2019年江西省中考数学试卷及答案解析
2019年江西省中考数学试卷附分析答案

A.
B.
C.
D.
4.(3 分)根据《居民家庭亲子阅读消费调查报告》中的相关数据制成扇形统计图,由图可
知,下列说法错误的是( )
A.扇形统计图能反映各部分在总体中所占的百分比
B.每天阅读 30 分钟以上的居民家庭孩子超过 50%
C.每天阅读 1 小时以上的居民家庭孩子占 20%
D.每天阅读 30 分钟至 1 小时的居民家庭孩子对应扇形的圆心角是 108°
时,求∠ABC 的大小.
(参考数据:sin70°≈0.94,cos20°≈0.94,sin36.8°≈0.60,cos53.2°≈0.60)
第 5页(共 28页)
五、(本大题共 2 小题,每小题 9 分,共 18 分) 21.(9 分)数学活动课上,张老师引导同学进行如下探究:
如图 1,将长为 12cm 的铅笔 AB 斜靠在垂直于水平桌面 AE 的直尺 FO 的边沿上,一端 A 固定在桌面上,图 2 是示意图. 活动一 如图 3,将铅笔 AB 绕端点 A 顺时针旋转,AB 与 OF 交于点 D,当旋转至水平位置时, 铅笔 AB 的中点 C 与点 O 重合.
③抛物线 y1,y2,y3 与直线 y=1 的交点中,相邻两点之间的距离相等. 形成概念 (2)把满足 yn=﹣x2﹣nx+1(n 为正整数)的抛物线称为“系列平移抛物线”. 知识应用
2019年江西省中考数学真题试卷-解析版+学生版

2019年江西省中考数学真题试卷一、选择题(本大题共6小题,每小题3分,共18分每小题只有一个正确选项) 1.(3分)(2019•江西)2的相反数是( ) A .2B .2-C .12D .12-2.(3分)(2019•江西)计算211()a a÷-的结果为( ) A .aB .a -C .31a -D .31a 3.(3分)(2019•江西)如图是手提水果篮抽象的几何体,以箭头所指的方向为主视图方向,则它的俯视图为( )A .B .C .D .4.(3分)(2019•江西)根据《居民家庭亲子阅读消费调查报告》中的相关数据制成扇形统计图,由图可知,下列说法错误的是( )A .扇形统计图能反映各部分在总体中所占的百分比B .每天阅读30分钟以上的居民家庭孩子超过50%C .每天阅读1小时以上的居民家庭孩子占20%D .每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是108︒5.(3分)(2019•江西)已知正比例函数1y 的图象与反比例函数2y 的图象相交于点(2,4)A ,下列说法正确的是( )A .反比例函数2y 的解析式是28y x=-B .两个函数图象的另一交点坐标为(2,4)-C .当2x <-或02x <<时,12y y <D .正比例函数1y 与反比例函数2y 都随x 的增大而增大6.(3分)(2019•江西)如图,由10根完全相同的小棒拼接而成,请你再添2根与前面完全相同的小棒,拼接后的图形恰好有3个菱形的方法共有( )A .3种B .4种C .5种D .6种二、填空题(本大题共6小题,每小题3分,共18分) 7.(3分)(2019•江西)因式分解:21x -= .8.(3分)(2019•江西)我国古代数学名著《孙子算经》有估算方法:“方五,邪(通“斜” )七.见方求邪,七之,五而一.”译文为:如果正方形的边长为五,则它的对角线长为七.已知正方形的边长,求对角线长,则先将边长乘以七再除以五.若正方形的边长为1,由勾股定理得对角线长为2,依据《孙子算经》的方法,则它的对角线的长是 . 9.(3分)(2019•江西)设1x ,2x 是一元二次方程210x x --=的两根,则1212x x x x ++= . 10.(3分)(2019•江西)如图,在ABC ∆中,点D 是BC 上的点,40BAD ABC ∠=∠=︒,将ABD ∆沿着AD 翻折得到AED ∆,则CDE ∠= ︒.11.(3分)(2019•江西)斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度.