计数原理单元测试题
计数原理单元测试卷一

计数原理单元测试卷一同学们,今天我们进行的是计数原理单元的测试,请大家认真审题,仔细作答。
现在,让我们开始今天的测试。
一、选择题(每题3分,共30分)1. 某班级有30名学生,需要选出5名代表参加校运会,有多少种不同的选法?A. 3000B. 300C. 150D. 1002. 如果一个事件可以由n个步骤组成,每个步骤有两种选择,那么完成这个事件共有多少种不同的方法?A. 2^nB. n^2C. 2nD. n!3. 某图书馆有100本书,需要选出10本进行展示,如果不考虑书籍的排列顺序,共有多少种不同的选法?A. 100B. 10C. 10^100D. 100!/(10!*90!)...(此处省略其他选择题)二、填空题(每空2分,共20分)1. 如果一个事件有5种可能的结果,每种结果发生的概率相等,那么这个事件的期望值是______。
2. 从5个不同的数字中选出3个数字进行排列,不考虑排列顺序,共有______种不同的组合。
...(此处省略其他填空题)三、简答题(每题10分,共20分)1. 请解释什么是排列和组合,并给出一个例子说明它们的区别。
2. 请解释什么是二项式定理,并给出一个应用二项式定理的例子。
四、计算题(每题15分,共30分)1. 某学校有5个班级,每个班级有50名学生。
现在需要从这5个班级中随机选出10名学生组成一个学习小组。
如果不考虑班级之间的差异,计算出有多少种不同的组合方式。
2. 假设有5个不同的球和5个不同的盒子,每个盒子只能放一个球。
计算出有多少种不同的放球方法。
五、论述题(共10分)请论述计数原理在日常生活中的应用,并给出至少两个具体的例子。
同学们,测试结束。
请检查自己的答案,确保没有遗漏。
希望你们都能取得好成绩。
如果有任何疑问,可以在课后与我讨论。
谢谢大家的努力和参与。
(人教版)重庆市选修三第一单元《计数原理》测试题(包含答案解析)

一、选择题1.在二项式()12nx -的展开式中,所有项的二项式系数之和为256,则展开式的中间项的系数为( ) A .960- B .960 C .1120D .16802.若()()()()()201923201901232019122222x a a x a x a x a x -=+-+-+-+⋅⋅⋅+-,则01232019a a a a a -+-+⋅⋅⋅-的值为( )A .-2B .-1C .0D .13.将甲、乙、丙、丁四人分配到A 、B 、C 三所学校任教,每所学校至少安排1人,则甲不去A 学校的不同分配方法有( ) A .18种B .24种C .32种D .36种4.若0k m n ≤≤≤,且,,m n k N ∈,则0mn m k n k n k CC --==∑( )A .2m n +B .2mn m CC .2n mn C D .2m mn C5.已知二项式()nx x-的展开式中二项式系数之和为64,则该展开式中常数项为 A .-20B .-15C .15D .206.已知21nx x ⎛⎫ ⎪⎝⎭+的二项展开式的各项系数和为32,则二项展开式中x 的系数为( ) A .5 B .10 C .20 D .407.在()nx x+的展开式中,各项系数与二项式系数和之比为128,则4x 的系数为( ) A .21B .63C .189D .7298.在2310(1)(1)(1)x x x ++++⋅⋅⋅++的展开式中,含2x 项的系数为( ) A .45B .55C .120D .1659.在二项式3nx x ⎛⎫+ ⎪⎝⎭的展开式中,各项系数之和为A ,二项式系数之和为B ,若72A B +=,则n =( )A .3B .4C .5D .610.如图,用6种不同的颜色把图中A,B,C,D 四块区域涂色分开,若相邻区域不能涂同一种颜色,则不同涂法的种数为( )A .400B .460C .480D .49611.若()()()2202020202019201801220201111a x a x x a x x a x +-+-++-=,则012020a a a +++=( )A .1B .0C .20202D .2021212.以长方体1111ABCD A B C D -的任意三个顶点为顶点作三角形,从中随机取出2个三角形,则这2个三角形不共面的情兄有( )种A .1480B .1468C .1516D .1492二、填空题13.已知13nx x ⎛⎫- ⎪⎝⎭的展开式中第6项与第8项的二项式系数相等,则含10x 项的系数是___________.14.把4名中学生分别推荐到3所不同的大学去学习,每个大学至少收一名,全部分完,不同的分配方案数为________.15.方程10x y z ++=的正整数解的个数__________.16.4名志愿者被随机分配到、、A B C 三个不同的岗位服务,每个岗位至少有一名志愿者,则甲、乙两名志愿者没有分配到同一个岗位服务的概率为______. 17.(x +y )(2x -y )5的展开式中x 3y 3的系数为________.18.有4位同学参加学校组织的政治、地理、化学、生物4门活动课,要求每位同学各选一门报名(互不干扰),则地理学科恰有2人报名的方案有______.19.定义“规范01数列”{}n a 如下:{}n a 共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a 中0的个数不少于1的个数.若4m =,则不同的“规范01数列”共有____个.20.622x x ⎛ ⎝的展开式中3x 的系数为__________.(用数字作答)三、解答题21.设函数(,)(1)(0,0)x f x y my m y =+>>.(1)当3m =时,求()9,f y 的展开式中二项式系数最大的项;(2)已知(2,)f n y 的展开式中各项的二项式系数和比(,)f n y 的展开式中各项的二项式系数和大4032,若01(,)nn f n y a a y a y =++⋅⋅⋅+,且2135a =,求1i ni a =∑22.求值:(1)333364530C C C C +++⋅⋅⋅+; (2)12330303030302330C C C C +++⋅⋅⋅+.23.已知i ,m ,n 是正整数,且1i m n <≤<. (1)证明:i i i im n n A m A <; (2)证明:(1)(1)m n n m +<+. 24.已知()(n f x x =,()f x 的展开式的各二项式系数的和等于128,(1)求n 的值;(2)求()f x 的展开式中的有理项;(3)求()f x 的展开式中系数最大的项和系数最小的项.25.已知二项式1nx ⎫⎪⎭的展开式中各项的系数和为256. (1)求n ;(2)求展开式中的常数项.26.已知5nx⎛⎝.(1)当6n =时,求: ①展开式中的中间一项; ②展开式中常数项的值;(2)若展开式中各项系数之和比各二项式系数之和大240,求展开式中含x 项的系数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先根据条件求出8n =,再由二项式定理及展开式通项公式,即可得答案. 【详解】由已知可得:2256n =,所以8n =,则展开式的中间项为44458(2)1120T C x x =-=,即展开式的中间项的系数为1120. 故选:C .【点睛】本题考查由二项式定理及展开式通项公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.2.B解析:B 【分析】令1x =,即可求01232019a a a a a -+-+⋅⋅⋅-出的值. 【详解】解:在所给等式中,令1x =,可得等式为()20190123201912a a a a a -=-+-+⋅⋅⋅-,即012320191a a a a a -+-+⋅⋅⋅-=-. 故选:B. 【点睛】本题考查二项式定理的展开使用及灵活变求值,特别是解决二项式的系数问题,常采用赋值法,属于中档题.3.B解析:B 【分析】根据题意,分两种情况讨论:①其他三人中有一个人与甲在同一个学校,②没有人与甲在同一个学校,由加法原理计算可得答案. 【详解】解:根据题意,分两种情况讨论,①其他三人中有一个人与甲在同一个学校,有11232212C A A =种情况, ②没有人与甲在同一个学校,则有12223212C C A =种情况;则若甲要求不到A 学校,则不同的分配方案有121224+=种; 故选:B . 【点睛】本题考查排列、组合的应用,涉及分类加法原理的应用,属于中等题.4.D解析:D 【分析】先利用特殊值排除A,B,C ,再根据组合数公式以及二项式定理论证D 成立. 【详解】 令0m =得,CC C C 1mn m k n n k n n n k --===∑,在选择项中,令0m =排除A ,C ;在选择项中,令1m =,101110C C C C C C 2mn m k n n n k n n n n n k n -----==+=∑排除B ,()!!()!()!!()!mmn m k n knk k n k n CC n m m k k n k --==-=⋅---∑∑000!!2()!!!()!mm mm k m k m mn m n m n k k k n m C C C C C n m m k m k ====⋅=⋅==--∑∑∑,故选D 【点睛】本题考查组合数公式以及二项式定理应用,考查基本分析化简能力,属中档题.5.C解析:C 【分析】利用二项式系数之和为64解得6n =,再利用二项式定理得到常数项. 【详解】二项式(nx 的展开式中二项式系数之和为642646n n ⇒=⇒=36662166(((1)r r r r rr r x T C x C x --+-⇒=⋅=-当36042r r -=⇒=时,系数为15 故答案选C 【点睛】本题考查了二项式定理,先计算出6n =是解题的关键,意在考查学生的计算能力.6.B解析:B 【分析】首先根据二项展开式的各项系数和012232n n n n n n C C C C +++==,求得5n =,再根据二项展开式的通项为211()()r rn rr n T C x x-+=,求得2r,再求二项展开式中x 的系数.【详解】因为二项展开式的各项系数和012232n n n n n n C C C C +++==,所以5n =,又二项展开式的通项为211()()r rn rr n T C x x-+==3r r n n C x -,351r -=,2r所以二项展开式中x 的系数为2510C =.答案选择B .【点睛】本题考查二项式展开系数、通项等公式,属于基础题.7.C解析:C 【解析】分析:令1x =得各项系数和,由已知比值求得指数n ,写出二项展开式通项,再令x 的指数为4求得项数,然后可得系数.详解:由题意41282n n =,解得7n =,∴37721773r r r r r rr T C x C x --+==,令3742r-=,解得2r ,∴4x 的系数为2273189C =.故选C . 点睛:本题考查二项式定理,考查二项式的性质.在()n a b +的展开式中二项式系数和为2n ,而展开式中各项系数的和是在展开式中令变量值为1可得,二项展开式通项公式为1C r n r rr n T ab -+=. 8.D解析:D 【解析】分析:由题意可得展开式中含2x 项的系数为222223410C C C C +++⋯+ ,再利用二项式系数的性质化为 311C ,从而得到答案.详解:()()()2310111x x x ++++⋅⋅⋅++的展开式中含2x 项的系数为222232341011 165.C C C C C +++⋯+==故选D.点睛:本题主要考查二项式定理的应用,求展开式中某项的系数,二项式系数的性质,属于中档题.9.A解析:A 【解析】分析:先根据赋值法得各项系数之和,再根据二项式系数性质得B ,最后根据72B +=解出.n详解:因为各项系数之和为(13)4nn+=,二项式系数之和为2n , 因为72A B +=,所以4272283n n n n +=∴=∴=, 选A.点睛:“赋值法”普遍适用于恒等式,是一种重要的方法,对形如2(),()(,)n n ax b ax bx c a b R +++∈的式子求其展开式的各项系数之和,常用赋值法, 只需令1x =即可;对形如()(,)nax by a b +∈R 的式子求其展开式各项系数之和,只需令1x y ==即可.10.C解析:C 【解析】分析:本题是一个分类计数问题,只用三种颜色涂色时,有31116321C C C C 种方法,用四种颜色涂色时,有41126322C C C A 种方法,根据分类计数原理得到结果.详解:只用三种颜色涂色时,有31116321120C C C C =种方法, 用四种颜色涂色时,有41126432360C C C A =种方法,根据分类计数原理得不同涂法的种数为120+360=480. 故答案为C.点睛:(1)本题主要考查计数原理,考查排列组合的综合应用,意在考查学生对这些知识的掌握水平和分析推理能力.(2)排列组合常用的方法有一般问题直接法、相邻问题捆绑法、不相邻问题插空法、特殊对象优先法、等概率问题缩倍法、至少问题间接法、复杂问题分类法、小数问题列举法.11.C解析:C 【分析】 由()202011x x =+-⎡⎤⎣⎦结合二项式定理可得出2020kk a C =,利用二项式系数和公式可求得012020a a a +++的值.【详解】()2020201920182202001220202020(1)(1(1)11)x x a x a x x a x x a x +-+-++-=⎡⎤⎣⎦+-=,当02020k ≤≤且k ∈N 时,2020kk a C =,因此,01220202020202020202020012202020202a a a C C a C C =++++=+++⋅⋅⋅+.故选:C. 【点睛】关键点睛:本题考查二项式系数和的计算,解题的关键是熟悉二项式系数和公式0122nn n n n n C C C C ++++=,考查学生的转化能力与计算能力,属于基础题.12.B解析:B 【分析】根据平行六面体的几何特征,可以求出以平行六面体1111ABCD A B C D -的任意三个顶点为顶点作三角形的总个数,及从中随机取出2个三角形的情况总数,再求出这两个三角形共面的情况数,即可得到这两个三角形不共面的情况数,即可得到答案. 【详解】因为平行六面体1111ABCD A B C D -的8个顶点任意三个均不共线, 故从8个顶点中任取三个均可构成一个三角形共有38=56C 个三角形,从中任选两个,共有2561540C =种情况,因为平行六面体有六个面,六个对角面, 从8个顶点中4点共面共有12种情况, 每个面的四个顶点共确定6个不同的三角形,故任取出2个三角形,则这2个三角形不共面共有1540-12×6=1468种, 故选:B. 