选出5人组成一个医疗小组,请解答下列问题:(1)如果这个医疗小组中男女医生都不能少于2人,共有多少种不同的建组方案?(用数字作答)(2)男医生甲要担任医疗小组组长,所以必选,而且医疗小组必须男女医生都有,共有多少种不同的建组方案?(3)男医生甲与女医生乙不被同时选中的概率.(化成最简分数)【解答】解:(1)根据条件可知有以下两种情况:①选两个男医生和三个女医生,有C•C15种建组方案;②选三个男医生和两个女医生,有C•C60种建组方案;故共有15+60=75种不同的建组方案.(2)男医生甲要担任医疗小组组长,所以必选,而且医疗小组必须男女医生都有,若选2男3女,甲必选,则还需要在5名男医生选1名,有5种建组方案;若选3男2女,甲必选,则还需要在5名男医生选2名,有30种建组方案;若选4男1女,甲必选,则还需要在5名男医生选3名,有30种建组方案;则共有5+30+30=65种组建方案.(3)6名男医生和3名女医生中选出5人组成一个医疗小组,有126种组建方法,若男医生甲与女医生乙被同时选中,则有35种方法,则男医生甲与女医生乙不被同时选中的方法有126﹣35=91种,则男医生甲与女医生乙不被同时选中的概率P.19.(2020春•栖霞市月考)有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数.(1)选5人排成一排;(2)排成前后两排,前排4人,后排3人;(3)全体排成一排,甲不站排头也不站排尾;(4)全体排成一排,女生必须站在一起;(5)全体排成一排,男生互不相邻.【解答】解:(1)根据题意,有3名男生、4名女生,共7人,从中选出5人排成一排,有A75=2520种排法;(2)根据题意,前排4人,有A74种排法,后排3人,有A33种排法,则有A74×A33=5040种排法;(3)根据题意,甲不站排头也不站排尾,有5种情况,将剩下的6人全排列,有A66种排法,则有5×A66=3600种排法;(4)根据题意,将4名女生看成一个整体,有A44种排法,将这个整体与3名男生全排列,有A44种排法,则有A44×A44=576种排法;(5)根据题意,先排4名女生,有A44种排法,排好后有5个空位,在5个人空位中任选3个,安排3名男生,有A53种排法,则有A44×A53=1440种排法.20.(2019春•台州期末)已知(1+x)n的展开式中第4项和第8项的二项式系数相等.(Ⅰ)求n的值和这两项的二项式系数;(Ⅱ)在(1+x)3+(1+x)4+…+(1+x)n+2的展开式中,求含x2项的系数(结果用数字表示).【解答】解:(Ⅰ)因为,所以n=10,所以120,故两项的二项式系数120.(Ⅱ)含x2项的系数为285,故答案为:285.21.(2020•南通模拟)已知(1+2x)n=a0+a1x+a2x2+…+a n x n(n∈N*).(1)当n=6时,求a0+a2+a4+a6的值;(2)化简:C22k.【解答】解:(1)当n=6时,令x=1,则(1+2)6=36=a0+a1+a2+a3+a4+a5+a6①,令x=﹣1,则(1﹣2)6=1=a0﹣a1+a2﹣a3+a4﹣a5+a6②,①+②得,;(2)③,④,③+④得,,即.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B.-1 D.第一章计数原理单兀测试题、选择题(本大题共12小题,每小题5分,共60分)2个英文字母后接4个数字组成,其中4个数字互不相同的牌照号 码共有()2 4B . A 26A 10 个D . A^104个5. 从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期 五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有(A )40 种(B ) 60 种(C ) 100 种 (D ) 120 种6. 由数字0, 1, 2, 3, 4, 5可以组成无重复数字且奇偶数字相间的六位数的个数有()B.607. 用0, 1, 2, 3, 4组成没有重复数字的全部五位数中, 若按从小到大的顺序排列, 则数字12340 应是第()个数•B.9和CD 为平面内两条相交直线,AB 上有m 个点,CD 上有n 个点,且两直线上各有一个与交点重合, 则以这m+n-1个点为顶点的三角形的个数是()C 1 A. C mC 2 C 1C 2C n C mBC1 C2 m CnC 1C 2C n1C mC1 2 1 2 1 2 1 2C m 1C nC n C mp C m 1C nC n 1C m 19.设2 10xa °a 1x 2a ?x10a^x则1 . 有 A . 5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共 ( )10 种 B . 20 种 C . 25 种 甲、乙、丙3位同学选修课程,从 D4门课程中, .32种甲选修 2门,乙、丙各选修 3门,则不同的选修方案共有 A . 36 种B. 48 种3.记者要为5名志愿者和他们帮助的 端,不同的排法共有()A. 1440 种B. 960 种.96 种D . 192 种2位老人拍照,要求排成一排, 2位老人相邻但不排在两C. 720 种D. 480 种 4.某城市的汽车牌照号码由124A. C 26A 10 个 C .C26 2 104个22a。