如图,某路口的斑马线路段A B C --横穿双向行驶车道,其中6AB BC ==米,在绿灯亮时,小明共用11秒通过AC ,其中通过BC 的速度是通过AB 速度的1.2倍,求小明通过AB时的速度.设小明通过AB时的速度是x米/秒,根据题意列方程得:.12.(3分)(2019•江西)在平面直角坐标系中,A,B,C三点的坐标分别为(4,0),(4,4),(0,4),点P在x轴上,点D在直线AB上,若1DA=,CP DP⊥于点P,则点P的坐标为.三、(本大题共5小题,每小题6分,共30分)13.(6分)(2019•江西)(1)计算:0(1)|2|(20192)--+-+-;(2)如图,四边形ABCD中,AB CD=,AD BC=,对角线AC,BD相交于点O,且OA OD=.求证:四边形ABCD是矩形.14.(6分)(2019•江西)解不等式组:2(1)7122x xxx+>⎧⎪⎨+-⎪⎩并在数轴上表示它的解集.15.(6分)(2019•江西)在ABC∆中,AB AC=,点A在以BC为直径的半圆内.请仅用无刻度的直尺分别按下列要求画图(保留画图痕迹).(1)在图1中作弦EF,使//EF BC;(2)在图2中以BC为边作一个45︒的圆周角.16.(6分)(2019•江西)为纪念建国70周年,某校举行班级歌咏比赛,歌曲有:《我爱你,中国》,《歌唱祖国》,《我和我的祖国》(分别用字母A,B,C依次表示这三首歌曲).比赛时,将A,B,C这三个字母分别写在3张无差别不透明的卡片正面上,洗匀后正面向下放在桌面上,八(1)班班长先从中随机抽取一张卡片,放回后洗匀,再由八(2)班班长从中随机抽取一张卡片,进行歌咏比赛.(1)八(1)班抽中歌曲《我和我的祖国》的概率是;(2)试用画树状图或列表的方法表示所有可能的结果,并求出八(1)班和八(2)班抽中不同歌曲的概率.17.(6分)(2019•江西)如图,在平面直角坐标系中,点A,B的坐标分别为3(2-,0),3(2,1),连接AB,以AB为边向上作等边三角形ABC.(1)求点C的坐标;(2)求线段BC所在直线的解析式.四、(本大题共3小题,每小题8分,共24分)18.(8分)(2019•江西)某校为了解七、八年级学生英语听力训练情况(七、八年级学生人数相同),某周从这两个年级学生中分别随机抽查了30名同学,调查了他们周一至周五的听力训练情况,根据调查情况得到如下统计图表:周一至周五英语听力训练人数统计表参加英语听力训练人数年级周一周二周三周四周五七年级1520a3030八年级2024263030合计3544516060(1)填空:a ;(2)根据上述统计图表完成下表中的相关统计量:年级平均训练时间的中位数参加英语听力训练人数的方差七年级2434八年级14.4(3)请你利用上述统计图表对七、八年级英语听力训练情况写出两条合理的评价;(4)请你结合周一至周五英语听力训练人数统计表,估计该校七、八年级共480名学生中周一至周五平均每天有多少人进行英语听力训练.19.(8分)(2019•江西)如图1,AB为半圆的直径,点O为圆心,AF为半圆的切线,过半圆上的点C作//CD AB交AF于点D,连接BC.(1)连接DO,若//BC OD,求证:CD是半圆的切线;(2)如图2,当线段CD与半圆交于点E时,连接AE,AC,判断AED∠和ACD∠的数量关系,并证明你的结论.20.(8分)(2019•江西)图1是一台实物投影仪,图2是它的示意图,折线B A O--表示固定支架,AO垂直水平桌面OE于点O,点B为旋转点,BC可转动,当BC绕点B顺时针旋转时,投影探头CD始终垂直于水平桌面OE,经测量: 6.8CD cm=,=,8AO cmBC cm=.(结果精确到0.1).AB cm=,3530(1)如图2,70BC OE.ABC∠=︒,//①填空:BAO∠=︒.②求投影探头的端点D到桌面OE的距离.(2)如图3,将(1)中的BC向下旋转,当投影探头的端点D到桌面OE的距离为6cm时,求ABC∠的大小.(参考数据:sin700.94︒≈︒≈,cos53.20.60)︒=,sin36.80.60︒=,cos200.94五、(本大题共2小题,每小题9分,共18分)21.(9分)(2019•江西)数学活动课上,张老师引导同学进行如下探究:如图1,将长为12cm的铅笔AB斜靠在垂直于水平桌面AE的直尺FO的边沿上,一端A固定在桌面上,图2是示意图.