【点睛】本题考查了棱柱的结构特征,考查了组合数的计算,在解题过程中注意共面和不共面的情况,做到不重不漏,属于中档题.二、填空题13.【分析】首先由二项式系数相等求再根据通项公式求指定项的系数【详解】由条件可知所以所以的通项公式是令解得:所以函数的系数是故答案为:-4【点睛】易错点睛:本题考查二项式定理求指定项系数其中二项式系数与 解析:4-【分析】首先由二项式系数相等求n ,再根据通项公式求指定项的系数. 【详解】由条件可知57n n C C =,所以5712n =+=,所以1213x x ⎛⎫- ⎪⎝⎭的通项公式是12122112121133r rr r r rr T C x C x x --+⎛⎫⎛⎫=⋅⋅-=-⋅⋅ ⎪ ⎪⎝⎭⎝⎭, 令12210r -=,解得:1r =, 所以函数10x 的系数是112143C ⎛⎫-⋅=- ⎪⎝⎭. 故答案为:-4 【点睛】易错点睛:本题考查二项式定理求指定项系数,其中二项式系数与项的关系是第1r +项的系数是rn C ,这一点容易记错,需注意.14.36【分析】先从4个人中选出2人作为一个元素看成整体再把它同另外两个元素在三个位置全排列根据分步乘法原理得到结果【详解】从4名学生中选出2名学生作为一个整体有种再和另外两人分别推荐到3所不同的大学共解析:36 【分析】先从4个人中选出2人作为一个元素看成整体,再把它同另外两个元素在三个位置全排列,根据分步乘法原理得到结果. 【详解】从4名学生中选出2名学生作为一个整体,有24C 种,再和另外两人分别推荐到3所不同的大学,共有234336C A =种分配方案.故答案为:36 【点睛】本题考查分步乘法计数原理,利用了捆绑法,属于中档题.15.【分析】本题转化为把10个球放在三个不同的盒子里有多少种方法利用隔板法即可求得答案【详解】问题中的看作是三个盒子问题则转化为把个球放在三个不同的盒子里有多少种方法将个球排一排后中间插入两块隔板将它们 解析:36【分析】本题转化为把10个球放在三个不同的盒子里,有多少种方法,利用隔板法,即可求得答案. 【详解】问题中的x y z 、、看作是三个盒子,问题则转化为把10个球放在三个不同的盒子里,有多少种方法.将10个球排一排后,中间插入两块隔板将它们分成三堆球,使每一堆至少一个球. 隔板不能相邻,也不能放在两端,只能放在中间的9个空内.∴共有2936C =种.故答案为:36 【点睛】本题解题关键是掌握将正整数解的问题转化为组合数问题,考查了分析能力和转化能力,属于中档题.16.【分析】要保证每个岗位至少一人人所以首先将四个人分成三组在将三组全排列求出总事件数然后再将甲乙分到不同两组得出甲乙不在同一岗位的基本事件数总而得出概率【详解】因为每个岗位至少有一人所以要将四个人分成解析:56【分析】要保证每个岗位至少一人人,所以首先将四个人分成三组,在将三组全排列求出总事件数,然后再将甲乙分到不同两组,得出甲乙不在同一岗位的基本事件数,总而得出概率. 【详解】因为每个岗位至少有一人,所以要将四个人分成三组,则只能是211、、所以总事件数为: 2113421322=36C C C A A ⋅⋅⋅, 甲乙不在同一岗位的基本事件数:()11232223+=30C C C A ⋅⋅ 所以甲、乙两名志愿者没有分配到同一个岗位服务的概率305=366P =, 故答案为:56. 【点睛】本题考查等可能性事件的概率,利用排列组合公式求出基本事件的总数和满足某个事件的基本事件个数是解答本题的关键.17.40【分析】先求出的展开式的通项再求出即得解【详解】设的展开式的通项为令r=3则令r=2则所以展开式中含x3y3的项为所以x3y3的系数为40故答案为:40【点睛】本题主要考查二项式定理求指定项的系解析:40 【分析】先求出5(2)x y -的展开式的通项,再求出43,T T 即得解.【详解】设5(2)x y -的展开式的通项为555155(2)()(1)2r rr r r r r r r T C x y C x y ---+=-=-,令r=3,则32323454=40T C x y x y =--, 令r=2,则23232358=80T C x y x y =,所以展开式中含x 3y 3的项为233233(40)(80)40x x y y x y x y ⋅-+⋅=.所以x 3y 3的系数为40. 故答案为:40 【点睛】本题主要考查二项式定理求指定项的系数,意在考查学生对这些知识的理解掌握水平.18.【分析】由排列组合及分步原理得到地理学科恰有2人报名的方案即可求解得到答案【详解】由题意先在4位同学中选2人选地理学科共种选法再将剩下的2人在政治化学生物3门活动课任选一门报名共3×3=9种选法故地 解析:54【分析】由排列组合及分步原理得到地理学科恰有2人报名的方案,即可求解,得到答案. 【详解】由题意,先在4位同学中选2人选地理学科,共246C =种选法,再将剩下的2人在政治、化学、生物3门活动课任选一门报名,共3×3=9种选法, 故地理学科恰有2人报名的方案有6×9=54种选法, 故答案为54. 【点睛】本题主要考查了排列、组合,以及分步计数原理的应用,其中解答中认真审题,合理利用排列、组合,以及分步计数原理求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.19.14【解析】由题意得必有则具体的排法列表如下:由图可知不同的规范01数列共有14个故答案为14解析:14 【解析】由题意,得必有10a =,81a =,则具体的排法列表如下:由图可知,不同的“规范01数列”共有14个. 故答案为14.20.60【解析】的展开式的通项公式为令得∴的系数为故答案为60解析:60 【解析】622x x ⎛ ⎝的展开式的通项公式为()3666216612222xrr x r r r r T C x C x x ---+⎛⎛⎫==-⋅ ⎪ ⎝⎭⎝ 令3632r -=得2r∴3x 的系数为2622612602C -⎛⎫-⋅⋅= ⎪⎝⎭故答案为60三、解答题21.(1)4511206T y =,5633618T y =;(2)4095. 【分析】(1)根据二项式的性质知二项式系数最大项为第5、第6项,代入通项计算;(2)利用展开式中各项的二项式系数和公式列出等式求解n ,代入(,)f n y 由2135a =列等式求解m ,即可利用赋值法求1i ni a =∑.【详解】(1)9(9,)(13)f y y =+,二项式系数最大项为第5、第6项,44459(3)11206T C y y ==,55569(3)33618T C y y ==.(2)由题意:2224032n n -=,即()()2642630nn-+=,解得6n =,6260126(6,)(1)f y my a a y a y a y =+=+++⋅⋅⋅+,则2226135a C m ==,29m =,解得3m =或3-(舍去),则6(6,)(13)f y y =+,令1y =可得601264a a a a =+++⋅⋅⋅,所以661260126011414095n i ii i a aa a a a a a a a ====++⋅⋅⋅=+++⋅⋅⋅-=-=∑∑.【点睛】本题考查二项式定理,涉及二项式系数最大项、展开式中二项式系数和、赋值法求展开式中项的系数和,属于中档题. 22.(1)31464;(2)29302⋅. 【分析】(1)根据组合数性质11m m mn n n C C C -++=即可得结果; (2)根据组合数性质0122n n n n n n C C C C ++++=即可得结果;【详解】(1)333343333456304456301C C C C C C C C C +++⋅⋅⋅+=++++⋅⋅⋅+-4311C =-31464=(2)()12330012293030303029292929233030C C C C C C C C +++⋅⋅⋅+=+++⋅⋅⋅+29302=⋅ 【点睛】本题主要考查了通过组合数的性质计算式子的值,熟练掌握运算性质是解题的关键,属于中档题.23.(1)证明过程见解析;(2)证明过程见解析. 【分析】(1)根据排列数的公式,结合不等式的性质进行证明即可;(2)根据二项式定理,结合(1)中的结论、排列数、组合数的公式进行证明即可. 【详解】(1)由排列数的公式得:(1)(2)(1)121i m i A m m m m i m m m m i m mmm m m m m m---+---+==⋅⋅, (1)(2)(1)121i n i A n n n n i n n n n i n nnn n n n n n---+---+==⋅⋅, 当1i m n <≤<,1,2,31k i =-时,()()()=0m k n k n m k m n k k m n m k n km n mn mn m n ---------=<⇒<, 由不等式的性质可知: 121m m m m i m m mm ---+⋅⋅<121n n n n i n n nn---+⋅⋅,即i m i A m <i i i m ni i n i n A nm A A <⇒; (2)由二项式定理可知:0(1),(1)mnmi i ni imn i i n n Cm m C ==+=⋅+=⋅∑∑,因为,!!i iiim n mn A A C C i i ==,由(1)知:i i i i m n n A m A <, 所以有i i i im n n C m C <,又因为000011111,,0i in m n m n m C n C m C n C nm m C ====>(1)i m n <≤<,所以(1)(1)n mii ii n m nm i i m C n Cm n ==⋅>⋅⇒+>+∑∑.【点睛】本题考查了排列数、组全数公式的应用,考查了二项式定理,考查了不等式的性质,考查推理论证能力和数学运算能力.24.(1)7n =;(2)71=T x ,3435T x =-,177-=T x ;(3)系数最大的项为第五项53535T x =;系数最小的项为第4项3435T x =-【分析】(1)根据()f x 的展开式的各二项式系数的和等于2128n =求解. (2)先得到()f x 的展开式中的通项公式47317(1)r r rr TC x-+=-,再令473r-为整数求解. (3)由通项公式知:第1r +项的系数为7(1)⋅-r r C ,若该系数最大,则r 为偶数,且7rC 最大求解.若该系数最小,则r 为奇数,且7rC 最大求解. 【详解】 (1)已知()(n f x x =,()f x ∴的展开式的各二项式系数的和等于2128n =,7n ∴=.(2)()f x 的展开式中的通项公式为47317(1)-+=⋅-⋅r r rr T C x,令473r-为整数,可得0r =,3,6, 故展开式的有理项为71=T x ,3435T x =-,177-=T x . (3)第1r +项的系数为7(1)⋅-r r C ,当该系数最大时,r 为偶数,且7rC 最大,此时,4r =, 故()f x 的展开式中系数最大的项为第五项53535T x =; 当该系数最小时,r 为奇数,且7rC 最大,此时,3r =, 故()f x 的展开式中系数最小的项为第4项3435T x =-.【点睛】本题主要考查二项展开式的通项公式,二项式系数的性质,项的系数,还考查了运算求解的能力,属于中档题. 25.(1)8;(2)28. 【分析】⑴观察1nx ⎫⎪⎭可知,展开式中各项系数的和为256,即112...256nn n n n C C C C ++++=,解出得到n 的值⑵利用二次展开式中的第1r +项,即通项公式11rn rrr nT C x -+⎛⎫= ⎪⎝⎭,将第一问的n 代入,并整理,令x 的次数为0,解出r ,得到答案 【详解】(1)由题意,得112...256nn n n n C C C C ++++=,即2n =256,解得n =8.(2)该二项展开式中的第1r +项为T r +1=8483881rr rr r CC x x --⎛⎫⋅=⋅ ⎪⎝⎭,令843r-=0,得r =2,此时,常数项为238T C ==28.【点睛】本题主要考的是利用赋值法解决展开式的系数和问题,考查了利用二次展开式的通项公式解决二次展开式的特定项问题. 26.(1)①322500x -;②375;(2)150.【分析】(1)当6n =时,利用二项式定理,二项展开式的通项公式,可求出特定的项以及常数项的值;(2)根据展开式中各项系数之和比各二项式系数之和大于240求出n 的值,再利用二项展开式的通项公式,求出展开式中含x 项的系数. 【详解】(1)①当6n =时,65x⎛- ⎝的展开式共有7项,展开式中的中间一项为()33333322465201252500T C x x x -⎛=⋅⋅=-⨯=- ⎝;②展开式的通项公式为()()36662166515r r rr rr r r T C x C x---+⎛=⋅⋅=⋅-⋅⋅ ⎝, 令3602r -=,得4r =,所求常数项的值为()442615375C ⋅-⋅=; (2)若展开式中各项系数之和比各二项式系数之和大于240,而展开式中各项系数之和为4n ,各二项式系数之和为2n , 则42240nn,即()()2152160n n+-=,解得4n =.所以,展开式通项为()()34442144515rr rr rr r r T C x C x---+⎛=⋅⋅=⋅-⋅⋅ ⎝, 令3412r -=,解得2r ,因此,展开式中含x 项的系数为()222415150C ⋅-⨯=. 【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于中档题.。
苏州市选修三第一单元《计数原理》测试(有答案解析)