a2a10a1a2比的值为()B.-1 D.10. 2006年世界杯参赛球队共 32支,现分成8个小组进行单循环赛,决出16强(各组的前2名小 组出线),这16个队按照确定的程序进行淘汰赛 ,决出8强,再决出4强,直到决出冠、亚军和第三 名、第四名,则比赛进行的总场数为 ().72C11. 用二项式定理计算,精确到 1的近似值为()B.9900212. 从不同号码的五双靴中任取4只,其中恰好有一双的取法种数为().240 C二、 填空题(本大题共 4小题,每小题4分,共16分)13. 今有2个红球、3个黄球、4个白球,同色球不加以区分,将这 9个球排成一列有_种不同的方法(用数字作答).14. 用数字0, 1, 2, 3, 4组成没有重复数字的五位数, 则其中数字1,2相邻的偶数有 _______ 个(用数字作答).16. 从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有 ________ 种。

(用数字作答) 三、解答题(本大题共 6小题,共74分。

解答应写出文字说明、证明过程或演算步骤。

)17. 如图,电路中共有 7个电阻与一个电灯 A ,若灯A 不亮,分析因电阻断路的可能性共有多 少种情况。

18. 从1到9的九个数字中取三个偶数四个奇数,试问:15.若(2x 3+ 1 )n的展开式中含有常数项, J x则最小的正整数①能组成多少个没有重复数字的七位数n 5②上述七位数中三个偶数排在一起的有几个③在①中的七位数中,偶数排在一起、奇数也排在一起的有几个④在①中任意两偶然都不相邻的七位数有几个19.把1、2、3、4、5 这五个数字组成无重复数字的五位数,并把它们按由小到大的顺序排列成一个数列.(1)43251 是这个数列的第几项(2)这个数列的第96 项是多少(3)求这个数列的各项和.20. (本小题满分12 分)求证:能被25 整除。

m等差数列的首项为c 5n2n R2n 3;,公差为 — -V1X 2 展开2x 515除以19的余数,则此数列前多少项的和最大并求出这个最大单元测试卷参考答案21.(本小题满分14分)已知式中的常数项,求 33aJ a的展开式的各项系数之和等于n展开式中含的项的二项式系数43b 1展开 v'5b22.(本小题满分14分)若某式中的常数项,其中m 是7777 值.n 5排列、组合、二项式定理一、选择题:(每题5分,共60分)1、D解析:5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有25=32种,选D2、C解析•甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,2 3 3则不同的选修方案共有C4 C4 C4 96种,选C53、解析:5名志愿者先排成一排,有A5种方法,2位老人作一组插入其中,且两位老人有左右5顺序,共有2 4 A s =960种不同的排法,选B4、A解析:某城市的汽车牌照号码由2个英文字母后接4个数字组成,其中4个数字互不相同的牌照号码共有c;6 2A4)个,选A5、B解析:从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有60种, 选B6、B 解析:只考虑奇偶相间,则有2A3A3种不同的排法,其中0在首位的有A?A?种不符合题意所以共有2A3A3360种.7、C 解析:比12340小的分三类:第一类是千位比2小为0,有A 6个;第二类是千位为2 ,百位比3小为0,有A 2个;第三类是十位比4小为0,有1个.共有6+2+1=9个,所以12340是第10个数•8、D 解析:在一条线上取2个点时,另一个点一定在另一条直线上,且不能是交点•9、C解析:由210x a0a1x2a?x10a^x可得:当x1时,2101a。