活动一:如图3,将铅笔AB绕端点A顺时针旋转,AB与OF交于点D,当旋转至水平位置时,铅笔AB的中点C与点O重合.数学思考(1)设CD xcm=.=,点B到OF的距离GB ycm①用含x的代数式表示:AD的长是cm,BD的长是cm;②y与x的函数关系式是,自变量x的取值范围是.活动二:(2)①列表:根据(1)中所求函数关系式计算并补全表格()x cm654 3.53 2.5210.50y cm00.55 1.2 1.58 2.473 4.29 5.08()②描点:根据表中数值,继续描出①中剩余的两个点(,)x y.③连线:在平面直角坐标系中,请用平滑的曲线画出该函数的图象.数学思考(3)请你结合函数的图象,写出该函数的两条性质或结论.22.(9分)(2019•江西)在图1,2,3中,已知ABCD ,120ABC ∠=︒,点E 为线段BC 上的动点,连接AE ,以AE 为边向上作菱形AEFG ,且120EAG ∠=︒.(1)如图1,当点E 与点B 重合时,CEF ∠= ︒; (2)如图2,连接AF .①填空:FAD ∠ EAB ∠(填“>”,“ < “,“=” ); ②求证:点F 在ABC ∠的平分线上;(3)如图3,连接EG ,DG ,并延长DG 交BA 的延长线于点H ,当四边形AEGH 是平行四边形时,求BCAB的值.六、(本大题共12分)23.(12分)(2019•江西)特例感知(1)如图1,对于抛物线211y x x =--+,2221y x x =--+,2331y x x =--+,下列结论正确的序号是 ;①抛物线1y ,2y ,3y 都经过点(0,1)C ;②抛物线2y ,3y 的对称轴由抛物线1y 的对称轴依次向左平移12个单位得到; ③抛物线1y ,2y ,3y 与直线1y =的交点中,相邻两点之间的距离相等. 形成概念(2)把满足21(n y x nx n =--+为正整数)的抛物线称为“系列平移抛物线”. 知识应用在(2)中,如图2.①“系列平移抛物线”的顶点依次为1P ,2P ,3P ,⋯,n P ,用含n 的代数式表示顶点n P 的坐标,并写出该顶点纵坐标y 与横坐标x 之间的关系式;②“系列平移抛物线”存在“系列整数点(横、纵坐标均为整数的点)”:1C ,2C ,3C ,⋯,n C ,其横坐标分别为1k --,2k --,3k --,⋯,(k n k --为正整数),判断相邻两点之间的距离是否都相等,若相等,直接写出相邻两点之间的距离;若不相等,说明理由. ③在②中,直线1y =分别交“系列平移抛物线”于点1A ,2A ,3A ,⋯,n A ,连接n n C A ,11n n C A --,判断n n C A ,11n n C A --是否平行?并说明理由.2019年江西省中考数学真题试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分每小题只有一个正确选项) 1.(3分)(2019•江西)2的相反数是( ) A .2B .2-C .12D .12-【解答】解:2的相反数为:2-. 故选:B .2.(3分)(2019•江西)计算211()a a÷-的结果为( ) A .aB .a -C .31a-D .31a【解答】解:原式21()a a a=-=-, 故选:B .3.(3分)(2019•江西)如图是手提水果篮抽象的几何体,以箭头所指的方向为主视图方向,则它的俯视图为( )A .B .C .D .【解答】解:它的俯视图为:故选:A .4.(3分)(2019•江西)根据《居民家庭亲子阅读消费调查报告》中的相关数据制成扇形统计图,由图可知,下列说法错误的是( )A .扇形统计图能反映各部分在总体中所占的百分比B .每天阅读30分钟以上的居民家庭孩子超过50%C .每天阅读1小时以上的居民家庭孩子占20%D .每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是108︒ 【解答】解:A .扇形统计图能反映各部分在总体中所占的百分比,此选项正确;B .每天阅读30分钟以上的居民家庭孩子的百分比为140%60%-=,超过50%,此选项正确;C .