一、选择题1.已知()272901291(21)(1)(1)(1)()x x a a x a x a x x R +-=+-+-++-∈.则1a =( ) A .-30B .30C .-40D .402.对任意正整数n ,定义n 的双阶乘!!n 如下:当n 为偶数时,()()!!24642n n n n =--⨯⨯;当n 为奇数时,()()!!24531n n n n =--⨯⨯.现有四个命题:①()()2009!!2008!!2009!=;②2008!!21004!=⨯;③2008!!个位数为0;④2009!!个位数为5.其中正确的个数为( ) A .1B .2C .3D .43.把五个标号为1到5的小球全部放入标号为1到4的四个盒子中,并且不许有空盒,那么任意一个小球都不能放入标有相同标号的盒子中的概率是( ) A .320B .720C .316D .254.若()352()x x a -+的展开式的各项系数和为32,则实数a 的值为( )A .-2B .2C .-1D .15.若0k m n ≤≤≤,且,,m n k N ∈,则0mn m k n k n k CC --==∑( )A .2m n+B .2mn m CC .2n mn C D .2m mn C6.已知*n N ∈,设215nx x ⎛⎫- ⎪⎝⎭的展开式的各项系数之和为M ,二项式系数之和为N ,若992M N -=,则展开式中x 的系数为( )A .-250B .250C .-500D .5007.甲、乙二人均从5种不同的食品中任选一种或两种吃,则他们一共吃到了3种不同食品的情况有( ) A .84种B .100种C .120种D .150种8.在2310(1)(1)(1)x x x ++++⋅⋅⋅++的展开式中,含2x 项的系数为( ) A .45B .55C .120D .1659.若,m n 均为非负整数,在做m n +的加法时各位均不进位(例如,134********+=),则称(),m n 为“简单的”有序对,而m n +称为有序数对(),m n 的值,那么值为2964的“简单的”有序对的个数是( ) A .525 B .1050C .432D .86410.若2132020x x C C -+=,则x 的值为( )A .4B .4或5C .6D .4或611.某电视台的一个综艺栏目对六个不同的节目排演出顺序,最前只能排甲或乙,最后不能排甲,则不同的排法共有( ) A .240种B .288种C .192种D .216种12.若()()()2202020202019201801220201111a x a x x a x x a x +-+-++-=,则012020a a a +++=( )A .1B .0C .20202D .20212二、填空题13.有2个不同的红球和3个不同的黄球,将这5个球放入4个不同的盒子中,要求每个盒子至少放一个球,且同色球不能放在同一个盒子中,则不同的放置方法有________种.(用数字作答)14.512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数之和为2,则该展开式中4x 的系数为___________.15.若变量x ,y 满足约束条件202020x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,22n x y =+-,则n取最大值时,1nx ⎛⎫ ⎪⎝⎭二项展开式中的常数项为______.16.有4位同学参加学校组织的政治、地理、化学、生物4门活动课,要求每位同学各选一门报名(互不干扰),则地理学科恰有2人报名的方案有______.17.已知()()()()()23n2012111...+1...*n n x x x x a a x a x a x n N +++++++=++++∈,且012126n a a a a +++⋯+=,那么n的展开式中的常数项为______.18.已知33210n n A A =,那么n =__________.19.已知(12)n x +展开式中只有第4项的二项式系数最大,则21(1)(12)n x x++展开式中常数项为_______.20.设S 为一个非空有限集合,记||S 为集合S 中元素的个数,若集合S 的两个子集A 、B 满足:||A B k =并且A B S =,则称子集{,}A B 为集合S 的一个“k —覆盖”(其中0||k S ≤≤),若||S n =,则S 的“k —覆盖”个数为________三、解答题21.已知n的二项展开式的各二项式系数的和与各项系数的和均为256. (1)求展开式中有理项的个数; (2)求展开式中系数最大的项.22.已知在n 的展开式中第5项为常数项.(1)求n 的值;(2)求展开式中含有2x 项的系数; (3)求展开式中所有的有理项. 23.设()52501252x 1a a x a x a x -=++++,求:(1)015a a a +++;(2)015a a a +++;(3)135a a a ++;(4)()()22024135a a a a a a ++-++.24.记2nx x ⎛⎫+ ⎪⎝⎭(*n ∈N )的展开式中第m 项的系数为m b . (1)求m b 的表达式; (2)若3412b b =,求n ; (3)若6n =,求展开式中的常数项. 25.已知()23*23n n A C n N =∈.(1)求n 的值;(2)求12nx x ⎛⎫- ⎪⎝⎭展开式中2x 项的系数. 26.已知4530nnA C =,设()nf x x ⎛= ⎝. (Ⅰ)求n 的值;(Ⅱ)求()f x 的展开式中的常数项.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】令1t x =-,得29012927(22)(21)()a a t t t t a t a t x R =++++++∈+,进而得含t 的项为767722(2)tC C t +,从而得解.【详解】令1t x =-,则有:27290129[(1)1][2(1)1]()t t a a t a t a t x R +++-=++++∈,即29012927(22)(21)()a a t t t t a t a t x R =++++++∈+,7(21)t +展开式的通项公式为:77(2)r r C t -,所以29012927(22)(21)()a a t t t t a t a t x R =++++++∈+中含t 的项为:767722(2)30tC C t t +=.故选:B. 【点睛】关键点点睛:本题解题的关键是令1t x =-,转化为求27(22)(21)t t t +++的展开中含t 的项.2.C解析:C 【分析】利用双阶乘的定义以及阶乘的定义可判断①的正误;化简2008!!可判断②的正误;由2008!!能被10整除可判断③的正误;由2009!!能被5整除且为奇数可判断④的正误.综合可得出结论. 【详解】对于命题①,由双阶乘的定义得2009!!1352009=⨯⨯⨯⨯,2008!!2462008=⨯⨯⨯⨯,所以,()()2009!!2008!!1234200820092009!=⨯⨯⨯⨯⨯⨯=,命题①正确;对于命题②,()()()()2008!!246200821222321004=⨯⨯⨯⨯=⨯⨯⨯⨯⨯⨯⨯⨯100421004!=⨯,命题②错误;对于命题③,2008!!2468102008=⨯⨯⨯⨯⨯⨯,则2008!!能被10整除,则2008!!的个位数为0,命题③正确; 对于命题④,2009!!1352009=⨯⨯⨯⨯能被5整除,则2009!!的个位数为0或5,由于2009!!为奇数,所以,2009!!的个位数为5,命题④正确.故选:C. 【点睛】本题考查双阶乘的新定义,考查计算能力,属于中等题.3.B解析:B 【分析】由题意可以分两类,第一类第5球独占一盒,第二类,第5球不独占一盒,根据分类计数原理得到答案. 【详解】解:第一类,第5球独占一盒,则有4种选择;如第5球独占第一盒,则剩下的三盒,先把第1球放旁边,就是2,3,4球放入2,3,4盒的错位排列,有2种选择,再把第1球分别放入2,3,4盒,有3种可能选择,于是此时有236⨯=种选择; 如第1球独占一盒,有3种选择,剩下的2,3,4球放入两盒有2种选择,此时有236⨯=种选择,得到第5球独占一盒的选择有4(66)48⨯+=种,第二类,第5球不独占一盒,先放14-号球,4个球的全不对应排列数是9;第二步放5号球:有4种选择;9436⨯=,根据分类计数原理得,不同的方法有364884+=种.而将五球放到4盒共有2454240C A ⨯=种不同的办法,故任意一个小球都不能放入标有相同标号的盒子中的概率84724020P == 故选:B . 【点睛】本题主要考查了分类计数原理,关键是如何分步,属于中档题.4.D解析:D 【分析】根据题意,用赋值法,在()352()x x a -+中,令1x =可得()521(1)32a -+=,解可得a的值,即可得答案. 【详解】 根据题意,()352()xx a -+的展开式的各项系数和为32,令1x =可得:()521(1)32a -+=, 解可得:1a =, 故选:D . 【点睛】本题考查二项式定理的应用,注意特殊值的应用.5.D解析:D 【分析】先利用特殊值排除A,B,C ,再根据组合数公式以及二项式定理论证D 成立. 【详解】 令0m =得,CC C C 1mn m k n n k n n n k --===∑,在选择项中,令0m =排除A ,C ;在选择项中,令1m =,101110C C C C C C 2mn m k n n n k n n n n n k n -----==+=∑排除B ,()!!()!()!!()!mmn m k n knk k n k n CC n m m k k n k --==-=⋅---∑∑000!!2()!!!()!mm mm k m k m mn m n m n k k k n m C C C C C n m m k m k ====⋅=⋅==--∑∑∑,故选D 【点睛】本题考查组合数公式以及二项式定理应用,考查基本分析化简能力,属中档题.6.A解析:A 【分析】分别计算各项系数之和为M ,二项式系数之和为N ,代入等式得到n ,再计算x 的系数. 【详解】215nx x ⎛⎫- ⎪⎝⎭的展开式取1x =得到4n M = 二项式系数之和为2n N = 429925n n M N n -=-=⇒=5251031551(5)()5(1)r r r r r r r r T C x C x x---+=-=- 取3r = 值为-250故答案选A 【点睛】本题考查了二项式定理,计算出n 的值是解题的关键.7.C解析:C 【分析】由分步乘法计数原理先由5种食物中选择3种,共35C 种情况; 第二步,将3种食物编号,用列举法列举所有情况即可; 【详解】由分步乘法计数原理:第一步:由5种食物中选择3种,共35C 种情况; 第二步:将3种食物编号为A,B,C ,则甲乙选择的食物的情况有:()AB C ,,()AB AC ,,()AB BC ,,()AC B ,,()AC BC ,,()BC A ,,()A BC ,,()BC AC ,,()B AC ,,()BC AB ,,()AC AB ,,()C AB ,共12种情况,因此他们一共吃到了3种不同食品的情况有3512C 120=种.故选C【点睛】本题主要考查分步乘法计数原理,按定义逐步计算,最后求乘积即可,属于常考题型.8.D解析:D 【解析】分析:由题意可得展开式中含2x 项的系数为222223410C C C C +++⋯+ ,再利用二项式系数的性质化为 311C ,从而得到答案.详解:()()()2310111x x x ++++⋅⋅⋅++的展开式中含2x 项的系数为222232341011 165.C C C C C +++⋯+==故选D.点睛:本题主要考查二项式定理的应用,求展开式中某项的系数,二项式系数的性质,属于中档题.9.B解析:B 【分析】由题意知本题是一个分步计数原理,第一位取法两种为0,1,2,第二位有10种取法,从0,1,2,3,4,5,6,7,8,9 ,第三位有7种取法,从0,1,2,3,4,5,6取一个数字,第四为有5种,从0,1,2,3,4取一个数字,根据分步计数原理得到结果. 【详解】由题意知本题是一个分步计数原理, 第一位取法3种为0,1, 2,第二位有10种为0,1,2,3,4,5,6,7,8,9 , 第三位有7种为0,1,2,3,4,5,6, 第四为有5种为0,1,2, 3,4根据分步计数原理知共有3×10×7×5=1050个 故选:B. 【点睛】解答排列、组合问题的角度:解答排列、组合应用题要从“分析”、“分辨”、“分类”、“分步”的角度入手. (1)“分析”就是找出题目的条件、结论,哪些是“元素”,哪些是“位置”; (2)“分辨”就是辨别是排列还是组合,对某些元素的位置有、无限制等; (3)“分类”就是将较复杂的应用题中的元素分成互相排斥的几类,然后逐类解决; (4)“分步”就是把问题化成几个互相联系的步骤,而每一步都是简单的排列、组合问题,然后逐步解决.10.D解析:D 【解析】因为2132020x x C C -+=,所以213x x -=+ 或21320x x -++=,所以4x = 或6x =,选D.11.D解析:D 【详解】最前排甲,共有55A 120=种;最前排乙,最后不能排甲,有种,根据加法原理可得,共有种,故选D .考点:排列及计数原理的应用.12.C解析:C 【分析】 由()202011x x =+-⎡⎤⎣⎦结合二项式定理可得出2020kk a C =,利用二项式系数和公式可求得012020a a a +++的值.【详解】()2020201920182202001220202020(1)(1(1)11)x x a x a x x a x x a x +-+-++-=⎡⎤⎣⎦+-=,当02020k ≤≤且k ∈N 时,2020kk a C =,因此,01220202020202020202020012202020202a a a C C a C C =++++=+++⋅⋅⋅+.故选:C. 【点睛】关键点睛:本题考查二项式系数和的计算,解题的关键是熟悉二项式系数和公式0122nn n n n n C C C C ++++=,考查学生的转化能力与计算能力,属于基础题.二、填空题13.【分析】由题意可得一个盒子里有2个球一定为1红1黄其余盒子每个盒子放一个根据分步计数原理可得【详解】解:这5个球放入4个不同的盒子中要求每个盒子至少放一个球且同色球不能放在同一个盒子中则一个盒子里有 解析:144【分析】由题意可得一个盒子里有2个球,一定为1红1黄,其余盒子每个盒子放一个,根据分步计数原理可得. 【详解】解:这5个球放入4个不同的盒子中,要求每个盒子至少放一个球, 且同色球不能放在同一个盒子中,则一个盒子里有2个球,一定为1红1黄,其余盒子每个盒子放一个,故有11134233144C C C A =种,故答案为:144. 【点睛】本题考查了分步计数原理,运用组合数的运算,理解题目意思是关键..14.-48【分析】令x=1解得a=1再利用的通项公式进而得出【详解】令x=1=2解得a=1又的通项公式令5−2r=35−2r=5解得r=1r=0∴该展开式中的系数为=−80+32=−48故答案为:−48解析:-48 【分析】令x =1,解得a =1,再利用512x x ⎛⎫- ⎪⎝⎭的通项公式,进而得出. 【详解】令x =1,()()5112a +-=2,解得a =1.又512x x ⎛⎫- ⎪⎝⎭的通项公式()5521512r r rr r T C x --+=-⋅,令5−2r =3,5−2r =5. 解得r =1,r =0.∴该展开式中4x 的系数为()()141505512+12C C --=−80+32=−48, 故答案为:−48. 【点睛】本题考查二项式定理的应用,根据通项公式求系数,属于中等题.15.240【分析】首先利用约束条件得到可行域结合的几何意义求出其最大值然后对二项式的通项求常数项【详解】作出可行域如图:由变形为当此直线经过图中时直线在轴的截距最大最大所以的最大值为所以二项展开式中的通解析:240 【分析】首先利用约束条件得到可行域,结合z 的几何意义求出其最大值,然后对二项式的通项求常数项. 