a11a21210a101a0a1 a2a101时,2101a0a1a2a3 ai0a0a1 a2a10当x2 2a0a2a10 a1 a2a9a。

a〔a?a i0 a°a i a? a3a10210一1 2110、2 1 ,2- 10> 1 1.10、A解析:先进行单循环赛,有8C248场,在进行第一轮淘汰赛,16个队打8场,在决出4强,打4场,再分别举行2场决出胜负,两胜者打1场决出冠、亚军,两负者打1场决出三、四名,共举行:48+8+4+2+1+1=64 场.50.0211、C解析:9.98510105C5 1040.02C521030.02 2 3 2 3C3 1020.021051034 0.0699004.12、A 解析:先取出一双有C;种取法,再从剩下的4双鞋中取出2双,而后从每双中各取一只,有C I C2C2种不同的取法,共有C5 cfc2c2 120种不同的取法.二、填空题(每小题4分,共16分)13、1260 解析:由题意可知,因同色球不加以区分,实际上是一个组合问题,共有C^gc l gd 126014、24 解析:可以分情况讨论:①若末位数字为0,则1,2,为一组,且可以交换位置,3,34,各为1个数字,共可以组成2 A 12个五位数;② 若末位数字为2,则1与它相邻,其余23个数字排列,且0不是首位数字,则有2 A2 4个五位数;③ 若末位数字为4,则1,2,为一组,且可以交换位置,3,0,各为1个数字,且0不是首位数字,则有2 (2 A2) =8个五位数,所以全部合理的五位数共有24个1 115、7解析:若(2 x3+ )n的展开式中含有常数项,T r 2C;;r(2x3)n r( )r为常数项,即V x V x3n *=0,当2兰n=7,r=6时成立,最小的正整数n等于7.16、36 种解析.从班委会5 名成员中选出3 名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,先从其余3人中选出1人担任文娱委员,再从 4 人中选 2 人担任学习委员和体育委员,不同的选法共有C31A423 4 3 36 种三、解答题(共六个小题,满分74 分)17. 解:每个电阻都有断路与通路两种状态,图中从上到下的三条支线路,分别记为支线a、b、c,支线a, b中至少有一个电阻断路情况都有22—1=3种;................ 4分支线c中至少有一个电阻断路的情况有22—1=7种,......................... 6分每条支线至少有一个电阻断路,灯 A 就不亮,因此灯A不亮的情况共有 3 X 3X 7=63种情况................................ 10分18. 解:①分步完成:第一步在4个偶数中取3个,可有C:种情况;第二步在5个奇数中取4个,可有Cs种情况;第三步 3 个偶数, 4 个奇数进行排列,可有A77种情况, 所以符合题意的七位数有C4 C4A7100800个. ....... 3分②上述七位数中,三个偶数排在一起的有个. C^C I A S A]14400……6分③上述七位数中, 3个偶数排在一起, 4个奇数也排在一起的有C:5760 个. .................................... 9 分④上述七位数中, 偶数都不相邻, 可先把4个奇数排好, 再将3个偶数分别插入5个空档,共有A;C:A3 ........... 28800 个................. 12 分19. 解:⑴先考虑大于43251的数,分为以下三类第一类:以 5 打头的有:A44=24第二类:以45 打头的有:A33=6第三类:以435打头的有:A: =2 ............................................. 2分故不大于43251 的五位数有:A55A44A33A2288 (个)即43251是第88项.. ................................................ 4分⑵数列共有A=120项,96项以后还有120-96=24项,即比96项所表示的五位数大的五位数有24个,所以小于以5打头的五位数中最大的一个就是该数列的第96项.即为45321. - 8分⑶因为1 , 2 , 3 , 4 , 5各在万位上时都有A 个五位数,所以万位上数字的和为:(1+2+3+4+5) • A • 10000 .................................................................................... 10 分 同理它们在千位、十位、个位上也都有 A 个五位数,所以这个数列各项和为:(1+2+3+4+5) • A • (1 + 10+100+1000+10000)=15X 24X 1111仁3999960 ........................................................................................... 12 分20. 证明:因 2n 2 3n 5n 4 .......................................... 4 6n 5n 4 4 5 1 n 5n 4r10 5r 1 _____________45r c 5 b 6 ,r 0,1,2,3,4,5其二项式系数是35.11 2n 5n 22.由已知得:,又n N, n 2, 2n 211 3n n J n 1 _ 2 n 2 亠n 2 4.5 C n 5 C n 5 C n 5 ,-n 1 «_n 1 2 n 2n 24. 5 C n 5 C n 5 C n 5 显然5n C n 5n 1 C ?5? 2 C n 252 er ? 15 1 5n 4 ............................................ 8 分25n ......................................................... 10 分能被25整除,25n 能被25整除,5n 4能被25整除. 12分5的展开式的通项为 T r 1C 5 43 b 5 r r 1 5b 若它为常数项,则6 0, 2,代入上式 T 3 27 .即常数项是27,从而可得 3 、、n3 a 中 n=7, 10分 同理7 3 a 由二项展开式的通项公式知,含的项是第 4项,14分所以2n 2 3n 21.设 43 b3所以首项a 1 100. ............................................................................................. 77 77 1 5 76 1 77 1 5 7 6 77 C ;7 7676 N ,所以7777 15除以19的余数是5,即m 5m 5 r r223 x 2的展开式的通项T r1 C 5r —23 x 22x 5 2x 55 2r 5” r r 5 3r 5 1 C 5 x 3 , r 0,1,2,3,4,52 若它为常数项,则5r 5 0, r 3,代入上式 T 44 d .3 从而等差数列的通项公式是: a n 104 4n , .......................................................... 10分104 4 n 0设其前k 项之和最大,则,解得k=25或k=26, 104 4 k 1 0故此数列的前 25 项之和与前 26 项之和相等且最 c c 100 104 4 25 八 S 25 S 26 25 1300 . ............................................................. 14 分 2 11 2n 2n 2 C 5n P l1 3n Cw P 5 Cw P 52 10 9 85 4 1003 2 1 C 77 76 1 1576M 14, M。

相关文档
最新文档