每天阅读1小时以上的居民家庭孩子占30%,此选项错误;D .每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是360(140%10%20%)108︒⨯---=︒,此选项正确;故选:C .5.(3分)(2019•江西)已知正比例函数1y 的图象与反比例函数2y 的图象相交于点(2,4)A ,下列说法正确的是( )A .反比例函数2y 的解析式是28y x=-B .两个函数图象的另一交点坐标为(2,4)-C .当2x <-或02x <<时,12y y <D .正比例函数1y 与反比例函数2y 都随x 的增大而增大【解答】解:正比例函数1y 的图象与反比例函数2y 的图象相交于点(2,4)A ,∴正比例函数12y x =,反比例函数28y x=∴两个函数图象的另一个角点为(2,4)--A ∴,B 选项错误正比例函数12y x =中,y 随x 的增大而增大,反比例函数28y x=中,在每个象限内y 随x的增大而减小,D ∴选项错误当2x <-或02x <<时,12y y <∴选项C 正确故选:C .6.(3分)(2019•江西)如图,由10根完全相同的小棒拼接而成,请你再添2根与前面完全相同的小棒,拼接后的图形恰好有3个菱形的方法共有( )A .3种B .4种C .5种D .6种【解答】解:共有6种拼接法,如图所示.故选:D .二、填空题(本大题共6小题,每小题3分,共18分) 7.(3分)(2019•江西)因式分解:21x -= (1)(1)x x +- . 【解答】解:原式(1)(1)x x =+-. 故答案为:(1)(1)x x +-.8.(3分)(2019•江西)我国古代数学名著《孙子算经》有估算方法:“方五,邪(通“斜” )七.见方求邪,七之,五而一.”译文为:如果正方形的边长为五,则它的对角线长为七.已知正方形的边长,求对角线长,则先将边长乘以七再除以五.若正方形的边长为1,由勾股定理得对角线长为2,依据《孙子算经》的方法,则它的对角线的长是 1.4 . 【解答】解:根据题意可得:正方形边长为1的对角线长171.45⨯== 故答案为:1.49.(3分)(2019•江西)设1x ,2x 是一元二次方程210x x --=的两根,则1212x x x x ++= 0 .【解答】解:1x 、2x 是方程210x x --=的两根, 121x x ∴+=,121x x ⨯=-,1212110x x x x ∴++=-=.故答案为:0.10.(3分)(2019•江西)如图,在ABC ∆中,点D 是BC 上的点,40BAD ABC ∠=∠=︒,将ABD ∆沿着AD 翻折得到AED ∆,则CDE ∠= 20 ︒.【解答】解:40BAD ABC ∠=∠=︒,将ABD ∆沿着AD 翻折得到AED ∆, 404080ADC ∴∠=︒+︒=︒,1804040100ADE ADB ∠=∠=︒-︒-︒=︒, 1008020CDE ∴∠=︒-︒=︒,故答案为:2011.(3分)(2019•江西)斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度.如图,某路口的斑马线路段A B C --横穿双向行驶车道,其中6AB BC ==米,在绿灯亮时,小明共用11秒通过AC ,其中通过BC 的速度是通过AB 速度的1.2倍,求小明通过AB 时的速度.设小明通过AB 时的速度是x 米/秒,根据题意列方程得:66111.2x x+= .【解答】解:设小明通过AB 时的速度是x 米/秒,可得:66111.2x x+=, 故答案为:66111.2x x+=, 12.(3分)(2019•江西)在平面直角坐标系中,A ,B ,C 三点的坐标分别为(4,0),(4,4),(0,4),点P 在x 轴上,点D 在直线AB 上,若1DA =,CP DP ⊥于点P ,则点P 的坐标为 (2,0)或(222-,0)或(222+,0) .