【详解】 作出可行域如图:由22n x y =+-变形为22y x n =-++,当此直线经过图中(2,4)B 时,直线在y 轴的截距最大,n 最大, 所以n 的最大值为22426⨯+-=,所以12n x x ⎛⎫ ⎪⎝⎭二项展开式中的通项为6362661(22rr rr rrC x C xx --⎛⎫= ⎪⎝⎭,当4r =此项为常数项, 所以常数项为4462240C =; 故答案为:240. 【点睛】本题考查了简单线性规划问题与二项式定理的运用;关键是利用数形结合正确求出n ,然后由二项展开式通项求常数项.16.【分析】由排列组合及分步原理得到地理学科恰有2人报名的方案即可求解得到答案【详解】由题意先在4位同学中选2人选地理学科共种选法再将剩下的2人在政治化学生物3门活动课任选一门报名共3×3=9种选法故地 解析:54【分析】由排列组合及分步原理得到地理学科恰有2人报名的方案,即可求解,得到答案. 【详解】由题意,先在4位同学中选2人选地理学科,共246C =种选法,再将剩下的2人在政治、化学、生物3门活动课任选一门报名,共3×3=9种选法, 故地理学科恰有2人报名的方案有6×9=54种选法, 故答案为54. 【点睛】本题主要考查了排列、组合,以及分步计数原理的应用,其中解答中认真审题,合理利用排列、组合,以及分步计数原理求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.17.-20【分析】由题意令x =1可得n =6再利用二项展开式的通项公式求得展开式中的常数项【详解】∵已知且∴令可得∴那么的展开式的通项公式为令求得可得展开式中的常数项为故答案为﹣20【点睛】本题主要考查二解析:-20 【分析】由题意令x =1,可得n =6,再利用二项展开式的通项公式,求得展开式中的常数项. 【详解】∵已知()()()()()232*0121111nnn x x x x a a x a x a x n N++++++⋯++=+++⋯+∈,且012126n a a a a +++⋯+=,∴令1x =,可得()210122122222212612n n n n a a a a +-+++⋯+=++⋯+==-=-,∴6n =,那么6n =的展开式的通项公式为()3161r rr r T C x -+=⋅-⋅, 令30r -=,求得3r =,可得展开式中的常数项为3620C -=-,故答案为﹣20. 【点睛】本题主要考查二项式定理的应用,赋值法,求展开式的系数和,项的系数,准确计算是关键,属于基础题.18.8【详解】分析:利用排列数公式展开解方程即可详解:解得即答案为8点睛:本题考查排列数公式的应用属基础题解析:8 【详解】分析:利用排列数公式展开,解方程即可. 详解:33210n n A A = ,()()()()221221012,n n n n n n ∴--=-- ()()22152,n n -=-解得8n =. 即答案为8.点睛:本题考查排列数公式的应用,属基础题.19.61【解析】分析:根据题设可列出关于的不等式求出代入可求展开式中常数项为详解:的展开式中只有第4项的二项式系数最大即最大解得又则展开式中常数项为点睛:在二项展开式中有时存在一些特殊的项如常数项有理项解析:61 【解析】分析:根据题设可列出关于n 的不等式,求出6n =,代入可求21(1)(12)n x x++展开式中常数项为61. 详解:(12)n x +的展开式中,只有第4项的二项式系数最大,即3n C 最大,3234n n n nC C C C ⎧>∴⎨>⎩,解得57n <<, 又*,6n N n ∈∴=, 则21(1)(12)n x x++展开式中常数项为02266261C C +⋅=. 点睛:在二项展开式中,有时存在一些特殊的项,如常数项、有理项、系数最大的项等等,这些特殊项的求解主要是利用二项展开式的通项公式1r T +.20.【分析】当时共有种情况当时共有种情况由此可计算得到答案【详解】由题意当时即中有个元素所以共有种情况此时集合中剩下个元素其子集个数为个即共有种情况所以的—覆盖个数为故答案为:【点睛】本题主要考查组合数解析:2k n kn C -⋅【分析】 当||A B k =时,共有k n C 种情况,当A B S =时,共有2n k -种情况,由此可计算得到答案. 【详解】 由题意,当||AB k =时,即A B 中有k 个元素,所以共有kn C 种情况,此时集合S 中剩下n k -个元素,其子集个数为2n k -个, 即AB S =共有2n k -种情况,所以S 的“k —覆盖”个数为2k n kn C -⋅. 故答案为:2k n kn C -⋅【点睛】本题主要考查组合数的应用和集合子集个数的应用,考查学生分析解决问题的能力,属于中档题.三、解答题21.(1)3;(2)70x 或1220412x - 【分析】(1)根据二项式系数和的性质,以及二项式系数和为256,可得2256n =,解出8n =,再由通项公式163418k k k k Ta C x-+=,0,1,2,,8k =,分析即得;(2)根据各项系数的和均为256,可得()81256a +=,解出3a =-或1a =,再由通项公式分情况进行计算即得. 先通过二项展开式的各二项式系数的和与各项系数的和均为256求出n .【详解】(1)n的二项展开式的各二项式系数的和为2n,各项系数的和为()1n a +,由已知得2256n =,故8.n =此时n展开式的通项为:163418k k k k T a C x -+=,0,1,2,,8k =,当0,4,8k =时,该项为有理项,故有理项的个数为3. (2)由()81256a +=,得3a =-或 1.a = 当1a =时,展开式通项为163418k kk TC x-+=,0,1,2,,8k =,故二项式系数最大时系数最大,即第5项系数最大,即系数最大的项为45870T C x x ==;当3a =-时,163418(3)k kk k TC x-+=-,0,1,2,,8k =,展开式系数最大的项是奇数项,其中41T x =,523252T x =,55670T x =,12720412T x-=,296561T x -=,故展开式中系数最大的项为第7项,即系数最大的项为12720412T x-=.综上,展开式中系数最大的项为70x 或1220412x -. 【点睛】本题考查二项式系数的性质,以及通项公式的应用,要注意二项式系数与各项的系数的区别,考查分析计算能力,属于中档题. 22.(1)8;(2)4-;(3)24x -,358,2116x- 【分析】(1)先写出展开式的通项公式2311()2n rr r r nT C x -+=-,由展开式中第5项为常数项,则当4r =时,有203n r-=,从而求出n 出的值. (2)由(1)中得到8n =,则含有2x 项,即8223r-=,得到1r =,从而求出答案. (3)展开式中所有的有理项,则82308r r r Z -⎧∈Z ⎪⎪≤≤⎨⎪∈⎪⎩,可得r 可取1,4,7,可得到答案.【详解】(1)展开式的通项公式为2311(()2n rr n rrr r r nnT C C x --+==-.因为第5项为常数项. 所以4r =时,有203n r-=,解得8n =. (2)令223n r-=,由(1)8n =,解1r =, 故所求系数为181()42C -=-(3)有题意得,82308r r r Z -⎧∈Z ⎪⎪≤≤⎨⎪∈⎪⎩,令82()3r k k Z -=∈,则833422k r k -==- 所以k 可取2,0,2-,即r 可取1,4,7它们分别为24x -,358,2116x -. 【点睛】本题考查二项式展开式的通项公式应用,求展开式中某项的系数,属于中档题. 23.(1)1;(2)243;(3)122;(4)243- 【分析】(1)令x=1即得015a a a +++的值;(2)在521x +()中,令1x =得解;(3) 先求出f(1)-f(-1)即得解;(4)求f(1)·f(-1)即得解. 【详解】∵()52501232x 1a a x a x a x -=++++, (1)令1x =,可得015a a a 1+++=;(2)在521x +()中,令1x =,可得015a a a 243+++=;(3)令f(x)=()5250125 2x 1a a x a x a x -=++++,f(1)=015 a a a 1+++=,所以f(-1)=012345243a a a a a a -+-+-=-, 所以f(1)-f(-1)=2135()244a a a ++=, 所以135122a a a ++=.(4)22024135a a a a a a ++-++()()012345012345a a a a a a a a a a a a =+++++-+-+-()()1?11243243f f =-=⨯-=-.【点睛】本题主要考查二项式展开式的系数的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.24.(1)112m m m n b C --=;(2)5;(3)160【分析】(1)先求出其通项公式,进而求出结论; (2)结合通项公式以及组合数的性质即可求解; (3)先求出其通项公式,令指数为零,进而求出结论. 【详解】(1)2()nx x+的展开式中第m 项为11111222()2m n m m m m n m n n C x C x x--+----+=;112m m m n b C --∴=.(2)由3412b b =,得22331222n n C C =;即23n n C C =;5n ∴=.(3)当6n =时,2()nx x+展开式中的通项公式6621662()2r r r r rr r T C x C x x--+==,依题意得620r -=,3r =,所以展开式中的常数项是33462160T C ==. 【点睛】本题主要考查二项式定理的应用,二项式展开式的通项公式,二项式系数的性质,属基础题.25.(1)6n =;(2)240. 【分析】(1)根据排列数和组合数公式,列方程;(2)写出二项展开式的通项公式,求出2x 系数为()4462C -,即可得到答案;【详解】解:(1)因为2323n n A C =所以()()()3122132n n n n n ---=⨯即42n =- 所以6n =(2)由(1)得12nx x ⎛⎫- ⎪⎝⎭中6n =, 所以612x x ⎛⎫- ⎪⎝⎭中,()()626166122kkkk kk k T C x C x x --+⎛⎫=-=- ⎪⎝⎭,所以262k -=,所以4k =,所以2x 系数为()4462240C -=.【点睛】本题考查排列数和组合数公式的计算、二项式定理求指定项的系数,考查逻辑推理能力、运算求解能力,求解时注意二项式系数与系数的区别. 26.(Ⅰ)8n =;(Ⅱ)728T .【分析】(Ⅰ)利用排列数,组合数公式化简4530n n A C =即可得n 的值.(Ⅱ)写出()f x 的展开式的通项公式,令x 的指数为0即可得到常数项. 【详解】(Ⅰ)由已知4530n n A C =得:!30!4!5!5!n n n n ,!30!45!1205!n n n n n解得:8n =.(Ⅱ)8x ⎛⎝展开式的通项为488318831kk kkkk k T C xCxx由4803k 得6k =,即()f x 的展开式中的常数项为728T .【点睛】本题考查排列数组合数公式的应用,考查求解二项展开式中的常数项,考查计算能力,属于基础题.。
第一章计数原理单元测试题

02
测试题目的内容
测试范围和知识点
计数原理的掌握和应用 排列组合的应用 概率计算的基本方法 测试题目的难易程度和覆盖面
题目类型和数量
题目类型:选择题、填空题、解答题等 题目数量:根据考试大纲和知识点分布确定,一般在20-30道题 左右
题目难度和区分度
难度:指测试题目的难易程 度,一般分为容易、较容易、 中等难度、较难和很难五个 等级。
测试题目可以反 映学生对计数原 理的掌握程度, 为后续学习打下 基础。
计数原理在计算 机科学、统计学 等领域也有广泛 应用,因此了解 其背景和意义对 于相关领域的人 才培养也具有重 要意义。
目的和意义
目的:通过测试题目了解学 生对计数原理的掌握情况
意义:巩固所学知识,提高 解题技巧,为后续学习奠定
题目难度适中, 适合学生水平
题目覆盖面广, 知识点考查全
面
题目设计有层 次,能够满足 不同层次学生
的需求
题目类型多样, 包括选择题、 填空题、解答
题等
总结和反思
测试题目的难易程度和覆盖面 学生对知识点的掌握情况 教学方法和效果的评价 针对不足之处提出改进建议
感谢观看
汇报人:XX
XX
计数原理单元测试题
单击添加副标题
汇报人:XX目录来自01测试题目的背景和意义
02
03
测试题目的评价标准
04
测试题目的内容 测试题目的分析和总结
01
测试题目的背景和意义
背景介绍
计数原理是数学 中的基本概念之 一,对于解决实 际问题具有重要 意义。
通过单元测试题, 可以帮助学生更 好地理解和掌握 计数原理的应用。
04
测试题目的分析和总结
人教版数学高二A版选修2-3单元测试第一章计数原理