【解答】解:A ,B 两点的坐标分别为(4,0),(4,4)//AB y ∴轴点D 在直线AB 上,1DA = 1(4,1)D ∴,2(4,1)D -如图:(Ⅰ)当点D 在1D 处时,要使CP DP ⊥,即使1COP ∆≅△11P AD∴111OPCO P AAD = 即441OPOP =- 解得:12OP = 1(2,0)P ∴(Ⅱ)当点D 在2D 处时,(0,4)C ,2(4,1)D - 2CD ∴的中点3(2,)2ECP DP ⊥∴点P 为以E 为圆心,CE 长为半径的圆与x 轴的交点设(,0)P x ,则PE CE =即222233(2)(0)2(4)22x -+-=+-解得:222x =±.2(222P ∴-,0),3(222P +,0).综上所述:点P 的坐标为(2,0)或(222-,0)或(222+,0). 三、(本大题共5小题,每小题6分,共30分)13.(6分)(2019•江西)(1)计算:0(1)|2|(20192)--+-+-;(2)如图,四边形ABCD 中,AB CD =,AD BC =,对角线AC ,BD 相交于点O ,且OA OD =.求证:四边形ABCD 是矩形.【解答】解:(1)0(1)|2|(20192)--+-+121=++ 4=;(2)证明:四边形ABCD 中,AB CD =,AD BC =,∴四边形ABCD 是平行四边形,2AC AO ∴=,2BD OD =, OA OD =, AC BD ∴=,∴四边形ABCD 是矩形.14.(6分)(2019•江西)解不等式组:2(1)7122x x x x +>⎧⎪⎨+-⎪⎩并在数轴上表示它的解集.【解答】解:()217122x x x x+>⎧⎪⎨+-⎪⎩①②,解①得:2x >-, 解②得:1x -,故不等式组的解为:21x -<, 在数轴上表示出不等式组的解集为:.15.(6分)(2019•江西)在ABC ∆中,AB AC =,点A 在以BC 为直径的半圆内.请仅用无刻度的直尺分别按下列要求画图(保留画图痕迹). (1)在图1中作弦EF ,使//EF BC ; (2)在图2中以BC 为边作一个45︒的圆周角.【解答】解:(1)如图1,EF 为所作; (2)如图2,BCD ∠为所作.16.(6分)(2019•江西)为纪念建国70周年,某校举行班级歌咏比赛,歌曲有:《我爱你,中国》,《歌唱祖国》,《我和我的祖国》(分别用字母A ,B ,C 依次表示这三首歌曲).比赛时,将A ,B ,C 这三个字母分别写在3张无差别不透明的卡片正面上,洗匀后正面向下放在桌面上,八(1)班班长先从中随机抽取一张卡片,放回后洗匀,再由八(2)班班长从中随机抽取一张卡片,进行歌咏比赛. (1)八(1)班抽中歌曲《我和我的祖国》的概率是13; (2)试用画树状图或列表的方法表示所有可能的结果,并求出八(1)班和八(2)班抽中不同歌曲的概率.【解答】解:(1)因为有A ,B ,3C 种等可能结果, 所以八(1)班抽中歌曲《我和我的祖国》的概率是13;故答案为13.(2)树状图如图所示:共有9种可能,八(1)班和八(2)班抽中不同歌曲的概率6293==. 17.(6分)(2019•江西)如图,在平面直角坐标系中,点A ,B 的坐标分别为3(2-,0),3(2,1),连接AB ,以AB 为边向上作等边三角形ABC . (1)求点C 的坐标;(2)求线段BC 所在直线的解析式.【解答】解:(1)如图,过点B 作BH x ⊥轴 点A 坐标为3(,0),点B 坐标为3(,1) 2233||(01)()222AB ∴=-+-- 1BH =1sin 2BH BAH AB ∴∠== 30BAH ∴∠=︒ABC ∆为等边三角形 2AB AC ∴== 90CAB BAH ∴∠+∠=︒∴点C 的纵坐标为2 ∴点C 的坐标为3(2-,2) (2)由(1)知点C 的坐标为3(2-,2),点B 的坐标为3(2,1),设直线BC 的解析式为:y kx b =+则312322k b k b ⎧=+⎪⎪⎨⎪=-+⎪⎩,解得3332k b ⎧=-⎪⎪⎨⎪=⎪⎩ 故直线BC 的函数解析式为3332y x =-+. 四、(本大题共3小题,每小题8分,共24分)18.