第一章过关检测(时间90分钟,满分100分)一、选择题(每小题4分,共40分) 1.若A 3m =6C 4m ,则m 等于( )A.9B.8C.7D.62.男、女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有( )A.2人或3人B.3人或4人C.3人D.4人3.若100件产品中有6件次品,现从中任取3件产品,至少有1件次品的不同取法的种数是( )A.C 16C 294B.C 16C 299C.C 3100-C 394D.C 3100-C 2944.从5位男教师和4名女教师中选出3位教师,派到3个班担任班主任(每班一位班主任),要求这三位班主任中男女教师都有,则不同的选派方案共有( ) A.210种 B.420种 C.630种 D.840种5.现有6个人分乘两辆不同的出租车,每辆车最多乘4人(不含司机),则不同的乘车方案的种数是( )A.50B.60C.70D.806.在10)3( x 的展开式中,x 6的系数为( )A.-27C 610B.27C 410C.-9C 610D.9C 4107.把1,2,3,4,5,6,7,8,9这9个数字填入图中的表格,从上到下,从左到右,依次增大.当3、4固定在图中位置,余下的数的填法有( )A.6种B.12种C.18种D.24种8.把4个不同的小球全部放入3个不同的盒子里,使得每个盒子都不空的放法总数是( )A.C 13A 33B.C 34A 22C.C 24A 33D.C 14C 34C 229.将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有( ) A.10种 B.20种 C.36种 D.52种10.已知(1-3x)9=a 0+a 1x +a 2x 2+…+a 9x 9,则|a 0|+|a 1|+|a 2|+…+|a 9|等于( ) A.29 B.49 C.39 D.1 二、填空题(每小题4分,共16分)11. 8次投篮中,投中3次,其中恰有2次连续命中的情形有______种.12.四名优等生保送到三所学校去,每所学校至少得一名,则不同的保送方案的总数是_______.13.某药品研究所研制了5种消炎药a 1,a 2,a 3,a 4,a 54种退烧药b 1,b 2,b 3,b 4,现从中取出两种消炎药和一种退烧药同时使用进行疗效实验,但又知a 1,a 2两种药必须同时使用,且a 3,b 4两种药不能同时使用,则不同的方案有_______种.14.若nx x )(13-+展开式中,第5项是常数,问中间项是第_______项.三、解答题(共44分)15.(10分)如右图,若灯不亮,则元件R 1,R 2,R 3断路的情况共有多少种?16.(10分)解关于n 的不等式:C 4n >C 6n .17.(12分)求84)21(xx +展开式中系数最大的项.18.(12分)“十一”国庆期间,公司从网络部抽4名人员、人事部抽3名人员(两个部门的主任都在内),从10月1号至7号,安排每人值班一天,分别回答下列问题: (1)两个部门的主任不能安排在1号和7号;(2)若各部门的人员安排不能连续(即同部门的人员相间安排); (3)若人事部因工作需要,他们的值班必须安排在连续三天; (4)网络部主任比人事部主任先值班.参考答案1解析:由m(m -1)(m -2)=1234)3)(2)(1(6⨯⨯⨯---•m m m m ,解得m =7. 答案:C2解析:设女生有x 人,则30128=•-C C x x ,即302)7)(8(=•--x x x .解得x =2或3. 答案:A3 解析:不考虑限制条件,从100件产品中任取3件,有C 3100种取法,然后减去3件全是正品的取法C 394,故有C 3100-C 394种取法. 答案:C4解析:分两类:第一类2男1女,则不同的选派方案有C 25C 14A 33=240种. 第二类1男2女,则不同的选派方案有C 15C 24A 33=180种. 由分类加法计数原理得:共有240+180=420种不同的选派方案. 答案:B5解析:分三类:第一辆车乘2人,第二辆车乘4人,有C 26种乘法;第一、二辆车各乘3人,有C 36种乘法;第一辆车乘4人,第二辆车乘2人,有C 46种乘法,由分类加法计数原理,共有C 26+C 36+C 46=50种. 答案:A6 解析:T5=C410x10-4·(-3)4=9·C410 x6.答案:D7解析:左上角格必须填1,右下角格必须填9,第二行最左端格必须填2,如图.A、B从余下的5,6,7,8四个数中任选两个,从左到右依次增大填入,有C24种.剩余的两个数由上到下,依次增大填入C、D即可.故共有C24=6种不同的填法.答案:A8解析:选2个小球捆在一起看成1个元素,有C24种选法.把3个元素放入3个不同的盒中,有A33种放法.故共有C24·A33种不同的放法.答案:C9 解析:分两类:第一类2号盒内放2个球,有C24种放法(剩余的球放入1号盒内即可);第二类,2号盒内放3个小球,有C34种放法(剩余的球放入1号盒内即可).由分类加法计数原理,共有C24+C34=10种不同的放法.答案:A10解析:由展开式可知a1,a3,a5,a7,a9都小于0,a0,a2,a4,a6,a8都大于0,故|a0|+|a1|+|a2|+…+|a9|=a0-a1+a2-a3+a4-a5+a6-a7+a8-a9,只需令x=-1即可得:(1+3)9=a0-a1+a2-a3+a4-a5+a6-a7+a8-a9=49.答案:B11解析:将2次连续命中当作一个整体,和另一次命中插入另外5次不命中留下的6个空档里进行排列有A26种.答案:3012 解析:将其中两名学生视为一个元素,其余二名同学分别视为一个元素,然后将三个元素分配到三所学校,所以不同的保送方案的总数为C 24A 33=36. 答案:3613解析:分3类:当取a 1,a 2时,再取退烧药有C 14种方案;取a 3时,取另一种消炎药的方法有C 12种,再取退烧药有C 13种,共有C 12C 13种方案;取a 4,a 5时,再取退烧药有C 14种方案.故共有C 14+C 12C 13+C 14=14种不同的实验方案. 答案:1414解析:由通项公式可得第5项3164434414---+==n n n nxx xT C C,即n =16,所以中间项是第9项. 答案:915解:每个元件都有通或断两种可能,以m,n,p 表示元件的通断,m,n,p 可取值均为0(表示断),1(表示通),故所有可能情况为(m,n,p)的可能情况共有2×2×2=8种.因为是串联电路,所以一断则断,只要排除全通的情况(m =1,n =1,p =1)即可,所以若灯不亮,则元件R 1,R 2,R 3断路的情况共有8-1=7种. 16解:因为C 4n >C 6n ,所以⎪⎩⎪⎨⎧≥->-,6,)!6(!6!)!4(!4!n n n n n即⎩⎨⎧≥<--.6,01092n n n 所以6≤n <10. 又因为n ∈N *,所以满足不等式的n 的取值为{6,7,8,9}. 17 解:记第r 项系数为T r ,设第k 项系数最大,则有⎩⎨⎧≥≥+-.,11k k k k T T T T 又1182+--•=r r r C T ,那么有⎪⎩⎪⎨⎧•≥••≥•-+--+--+--,22,228118228118kk k k k k k k C C C C 即⎪⎪⎩⎪⎪⎨⎧-•≥⨯-•-⨯-•-≥-•-,)!8(!!82)!9()!1(!8,2)!10()!2(!8)!9()!1(!8k k k k k k k k所以⎪⎩⎪⎨⎧≥--≥-.192,10211kk k k 解得3≤k≤4.所以系数最大的项为第3项257x 和第4项477x .18解:(1)第一步,在2号至6号五天中安排两名主任,有A 25种排法;第二步,剩下五人安排在剩下的五天有A 55种排法,故共有A 25·A 55=2 400种排法.(2)两个部门的人员相间安排,先排4名网络部人员,有A 44种;然后在他们的三个空档中插入三名人事部人员,有A 33种,故共有A 44·A 33=144种排法.(3)把人事部三个人看成一个人,再与网络部4人,有A 55种排法;人事部三个人的内部排列,有A 33种,故共有A 55·A 33=720种排法.(4)不考虑任何限制的排法有A 77,两人中排谁先值班的可能性相同,故有52022177=A种排法.。
(人教版)重庆市选修三第一单元《计数原理》测试(包含答案解析)

一、选择题1.2020年12月1日,大连市开始实行生活垃圾分类管理.某单位有四个垃圾桶,分别是一个可回收物垃圾桶、一个有害垃圾桶、一个厨余垃圾桶、一个其它垃圾桶.因为场地限制,要将这四个垃圾桶摆放在三个固定角落,每个角落至少摆放一个,则不同的摆放方法共有(如果某两个垃圾桶摆放在同一角落,它们的前后左右位置关系不作考虑)( ) A .18种B .24种C .36种D .72种2.已知()272901291(21)(1)(1)(1)()x x a a x a x a x x R +-=+-+-++-∈.则1a =( ) A .-30B .30C .-40D .403.某校实行选科走班制度,张毅同学的选择是物理、生物、政治这三科,且物理在A 层班级,生物在B 层班级,该校周一上午课程安排如表所示,张毅选择三个科目的课各上一节,另外一节上自习,则他不同的选课方法有( )A .8种B .10种C .12种D .14种4.有5名同学从左到右站成一排照相,其中中间位置只能排甲或乙,最右边不能排甲,则不同的排法共有( ) A .42种 B .48种 C .60种 D .72种5.两名老师和3名学生站成两排照相,要求学生站在前排,老师站在后排,则不同的站法有( ) A .120种B .60种C .12种D .6种6.关于6212x x ⎛⎫- ⎪⎝⎭的展开式,下列说法中正确的是( ) A .展开式中二项式系数之和为32B .展开式中各项系数之和为1C .展开式中二项式系数最大的项为第3项D .展开式中系数最大的项为第4项 7.某景观湖内有四个人工小岛,为方便游客登岛观赏美景,现计划设计三座景观桥连通四个小岛,且每个小岛最多有两座桥连接,则设计方案的种数最多是( )A .8B .12C .16D .248.()52112x x ⎛⎫-- ⎪⎝⎭展开式的常数项为() A .112B .48C .-112D .-489.本周日有5所不同的高校来我校作招生宣传,学校要求每位同学可以从中任选1所或2所去咨询了解,甲、乙、丙三位同学的选择没有一所是相同的,则不同的选法共有( ) A .330种B .420种C .510种D .600种10.()61211x x ⎛⎫+- ⎪⎝⎭的展开式中的常数项是( ) A .-5 B .7C .-11D .1311.若2132020x x C C -+=,则x 的值为( )A .4B .4或5C .6D .4或6 12.899091100⨯⨯⨯⨯可表示为( )A .10100AB .11100AC .12100AD .13100A第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题13.已知13nx x ⎛⎫- ⎪⎝⎭的展开式中第6项与第8项的二项式系数相等,则含10x 项的系数是___________.14.已知()2311nx x x ⎛⎫++ ⎪⎝⎭的展开式中没有2x 项,*N n ∈且58n ≤≤,则n =______. 15.关于x 的方程222424x xC C =的解为_________. 16.有4位同学参加学校组织的政治、地理、化学、生物4门活动课,要求每位同学各选一门报名(互不干扰),则地理学科恰有2人报名的方案有______.17.有3名大学毕业生,到5家招聘员工的公司应聘,若每家公司至多招聘一名新员工,且3名大学毕业生全部被聘用,若不允许兼职,则共有________种不同的招聘方案.(用数字作答)18.若28C x =3828C x -,则x 的值为_______.19.若()*212nx n x ⎛⎫-∈ ⎪⎝⎭N 的展开式中所有项的二项式系数之和为64,则展开式中的常数项是__________.20.若102100121013x a a x a x a x -+++⋯+=(),则12310a a a a +++⋯+=_____.三、解答题21.求值:(1)333364530C C C C +++⋅⋅⋅+;(2)12330303030302330C C C C +++⋅⋅⋅+.22.已知在2nx ⎫⎪⎭的展开式中,第6项的系数与第4项的系数之比是6: 1. (1)求展开式中11x 的系数; (2)求展开式中系数绝对值最大的项;(3)求2319819n nn n n n C C C -++++的值.23.已知n+的展开式中前三项的系数为等差数列. (1)求二项式系数最大项; (2)求展开式中系数最大的项.24.用0,1,2,3,4这五个数字,可以组成多少个满足下列条件的没有重复数字的五位数? (1)比21034大的偶数;(2)左起第二、四位是奇数的偶数.25.在二项式nx ⎛⎝的展开式中,前三项系数的绝对值成等差数列. ()1求项数n ;()2求展开式中的常数项与二项式系数最大的项.26.在n的展开式中,前3项的系数的和为73. (1)求n 的值及展开式中二项式系数最大的项;(2)求展开式中的有理项.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C【分析】分析题意,得到有一个固定点放着两个垃圾桶,先选出两个垃圾桶,之后相当于三个元素分配到三个地方,最后利用分步乘法计数原理,求得结果. 【详解】根据题意,有四个垃圾桶放到三个固定角落,其中有一个角落放两个垃圾桶, 先选出两个垃圾桶,有246C =种选法,之后与另两个垃圾桶分别放在三个不同的地方有33A 种放法;所以不同的摆放方法共有23436636C A ⋅=⨯=种, 故选:C. 【点睛】思路点睛:该题考查的是有关排列组合综合题,解题方法如下:(1)首先根据题意,分析出有两个垃圾桶分到同一个地方,有246C =种选法; (2)之后就相当于三个元素的一个全排; (3)利用分步乘法计数原理求得结果.2.B解析:B 【分析】令1t x =-,得29012927(22)(21)()a a t t t t a t a t x R =++++++∈+,进而得含t 的项为767722(2)tC C t +,从而得解.【详解】令1t x =-,则有:27290129[(1)1][2(1)1]()t t a a t a t a t x R +++-=++++∈,即29012927(22)(21)()a a t t t t a t a t x R =++++++∈+,7(21)t +展开式的通项公式为:77(2)r r C t -,所以29012927(22)(21)()a a t t t t a t a t x R =++++++∈+中含t 的项为:767722(2)30tC C t t +=.故选:B. 【点睛】关键点点睛:本题解题的关键是令1t x =-,转化为求27(22)(21)t t t +++的展开中含t 的项.3.B解析:B 【分析】由课程表可知:物理课可以上任意一节,生物课只能上第2、3节,政治课只能上第1、3节,而自习课可以上任意一节.故以生物课(或政治课)进行分类,再分步排其他科目.由计数原理可得张毅同学不同的选课方法.由课程表可知:物理课可以上任意一节,生物课只能上第2、3节,政治课只能上第1、3、4节,而自习课可以上任意一节.若生物课排第2节,则其他课可以任意排,共有336A =种不同的选课方法.若生物课排第3节,则政治课有12C 种排法,其他课可以任意排,有22A 种排法,共有12224C A =种不同的选课方法.所以共有6410+=种不同的选课方法. 故选:B . 【点睛】本题考查两个计数原理,考查排列组合,属于基础题.4.A解析:A 【分析】根据题意,分2种情况讨论:①甲在最中间,将剩余的4人全排列,②乙在中间,分析可得此时的排法数目,由加法原理计算可得答案. 【详解】根据题意,中间只能排甲或乙,分2种情况讨论:①甲在中间将剩余的4人全排列,有4424A =种情况,②乙在中间,甲不能在最右端,有3种情况,将剩余的3人全排列,安排在剩下的三个位置,此时有33318A ⨯=种情况,则一共有241842+=种排法。
(人教版)杭州市选修三第一单元《计数原理》测试题(含答案解析)