(8分)(2019•江西)某校为了解七、八年级学生英语听力训练情况(七、八年级学生人数相同),某周从这两个年级学生中分别随机抽查了30名同学,调查了他们周一至周五的听力训练情况,根据调查情况得到如下统计图表: 周一至周五英语听力训练人数统计表 年级参加英语听力训练人数 周一 周二 周三 周四 周五七年级 15 20 a30 30 八年级 20 24 26 30 30 合计3544516060(1)填空:a = 25 ;(2)根据上述统计图表完成下表中的相关统计量:年级平均训练时间的中位数参加英语听力训练人数的方差七年级2434八年级14.4(3)请你利用上述统计图表对七、八年级英语听力训练情况写出两条合理的评价;(4)请你结合周一至周五英语听力训练人数统计表,估计该校七、八年级共480名学生中周一至周五平均每天有多少人进行英语听力训练.【解答】解:(1)由题意得:512625a=-=;故答案为:25;(2)按照从小到大的顺序排列为:18、25、27、30、30,∴八年级平均训练时间的中位数为:27;故答案为:27;(3)参加训练的学生人数超过一半;训练时间比较合理;(4)抽查的七、八年级共60名学生中,周一至周五训练人数的平均数为1++++=,(3544516060)505∴该校七、八年级共480名学生中周一至周五平均每天进行英语听力训练的人数为50⨯=(人).4804006019.(8分)(2019•江西)如图1,AB为半圆的直径,点O为圆心,AF为半圆的切线,过半圆上的点C作//CD AB交AF于点D,连接BC.(1)连接DO,若//BC OD,求证:CD是半圆的切线;(2)如图2,当线段CD与半圆交于点E时,连接AE,AC,判断AED∠和ACD∠的数量关系,并证明你的结论.【解答】(1)证明:连接OC,AF为半圆的切线,AB为半圆的直径,∴⊥,AB AD//BC OD,CD AB,//∴四边形BODC是平行四边形,∴=,OB CDOA OB=,∴=,CD OA∴四边形ADCO是平行四边形,OC AD∴,//CD BA,//∴⊥,CD ADOC AD,//∴⊥,OC CD∴是半圆的切线;CD(2)解:90∠+∠=︒,AED ACD理由:如图2,连接BE,AB为半圆的直径,∴∠=︒,90AEBEBA BAE∴∠+∠=︒,90∠+∠=︒,DAE BAE90∴∠+∠,ABE DAEACE ABE∠=∠,∴∠=∠,ACE DAE90∠=︒,ADE∴∠+∠=∠+∠=︒.90DAE AED AED ACD20.(8分)(2019•江西)图1是一台实物投影仪,图2是它的示意图,折线B A O--表示固定支架,AO垂直水平桌面OE于点O,点B为旋转点,BC可转动,当BC绕点B顺时针旋转时,投影探头CD始终垂直于水平桌面OE,经测量: 6.8CD cm=,=,8AO cmBC cm=.(结果精确到0.1).=,35AB cm30(1)如图2,70BC OE.∠=︒,//ABC①填空:BAO∠=160︒.②求投影探头的端点D到桌面OE的距离.(2)如图3,将(1)中的BC 向下旋转,当投影探头的端点D 到桌面OE 的距离为6cm 时,求ABC ∠的大小.(参考数据:sin700.94︒=,cos200.94︒=,sin36.80.60︒≈,cos53.20.60)︒≈【解答】解:(1)①过点A 作//AG BC ,如图1,则70BAG ABC ∠=∠=︒,//BC OE , //AG OE ∴,90GAO AOE ∴∠=∠=︒, 9070160BAO ∴∠=︒+︒=︒,故答案为:160;②过点A 作AF BC ⊥于点F ,如图2,则sin 30sin7028.2()AF AB ABE cm =∠=︒≈,∴投影探头的端点D 到桌面OE 的距离为:028.2 6.8827()AF A CD cm +-=+-=;(2)过点DE OE ⊥于点H ,过点B 作BM CD ⊥,与DC 延长线相交于点M ,过A 作AF BM ⊥于点F ,如图3,则70MBA ∠=︒,28.2AF cm =,6DH cm =,30BC cm =,8CD cm =, 28.2 6.86821()CM AF AO DH CD cm ∴=+--=+--=, 21sin 0.635CM MBC BC ∴∠===, 36.8MBC ∴∠=︒,33.2ABC ABM MBC ∴∠=∠-∠=︒.五、(本大题共2小题,每小题9分,共18分)21.