一、选择题1.已知()272901291(21)(1)(1)(1)()x x a a x a x a x x R +-=+-+-++-∈.则1a =( ) A .-30 B .30 C .-40D .402.若2021220210122021(12)x a a x a x a x -=++++,则1232021a a a a ++++=( )A .1B .1-C .2D .2-3.()7322121x x ⎛⎫+- ⎪⎝⎭展开式中常数项是( ) A .15B .-15C .7D .-74.把五个标号为1到5的小球全部放入标号为1到4的四个盒子中,并且不许有空盒,那么任意一个小球都不能放入标有相同标号的盒子中的概率是( ) A .320B .720C .316D .255.某学校高三年级有两个文科班,四个理科班,现每个班指定1人,对各班的卫生进行检查.若每班只安排一人检查,且文科班学生不检查文科班,理科班学生不检查自己所在的班,则不同安排方法的种数是( ) A .48B .72C .84D .1686.若0k m n ≤≤≤,且,,m n k N ∈,则0mn m k n k n k CC --==∑( )A .2m n+B .2mn m CC .2n mn C D .2m mn C7.六安一中高三教学楼共五层,甲、乙、丙、丁四人走进该教学楼2~5层的某一层楼上课,则满足且仅有一人上5楼上课,且甲不在2楼上课的所有可能的情况有( )种 A .27B .81C .54D .1088.212nx x ⎛⎫ ⎪⎝⎭-的展开式中二项式系数之和是64,含6x 项的系数为a ,含3x 项系数为b ,则a b -=( ) A .200 B .400 C .-200D .-4009.杨辉三角是二项式系数在三角形中的一种几何排列,是中国古代数学的杰出研究成果之一.在欧洲,左下图叫帕斯卡三角形,帕斯卡在1654年发现的这一规律,比杨辉要迟393年,比贾宪迟600年.某大学生要设计一个程序框图,按右下图标注的顺序将表上的数字输出,若第5次输出数“1”后结束程序,则空白判断框内应填入的条件为( )A .3n >B .4n <C .3n <D .4n >10.在下方程序框图中,若输入的a b 、分别为18、100,输出的a 的值为m ,则二项式342()(1)x m x x x+⋅-+的展开式中的常数项是A .224B .336C .112D .56011.在()nx x的展开式中,各项系数与二项式系数和之比为128,则4x 的系数为( ) A .21 B .63C .189D .72912.若2132020x x C C -+=,则x 的值为( )A .4B .4或5C .6D .4或6二、填空题13.二项式261(2)x x-的展开式中的常数项是_______.(用数字作答)14.设122012(1)(1)(1)n n n x x x a a x a x a x ++++++=++++,其中n *∈N ,且2n ≥,若0121022n a a a a ++++=,则n =_____15.在()()()238111x x x ++++++的展开式中,含2x 项的系数是_______________.16.在32nx x ⎫⎪⎭的二项展开式中,只有第5项的二项式系数最大,则该二项展开式中的常数项等于_____. 17.若()316*2323C n n C n N ++=∈,()20123nn n x a a x a x a x -=++++且,则()121nn a a a -+-+-的值为____________.18.二项式92(x展开式中3x 的系数为__________.19.二项式6ax ⎛ ⎝⎭的展开式中5x20a x dx =⎰________. 20.若()202022020012202032x a a x a x a x +=++++,则1352019a a a a ++++被12整除的余数为______.三、解答题21.若7767610(31)x a x a x a x a -=++++,求(1)127a a a +++;(2)1357a a a a +++; (3)0246a a a a +++.22.已知2nx ⎛⎝展开式前三项的二项式系数和为22.(1)求展开式中的常数项; (2)求展开式中二项式系数最大的项.23.(1)求91x ⎛- ⎝的展开式的常数项; (2)若1nx ⎛ ⎝的展开的第6项与第7项的系数互为相反数,求展开式的各项系数的绝对值之和.24.设()52501252x 1a a x a x a x -=++++,求:(1)015a a a +++;(2)015a a a +++;(3)135a a a ++;(4)()()22024135a a a a a a ++-++. 25.已知()10210012101mx a a x a x a x +=++++中,0m ≠,且63140a a +=.(1)求m ;(2)求246810a a a a a ++++.26.已知4530n n A C =,设()nf x x ⎛= ⎝. (Ⅰ)求n 的值;(Ⅱ)求()f x 的展开式中的常数项.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】令1t x =-,得29012927(22)(21)()a a t t t t a t a t x R =++++++∈+,进而得含t 的项为767722(2)tC C t +,从而得解.【详解】令1t x =-,则有:27290129[(1)1][2(1)1]()t t a a t a t a t x R +++-=++++∈,即29012927(22)(21)()a a t t t t a t a t x R =++++++∈+,7(21)t +展开式的通项公式为:77(2)r r C t -,所以29012927(22)(21)()a a t t t t a t a t x R =++++++∈+中含t 的项为:767722(2)30tC C t t +=.故选:B. 【点睛】关键点点睛:本题解题的关键是令1t x =-,转化为求27(22)(21)t t t +++的展开中含t 的项.2.D解析:D 【分析】分别令0x =和1x =,即可解出所求. 【详解】解:由2021220210122021(12)x a a x a x a x -=+++⋯+, 令0x =得01a =;令1x =得01220211a a a a -=+++⋯+, 1220212a a a ∴++⋯+=-.故选:D . 【点睛】本题考查赋值法在研究二项展开式中系数的问题,同时考查方程思想在解题中的作用.属于中档题.3.B解析:B 【分析】先求得7211x ⎛⎫- ⎪⎝⎭展开式的通项公式,分别令r =4,5,6,7,求得对应的四项,又()3264226128x x x x +=+++,则()7322121x x ⎛⎫+- ⎪⎝⎭展开式中所有x 的零次幂的系数和即为常数项,计算化简,即可得结果. 【详解】7211x ⎛⎫- ⎪⎝⎭的通项公式为721417721()(1)(1)r r r r r r r T C C x x --+=⋅⋅-=⋅-⋅,令4r =,得446657(1)35T C x x --=⋅-⋅=, 令=5r ,得554467(1)21T C x x --=⋅-⋅=-, 令6r =,得662277(1)7T C x x --=⋅-⋅=, 令7r =,得77087(1)1T C x =⋅-⋅=-,又()3264226128x x x x +=+++,所以()7322121x x ⎛⎫+- ⎪⎝⎭展开式中常数项为351(21)6712(1)815⨯+-⨯+⨯+-⨯=-, 故选:B 【点睛】本题考查利用赋值法解决展开式中常数项的问题,考查分析理解,计算求值的能力,属中档题.4.B解析:B 【分析】由题意可以分两类,第一类第5球独占一盒,第二类,第5球不独占一盒,根据分类计数原理得到答案. 【详解】解:第一类,第5球独占一盒,则有4种选择;如第5球独占第一盒,则剩下的三盒,先把第1球放旁边,就是2,3,4球放入2,3,4盒的错位排列,有2种选择,再把第1球分别放入2,3,4盒,有3种可能选择,于是此时有236⨯=种选择; 如第1球独占一盒,有3种选择,剩下的2,3,4球放入两盒有2种选择,此时有236⨯=种选择,得到第5球独占一盒的选择有4(66)48⨯+=种,第二类,第5球不独占一盒,先放14-号球,4个球的全不对应排列数是9;第二步放5号球:有4种选择;9436⨯=,根据分类计数原理得,不同的方法有364884+=种.而将五球放到4盒共有2454240C A ⨯=种不同的办法,故任意一个小球都不能放入标有相同标号的盒子中的概率84724020P == 故选:B . 【点睛】本题主要考查了分类计数原理,关键是如何分步,属于中档题.5.D解析:D 【分析】分两步,第一步选2名理科班的学生检查文科班,第二步,理科班检查的方法,需要分三类,根据分布和分类计数原理可得. 【详解】第一步:选2名理科班的学生检查文科班,有2412A =种第二步:分三类①2名文科班的学生检查剩下的2名理科生所在的班级,2名理科生检查另2名理科生所在的班级,有22224A A =种②2名文科班的学生检查去文科班检查的2名理科生所在班级,剩下的2名理科生互查所在的班级,有21212A A =种③2名文科生一人去检查去文科班检查的2名理科生所在的班级的一个和一人去检查剩下的2名理科生其中一个所在的班级,有1112228A A A =种根据分步分类技术原理可得,共有()12428168⨯++=不同的安排方法 故选:D 【点睛】本题考查的是分步分类计数原理及排列组合的知识,怎么将一个复杂的事情进行合理的分步分类去完成是解题的关键.6.D解析:D 【分析】先利用特殊值排除A,B,C ,再根据组合数公式以及二项式定理论证D 成立. 【详解】 令0m =得,CC C C 1mn m k n n k n n n k --===∑,在选择项中,令0m =排除A ,C ;在选择项中,令1m =,101110C C C C C C 2mn m k n n n k n n n n n k n -----==+=∑排除B ,()!!()!()!!()!mmn m k n knk k n k n CC n m m k k n k --==-=⋅---∑∑000!!2()!!!()!mm mm k m k m mn m n m n k k k n m C C C C C n m m k m k ====⋅=⋅==--∑∑∑,故选D 【点睛】本题考查组合数公式以及二项式定理应用,考查基本分析化简能力,属中档题.7.B解析:B 【分析】以特殊元素甲为主体,根据分类计数原理,计算出所有可能的情况,求得结果. 【详解】甲在五楼有33种情况,甲不在五楼且不在二楼有11232354C C ⨯=种情况,由分类加法计数原理知共有542781+=种不同的情况, 故选B. 【点睛】该题主要考查排列组合的有关知识,需要理解排列组合的概念,根据题目要求分情况计数,属于简单题目.8.B解析:B 【分析】由展开式二项式系数和得n =6,写出展开式的通项公式,令r=2和r=3分别可计算出a 和b 的值,从而得到答案. 【详解】由题意可得二项式系数和2n =64,解得n =6.∴212n x x ⎛⎫ ⎪⎝⎭-的通项公式为:()()6261231661212rr r r r r rr T C x C x x ---+⎛⎫=-=- ⎪⎝⎭, ∴当r=2时,含x 6项的系数为()2262612240C a --==, 当r=3时,含x 3项的系数为()3363612160C b --=-=,则400a b -=, 故选B . 【点睛】本题考查二项式定理的通项公式及其性质,考查推理能力与计算能力,属于基础题.9.C解析:C 【分析】利用()!!!in n C i n i =-,执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出的值为22C ,即可得到输出条件. 【详解】利用()!!!in n C i n i =-,执行程序框图,当0n =时,输出的是00C ; 当1n =时,输出的是0111,C C ; 当2n =时,012222,,C C C ;当3n =时,输出的是01233333,,,C C C C ,因为第5次输出数“1”,即2n =,输出22C 后结束程序, 所以3n =时不满足条件,结束程序,所以,空白判断框内应填入的条件为3n <,故选C. 【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.10.D解析:D 【分析】由程序图先求出m 的值,然后代入二项式中,求出展开式中的常数项 【详解】由程序图可知求输入18100a b ==,的最大公约数,即输出2m =则二项式为())348332812161x x x x x x x ⎛⎫⎛⎫+⋅-=+++ ⎪ ⎪⎝⎭⎝⎭)81的展开通项为()82181r rr r T C x-+=-要求展开式中的常数项,则当取38x 时,令832r-= 解得2r =,则结果为288224C =,则当取12x 时,令812r-=,解得6r =,则结果为6812336C =,故展开式中的常数项为224336560+=,故选D【点睛】本题考查了运用流程图求两个数的最大公约数,并求出二项式展开式中的常数项,在求解过程中注意题目的化简求解,属于中档题11.C解析:C 【解析】分析:令1x =得各项系数和,由已知比值求得指数n ,写出二项展开式通项,再令x 的指数为4求得项数,然后可得系数.详解:由题意41282n n =,解得7n =,∴37721773r r r r r rr T C x C x --+==,令3742r-=,解得2r ,∴4x 的系数为2273189C =.故选C . 点睛:本题考查二项式定理,考查二项式的性质.在()n a b +的展开式中二项式系数和为2n ,而展开式中各项系数的和是在展开式中令变量值为1可得,二项展开式通项公式为1C r n r rr n T ab -+=. 12.D解析:D 【解析】 因为2132020x x C C -+=,所以213x x -=+ 或21320x x -++=,所以4x = 或6x =,选D.二、填空题13.60【分析】根据二项式展开式的通项公式求解【详解】有题意可得二项式展开式的通项为:令可得此时【点睛】本题考查二项式定理的应用考查通项公式考查计算能力属于基础题解析:60 【分析】根据二项式展开式的通项公式求解. 【详解】有题意可得,二项式展开式的通项为:()62612316612(1)2rrrr r r rr T C xC xx ---+⎛⎫=-=- ⎪⎝⎭令1230r -=可得4r = ,此时2456260T C ==.【点睛】本题考查二项式定理的应用,考查通项公式,考查计算能力,属于基础题.14.9【分析】记函数利用等比数列求和公式即可求解【详解】由题:记函数即故答案为:9【点睛】此题考查多项式系数之和问题常用赋值法整体代入求解体现出转化与化归思想解析:9 【分析】记函数122012()(1)(1)(1)n n n f x x x x a a x a x a x =++++++=++++,012222(1)2n n f a a a a =+++=++++,利用等比数列求和公式即可求解. 【详解】由题:记函数212012()(1)(1)(1)n n n f x a a x a x a x x x x =++++=++++++,021222(12)(21)212n nn f a a a a -=++++++=-=+, 即1221022n +-=,121024,9n n +==故答案为:9 【点睛】此题考查多项式系数之和问题,常用赋值法整体代入求解,体现出转化与化归思想.15.84【分析】通过求出各项二项展开式中项的系数利用组合数的性质求出系数和即可得结果【详解】的展开式中含项的系数为:故答案是:84【点睛】该题考查的是有关二项式对应项的系数和的问题涉及到的知识点有指定项解析:84 【分析】通过求出各项二项展开式中2x 项的系数,利用组合数的性质求出系数和即可得结果. 【详解】()()()238111x x x ++++++的展开式中,含2x 项的系数为:2222222322222223456783345678C C C C C C C C C C C C C C ++++++=++++++399878432C ⨯⨯===⨯, 故答案是:84. 【点睛】该题考查的是有关二项式对应项的系数和的问题,涉及到的知识点有指定项的二项式系数,组合数公式,属于简单题目.16.112【分析】由题意可得再利用二项展开式的通项公式求得二项展开式常数项的值【详解】的二项展开式的中只有第5项的二项式系数最大通项公式为令求得可得二项展开式常数项等于故答案为112【点睛】本题主要考查解析:112 【分析】由题意可得8n =,再利用二项展开式的通项公式,求得二项展开式常数项的值. 【详解】2)nx的二项展开式的中,只有第5项的二项式系数最大,8n∴=,通项公式为4843318(2)(2)n r rr r r rr nT C x C x--+=-=-,令843r-=,求得2r,可得二项展开式常数项等于284112C⨯=,故答案为112.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.17.175【分析】先利用二项式系数的性质求得n=4再令x=﹣1可得a0﹣a1+a2﹣…+(﹣1)nan的值再令x=0可得a0=81即可求解【详解】由C233n+1=C23n+6(n∈N*)可得3n+1+解析:175【分析】先利用二项式系数的性质求得n=4,再令x=﹣1可得a0﹣a1+a2﹣…+(﹣1)n a n的值,再令x=0可得a0=81,即可求解.【详解】由C233n+1=C23n+6(n∈N*)可得 3n+1+(n+6)=23,或 3n+1=n+6,解得n=4 或n52=(舍去).故(3﹣x)4=a0+a1x+a2x2+…+a4 x4,令x=﹣1可得a0﹣a1+a2﹣…+(﹣1)n a n=44=256,再令x=0可得a0=81,∴﹣a1+a2﹣…+(﹣1)n a n=256-81=175,故答案为 175.【点睛】本题主要考查二项式定理的应用,注意根据题意,分析所给代数式的特点,通过给二项式的x赋值,求展开式的系数和问题,属于中档题.18.【分析】由题意求得二项展开式的通项利用展开式的通项即可求解的系数得到答案【详解】由题意二项式展开式的通项为令解得所以即中的系数为【点睛】本题主要考查了二项展开式的指定项的系数的求解其中熟记二项展开式解析:18【分析】由题意,求得二项展开式的通项,利用展开式的通项,即可求解3x的系数,得到答案.【详解】由题意,二项式92x⎛⎝展开式的通项为(()93992199212rr rrr r rrT C C xx---+⎛⎫=⋅⋅=-⋅⋅⋅⎪⎝⎭令3932r -=,解得8r =,所以()81833191218r T C x x +=-⋅⋅⋅=,即中3x 的系数为18. 【点睛】本题主要考查了二项展开式的指定项的系数的求解,其中熟记二项展开式的通项,利用通项求解指定项的系数是解答此类问题的关键,着重考查了推理与运算能力,属于基础题.19.【解析】分析:先根据二项展开式的通项求得的系数进而得到的值然后再根据微积分基本定理求解即可详解:二项式的展开式的通项为令可得的系数为由题意得解得∴点睛:解答有关二项式问题的关键是正确得到展开式的通项解析:13【解析】分析:先根据二项展开式的通项求得5x 的系数,进而得到a 的值,然后再根据微积分基本定理求解即可.详解:二项式66ax ⎛⎫+ ⎪ ⎪⎝⎭的展开式的通项为666166()(),0,1,2,,6r r r r r r rr T C ax a C x r ---+===,令1r =,可得5x5156a C =,5=, 解得1a =.∴12310011|33x dx x ==⎰. 点睛:解答有关二项式问题的关键是正确得到展开式的通项,然后根据题目要求求解.定积分计算的关键是确定被积函数的原函数,然后根据微积分基本定理求解.20.0【分析】根据题意给自变量赋值取和两个式子相减得到的值用二项展开式可以看出被12整除的结果得到余数【详解】在已知等式中取得取得两式相减得即因为能被12整除所以则被12整除余数是0故答案为:0【点睛】解析:0 【分析】根据题意,给自变量x 赋值,取1x =和1x =-,两个式子相减,得到1352019a a a a +++的值,用二项展开式可以看出被12整除的结果,得到余数.【详解】在已知等式中,取1x =得202001220205a a a a ++++=,取1x =-得01220201a a a a -+-+=, 两式相减得202013520192()51a a a a +++=-,即()202013520191512a a a a +++=⨯-,因为()()()1010202010101111512512412222⨯-=⨯-=⨯+- ()01010110091010101010101010101124242422C C C C =⨯++++-()0101011009110101010101012424242C C C =⨯+++能被12整除,所以则1352019a a a a ++++被12整除,余数是0.故答案为:0. 【点睛】本题考查二项式定理的应用和带余除法,本题解题的关键是利用赋值的方法、利用二项式定理得到式子的结果,属于中等题.三、解答题21.(1)129(2)8256(3)-8128 【分析】(1)利用赋值法令0x =得0a ,再令1x =即可得到结果. (2)令1x =和1x =-,将得到的两个式子作差可得结果. (3)令1x =和1x =-,将得到的两个式子相加可得结果. 【详解】(1)令0x =,则01a =-,令1x =,则128270167==++++a a a a .∴129721=+++a a a .(2)令1x =,则128270167==++++a a a a . 令1x =-,则701234567)4(-=+-+-+-+-a a a a a a a a ,两式相减得:()713572128(4)16512a a a a +++=--=,则1357=8256a a a a +++.(3)令1x =,则128270167==++++a a a a . 令1x =-,则701234567)4(-=+-+-+-+-a a a a a a a a ,两式相加得:()02462=a a a a +++()7128416256+-=-,则02468128a a a a +++=- 【点睛】本题考查赋值法求二项展开式的各项系数和,考查计算能力,属于基础题. 22.(1)60(2)32160x【分析】(1)根据2nx⎛ ⎝展开式前三项的二项式系数和为22,由01222n n n C C C ++=,解得6n =,再得到2nx⎛+ ⎝展开式的通项1r T +366262rr r C x --=,令3602r -=求解. (2)根据6n =,得到展开式中二项式系数最大的项为第四项,再利用通项公式求解.. 【详解】(1)因为2nx⎛⎝展开式前三项的二项式系数和为22,所以01222n n n C C C ++=,即(1)1222n n n -++=, 所以2420n n +-=, 解得6n =或7n =-(舍去).所以2nx⎛+ ⎝展开式的通项为:16216(2)rr r r T C x x --+⎛⎫= ⎪⎝⎭366262r r r C x --=,令3602r -=,得4r =, 所以展开式中的常数项为41T +=4206260C x =.(2)因为6n =,所以展开式中二项式系数最大的项为第四项,即3133322316(2)160T C x x x -+⎛⎫== ⎪⎝⎭.【点睛】本题主要考查二项式定理的通项公式,二项式系数,还考查了运算求解的能力,属于中档题.23.(1)84 (2)2048 【分析】(1)利用二项展开式的通项公式,令x 的次数为0,即可求出常数项.(2)通过第6项与第7项的系数互为相反数,可得11n =,111(x的各项系数绝对值之和与111(x的各系数之和相等,令x=1,即可得到答案.【详解】解:(1)因为91(x 的通项是39921991()((1)r r r r r r r T C C x x--+==-,当r=6时可得展开式的常数项,即常数项是6679(1)84T C =-=.(2)1(n x 的通项为3211()((1)r n r n r r r r r n n T C C x x--+==-,则第6项与第7项分别为15526n nT C x-=-和697nn T C x -=,它们的系数分别为5n C -和6n C .因为第6项与第7项的系数互为相反数,所以56n n C C =,则11n =,因为111(x 的各项系数绝对值之和与111(x 的各系数之和相等,令1x =,得111(x的各项系数的绝对值之和为1122048=.【点睛】本题考查二项式定理的应用,考查二项式展开式通项公式和二项式系数的应用,属于基础题.24.(1)1;(2)243;(3)122;(4)243- 【分析】(1)令x=1即得015a a a +++的值;(2)在521x +()中,令1x =得解;(3) 先求出f(1)-f(-1)即得解;(4)求f(1)·f(-1)即得解. 【详解】∵()52501232x 1a a x a x a x -=++++, (1)令1x =,可得015a a a 1+++=;(2)在521x +()中,令1x =,可得015a a a 243+++=;(3)令f(x)=()5250125 2x 1a a x a x a x -=++++,f(1)=015 a a a 1+++=,所以f(-1)=012345243a a a a a a -+-+-=-, 所以f(1)-f(-1)=2135()244a a a ++=, 所以135122a a a ++=.(4)22024135a a a a a a ++-++()()012345012345a a a a a a a a a a a a =+++++-+-+-()()1?11243243f f =-=⨯-=-.【点睛】本题主要考查二项式展开式的系数的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.25.(1)2m =-(2)29524 【分析】(1)由二项式定理求出第4项和第7项的系数,代入已知可得m ;(2)令1x =得所有项系数和,令1x =-得奇数项系数和与偶数项系数和的差,两者结合后可得偶数项系数和,0a 是常数项易求,从而可得246810a a a a a ++++, 【详解】(1)因为10i ii a C m =,1,2,310i =,依题意得:66331010140C m C m +=,331098710981404321321m m ⨯⨯⨯⨯⨯⎛⎫+=⎪⨯⨯⨯⨯⨯⎝⎭因为0m ≠,所以38m =-,得2m =-. (2)()102100121012x a a x a x a x -=+++令1x =得:()10012345678910121a a a a a a a a a a a ++++++++++=-=.① 令1x =-得:()1010012345678910123a a a a a a a a a a a -+-+-+-+-+=+=.② 由①+②得:()10024*******a a a a a a +++++=+,即100246810132a a a a a a ++++++=. 又()001021a C =-=,所以1010246810133112952422a a a a a +-++++=-==【点睛】本题考查二项式定理的应用和赋值法,考查推理论证能力、运算求解能力,考查化归与转化思想,导向对发展数学抽象、逻辑推理、数学运算等核心素养的关注. 26.(Ⅰ)8n =;(Ⅱ)728T .【分析】(Ⅰ)利用排列数,组合数公式化简4530n n A C =即可得n 的值.(Ⅱ)写出()f x 的展开式的通项公式,令x 的指数为0即可得到常数项. 【详解】(Ⅰ)由已知4530n n A C =得:!30!4!5!5!n n n n ,!30!45!1205!n n n n n解得:8n =.(Ⅱ)8x⎛⎝展开式的通项为488318831k kk kk kkT C x C xx由4803k得6k=,即()f x的展开式中的常数项为728T.【点睛】本题考查排列数组合数公式的应用,考查求解二项展开式中的常数项,考查计算能力,属于基础题.。
专题01 两个计数原理(原卷版)

专题01 两个计数原理类型一、加法原理例1.(2023·全国·高三专题练习)某奥运村有A,B,C三个运动员生活区,其中A区住有30人,B区住有15人,C区住有10人.已知三个区在一条直线上,位置如图所示.奥运村公交车拟在此间设一个停靠点,为使所有运动员步行到停靠点路程总和最小,那么停靠点位置应在()A.A区B.B区C.C区D.A,B两区之间例2.(2023·全国·高三专题练习)现有5幅不同的油画,2幅不同的国画,7幅不同的水彩画,从这些画中选一幅布置房间,则不同的选法共有()A.7种B.9种C.14种D.70种例3.(2023·全国·高三专题练习)2010年世界杯足球赛预计共有24个球队参加比赛,第一轮分成6个组进行单循环赛(在同一组的每两个队都要比赛),决出每个组的一、二名,然后又在剩下的12个队中按积分取4个队(不比赛),共计16个队进行淘汰赛来确定冠亚军,则一共需比赛()场次.A.53B.52C.51D.50例4.(2023·全国·高三专题练习)在北京冬奥会短道速滑混合团体2000米接力决赛中,中国队成功夺冠,为中国体育代表团夺得本届冬奥会首金.短道速滑男女接力赛要求每队四名运动员,两男两女,假设男女队员间隔接力,且每位队员只上场一次,则不同的上场次序的种数为()A.8B.16C.18D.24例5.(2023·高二单元测试)某学校为落实“双减政策,在每天放学后开设拓展课程供学生自愿选择,开学第一周的安排如下表.小明同学要在这一周内选择编程、书法、足球三门课,不同的选课方案共有()A.15种B.10种C.8种D.5种类型二、乘法原理例6.(2023·高二课时练习)一次时装表演,有7顶不同款式的帽子,12件不同款式的上衣和8条不同款式的裤子.一位模特要从这些帽子、上衣和裤子中各选1款穿戴,则有______种不同的选法.例7.(2023·高二课时练习)4个学生各写一张贺卡放在一起,然后每人从中各取一张,要求不能取自己写的那张贺卡,但有1个学生取错了,则不同的取法共有______种.例8.(2023·高二课时练习)有四位学生参加三项竞赛,要求每位学生必须参加其中一项竞赛,有______种参赛情况.例9.(2023·高二课时练习)有四位学生参加三项竞赛,要求每项竞赛只需其中一位学生参加,有______种参赛情况.例10.(2023·高二课时练习)甲、乙、丙、丁四个人各写一张贺卡,放在一起,再各取一张不是自己所写的贺卡,共有______种不同的取法.例11.(2023·高二课时练习)某酒店的大楼有18层,每层12个房间,如果每个房间都安装一个电话分机,那么用1、2、3、4、5、6这六个数字所组成的三位数作为各分机的号码,是否够用?例12.按序给出a,b两类元素,a类中的元素排序为甲、乙、丙、丁、戊、己、庚、辛、壬、癸,b类中的元素排序为子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.在a,b两类中各取1个元素组成1个排列,求a类中选取的元素排在首位,b类中选取的元素排在末位的排列的个数.a类的10个元素叫作天干,b类的12个元素叫作地支.两者按固定顺序相配,形成古代纪年历法,求天干各地支相配可形成的纪年历法可以表示多少年.例13.某班有男生30名、女生24名,从中任选男生和女生各1名代表班级参加比赛,共有多少种不同的选法?类型三、基本计数原理的综合应用例14.(2023秋·河北·高二河北省文安县第一中学校考期末)如图,要让电路从A处到B处接通,不同的路径条数为()A.5B.7C.8D.12例15.(2023·高二单元测试)一杂技团有8名会表演魔术或口技的演员,其中有6人会表演口技,有5人会表演魔术,现从这8人中选出2人上台表演,1人表演口技,1人表演魔术,则不同的安排方法有______种.例16.(2023·全国·高三专题练习)如图,一条电路从A处到B处接通时,可以有_____________条不同的线路(每条线路仅含一条通路).例17.(2023春·四川绵阳·高三绵阳中学校考阶段练习)小小的火柴棒可以拼成几何图形,也可以拼成数字.如下图所示,我们可以用火柴棒拼出1至9这9个数字比如:“1”需要2根火柴棒,“7”需要3根火柴棒.若用8根火柴棒以适当的方式全部放入右面的表格中(没有放入火柴棒的空位表示数字“0”),那么最多可以表示无重复数字的三位数有______个例18.(2023·全国·高三专题练习)某学校每天安排4项课后服务供学生自愿选择参加.学校规定:(1)每位学生每天最多选择1项;(2)每位学生每项一周最多选择1次.学校提供的安排表如下:例19.(2023·高二课时练习)书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书.(1)从这些书中任取一本,有多少种不同的取法?(2)从这些书中取数学书、语文书、英语书各一本,有多少种不同的取法?(3)从这些书中取不同科目的书共两本,有多少种不同的取法?例20.(2023·高二单元测试)在某次国际高峰论坛上,组委会要从6个国内媒体团和3个国外媒体团中选出3个媒体团进行提问,要求这3个媒体团中既有国内媒体团又有国外媒体团,且国内媒体团不能连续提问,则不同的提问方式的种数是多少?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《计数原理》单元测试题一、选择题1.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同报名方法共有( )A .10种B .20种C .25种D .32种2.甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有( )A .36种B .48种C .96种D .192种 3. 记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( ) A .1440种 B .960种 C .720种D .480种4. 某城市的汽车牌照号码由2个英文字母后接4个数字组成,其中4个数字互不相同的牌照号码共有( )A .()2142610C A 个B .242610A A 个C .()2142610C 个D .242610A 个 5.(x -2y )10的展开式中x 6y 4项的系数是( )A. 840B. -840C. 210D.-2106. 由数字0,1,2,3,4,5可以组成无重复数字且奇偶数字相间的六位数的个数有( )B.607.用0,1,2,3,4组成没有重复数字的全部五位数中,若按从小到大的顺序排列,则数字12340应是第( )个数.和CD 为平面内两条相交直线,AB 上有m 个点,CD 上有n 个点,且两直线上各有一个与交点重合,则以这m+n-1个点为顶点的三角形的个数是( ) A.2121mn n m C C C C + B.21121mn n m C C C C -+ 21211m n n m C C C C +-.2111211---+m n n m C C C C 9.设()10102210102x a x a x a a x+⋅⋅⋅+++=-,则()()292121020a a a a a a +⋅⋅⋅++-+⋅⋅⋅++的值为( )B.-1 D.10.某城市的街道如图,某人要从A 地前往B 地,则路程最短的走法有( ) 种种 种 种11.从6个正方形拼成的12个顶点(如图)中任取3个顶点作为一组,其中可以构成三角形的组数为 ( )A .208 B .204 C .200 D .196 12. 从不同号码的五双靴中任取4只,其中恰好有一双的取法种数为 ( ).240 C二、 填空题13. 今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有 种不同的方法(用数字作答).14. 用数字0,1,2,3,4组成没有重复数字的五位数,则其中数字1,2相邻的偶数有 个(用数字作答). 15. 若(2x 3+x1)n的展开式中含有常数项,则最小的正整数n = .16. 从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有_____种。
(用数字作答) 三、解答题17.从4名男生,3名女生中选出三名代表(1)不同的选法共有多少种(2)至少有一名女生的不同的选法共有多少种 (3)代表中男、女生都要有的不同的选法共有多少种(第10题)(第11题)18.平面内有12个点,其中有4点共线,此外再无任何3点共线,以这些点为顶点可得到多少个不同的三角形19.六人按下列要求站一横排,分别有多少种不同的站法(l)甲不站两端;(2)甲、乙必须相邻;(3)甲、乙不相邻;(4)甲、乙之间间隔两人;(5)甲、乙站在两端;(6)甲不站左端,乙不站右端.20.把1、2、3、4、5这五个数字组成无重复数字的五位数,并把它们按由小到大的顺序排列成一个数列.(1)43251是这个数列的第几项(2)这个数列的第96项是多少(3)求所有五位数的各位上的数字之和(4)求这个数列的各项和.21.在的展开式中,如果第4r项和第r+2项的二项式系数相等。
(1)求r的值;(2)写出展开式中的第4r项和第r+2项。
22.求证:能被25整除。
第一章 计数原理单元测试题参考答一、选择题:(每题5分,共60分)1、D2、C 解析.甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有23344496C C C ⋅⋅=种,选C3、B 解析:5名志愿者先排成一排,有55A 种方法,2位老人作一组插入其中,且两位老人有左右顺序,共有5524A ⋅⋅=960种不同的排法,选B4、A 解析:某城市的汽车牌照号码由2个英文字母后接4个数字组成,其中4个数字互不相同的牌照号码共有()2142610C A 个,选A 5、A 6、B 解析:只考虑奇偶相间,则有33332A A 种不同的排法,其中0在首位的有3322A A 种不符合题意,所以共有33332A A 603322=-A A 种. 7、C 解析: 比12340小的分三类:第一类是千位比2小为0,有633=A 个; 第二类是千位为2 ,百位比3小为0,有222=A 个; 第三类是十位比4小为0,有1个.共有6+2+1=9个,所以12340是第10个数.8、D 解析:在一条线上取2个点时,另一个点一定在另一条直线上,且不能是交点. 9、C 10、B 11、C12、A 解析:先取出一双有15C 种取法,再从剩下的4双鞋中取出2双,而后从每双中各取一只,有121224C C C 种不同的取法,共有15C 120121224=C C C 种不同的取法. 二、 填空题(每小题4分,共16分)13、1260 解析: 由题意可知,因同色球不加以区分,实际上是一个组合问题,共有4239531260C C C =14、24 解析:可以分情况讨论:① 若末位数字为0,则1,2,为一组,且可以交换位置,3,4,各为1个数字,共可以组成33212A ⋅=个五位数;② 若末位数字为2,则1与它相邻,其余3个数字排列,且0不是首位数字,则有2224A ⋅=个五位数;③ 若末位数字为4,则1,2,为一组,且可以交换位置,3,0,各为1个数字,且0不是首位数字,则有222(2)A ⋅⋅=8个五位数,所以全部合理的五位数共有24个15、7 解析:若(2x 3+x1)n 的展开式中含有常数项,31(2)n r n rrr n T C x --+=⋅为常数项,即732rn -=0,当n =7,r =6时成立,最小的正整数n 等于7. 16、36种 解析.从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,先从其余3人中选出1人担任文娱委员,再从4人中选2人担任学习委员和体育委员,不同的选法共有123434336C A ⋅=⨯⨯=种三、解答题17.解:(1)即从7名学生中选出三名代表,共有选法3735C = 种;(2)至少有一名女生的不同选法共有122133434331C C C C C ++= 种;(3)男、女生都要有的不同的选法共有33374330C C C --= 种。
18.解:把从共线的4个点中取点的多少作为分类的标准。
第一类:共线的4点中有两点为三角形的顶点,共有:(个); 第二类:共线的4点中有一点为三角形的顶点,共有(个); 第三类:共线的4点中没有点作为三角形的顶点,共有:(个)。
由分类计数原理知,共有三角形:(个)。
答:可得到216个不同的三角形。
19.解析:(l )方法一:要使甲不站在两端,可先让甲在中间 4 个位置上任选 1 个,有种站法,然后其余 5 人在另外 5 个位置上作全排列有种站法,根据分步乘法计数原理共有站法480 (种)方法二:由于甲不站两端,这两个位置只能从其余 5 个人中选 2 个人站,有种站法,然后中间 4 人有种站法,根据分步乘法计数原理,共有站法480 (种) 方法三:若对甲没有限制条件共有种站法,甲在两端共有种站法,从总数中减去这两种情况的排列数,即得所求的站法数,共有480(种)(2)方法一:先把甲、乙作为一个“整体”,看作一个人,有种站法,再把甲、乙进行全排列,有种站法,根据分步乘法计数原理,共有240 (种)站法.方法二:先把甲、乙以外的 4 个人作全排列,有种站法,再在 5 个空档中选出一个供甲、乙放入,有种方法,最后让甲、乙全排列,有种方法,共有240 (种) (3)因为甲、乙不相邻,中间有隔档,可用“插空法”,第一步先让甲、乙以外的 4 个人站队,有种;第二步再将甲、乙排在 4 人形成的 5 个空档(含两端)中,有种,故共有站法为= 480 (种).也可用“间接法”,6 个人全排列有种站法,由(2)知甲、乙相邻有240 种站法,所以不相邻的站法有-720-240=480(种).(4)方法一:先将甲、乙以外的 4 个人作全排列,有种,然后将甲、乙按条件插入站队,有种,故共有种站法.方法二:先从甲、乙以外的 4 个人中任选 2 人排在甲、乙之间的两个位置上,有种,然后把甲、乙及中间 2 人看作一个“大”元素与余下 2 人作全排列有种方法,最后对甲、乙进行排列,有种方法,故共有144 种站法.(5)方法一:首先考虑特殊元素,甲、乙先站两端,有种,再让其他 4 人在中间位置作全排列,有种,根据分步乘法计数原理,共有种站法.方法二:首先考虑两个特殊位置,甲、乙去站有种站法,然后考虑中间 4 个位置,由剩下的 4 人去站,有种站法,由分步乘法计数原理共有种站法.(6)方法一:甲在左端的站法有种,乙在右端的站法有种,且甲在左端而乙在右端的站法有种,共有种站法.方法二:以元素甲分类可分为两类:① 甲站右端有种,② 甲在中间 4 个位置之一,而乙不在右端有种,故共有=504 种站法. 20.解:⑴先考虑大于43251的数,分为以下三类第一类:以5打头的有:44A =24 第二类:以45打头的有:33A =6 第三类:以435打头的有:22A =2故不大于43251的五位数有:()8822334455=++-A A A A (个) 即43251是第88项.⑵数列共有A=120项,96项以后还有120-96=24项, 即比96项所表示的五位数大的五位数有24个,所以小于以5打头的五位数中最大的一个就是该数列的第96项.即为45321. (3)因为1,2,3,4,5各在万位上时都有44A 个五位数,所以万位上各个数字的和为:(1+2+3+4+5)·44A同理它们在千位、百位、十位、个位上也都有个44A 五位数,所有五位数的各位上的数字之和5·(1+2+3+4+5)·44A =1800(4)因为1,2,3,4,5各在万位上时都有44A 个五位数,所以万位上数字的和为:(1+2+3+4+5)·44A ·10000同理它们在千位、百位、十位、个位上也都有44A 个五位数,所以这个数列各项和为:(1+2+3+4+5)·44A ·(1+10+100+1000+10000)21.解:(1)展开式第4r 项的二项式系数为,第r+2项的二项式系数为,根据二项式系数的性质,当且仅当或时它们的二项式系数相等,解得(舍),。