(9分)(2019•江西)数学活动课上,张老师引导同学进行如下探究:如图1,将长为12cm 的铅笔AB 斜靠在垂直于水平桌面AE 的直尺FO 的边沿上,一端A 固定在桌面上,图2是示意图. 活动一:如图3,将铅笔AB 绕端点A 顺时针旋转,AB 与OF 交于点D ,当旋转至水平位置时,铅笔AB 的中点C 与点O 重合.数学思考:(1)设CD xcm =,点B 到OF 的距离GB ycm =.①用含x 的代数式表示:AD 的长是 (6)x + cm ,BD 的长是 cm ; ②y 与x 的函数关系式是 ,自变量x 的取值范围是 . 活动二:(2)①列表:根据(1)中所求函数关系式计算并补全表格()x cm654 3.53 2.5210.50 ()y cm00.55 1.2 1.58 2.473 4.29 5.08②描点:根据表中数值,继续描出①中剩余的两个点(,)x y.③连线:在平面直角坐标系中,请用平滑的曲线画出该函数的图象.数学思考:(3)请你结合函数的图象,写出该函数的两条性质或结论.【解答】解:(1)①如图3中,由题意16()2AC OA AB cm===,CD xcm=,(6)()AD x cm∴=+,12(6)(6)()BD x x cm=-+=-,故答案为:(6)x+,(6)x-.②作BG OF⊥于G.OA OF⊥,BG OF⊥,//BG OA∴,∴BG BD OA AD=,∴666y xx-=+,366(06)6xy x x-∴=+, 故答案为:3666xy x-=+,06x .(2)①当3x =时,2y =,当0x =时,6y =, 故答案为2,6.②点(0,6),点(3,2)如图所示. ③函数图象如图所示.(3)性质1:函数值y 的取值范围为06y . 性质2:函数图象在第一象限,y 随x 的增大而减小.22.(9分)(2019•江西)在图1,2,3中,已知ABCD ,120ABC ∠=︒,点E 为线段BC 上的动点,连接AE ,以AE 为边向上作菱形AEFG ,且120EAG ∠=︒.(1)如图1,当点E 与点B 重合时,CEF ∠= 60 ︒; (2)如图2,连接AF .①填空:FAD ∠ EAB ∠(填“>”,“ < “,“=” ); ②求证:点F 在ABC ∠的平分线上;(3)如图3,连接EG ,DG ,并延长DG 交BA 的延长线于点H ,当四边形AEGH 是平行四边形时,求BCAB的值.【解答】解:(1)四边形AEFG 是菱形, 18060AEF EAG ∴∠=︒-∠=︒, 60CEF AEC AEF ∴∠=∠-∠=︒,故答案为:60︒;(2)①四边形ABCD 是平行四边形, 18060DAB ABC ∴∠=︒-∠=︒,四边形AEFG 是菱形,120EAG ∠=︒, 60FAE ∴∠=︒,FAD EAB ∴∠=∠,故答案为:=;②作FM BC ⊥于M ,FN BA ⊥交BA 的延长线于N , 则90FNB FMB ∠=∠=︒, 60NFM ∴∠=︒,又60AFE ∠=︒, AFN EFM ∴∠=∠,EF EA =,60FAE ∠=︒, AEF ∴∆为等边三角形,FA FE ∴=,在AFN ∆和EFM ∆中, AFN EFM FNA FME FA FE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()AFN EFM AAS ∴∆≅∆,FN FM ∴=,又FM BC ⊥,FN BA ⊥,∴点F 在ABC ∠的平分线上;(3)四边形AEFG 是菱形,120EAG ∠=︒, 60AGF ∴∠=︒, 30FGE AGE ∴∠=∠=︒,四边形AEGH 为平行四边形, //GE AH ∴,30GAH AGE ∴∠=∠=︒,30H FGE ∠=∠=︒,90GAH ∴∠=︒,又30AGE ∠=︒, 2GH AH ∴=,60DAB ∠=︒,30H ∠=︒, 30ADH ∴∠=︒, AD AH GE ∴==,四边形ABEH 为平行四边形, BC AD ∴=, BC GE ∴=,四边形ABEH 为平行四边形,30HAE EAB ∠=∠=︒,∴平行四边形ABEH 为菱形,AB AH HE ∴==,3GE AB ∴=,∴3BCAB=. 六、(本大题共12分)23.(12分)(2019•江西)特例感知(1)如图1,对于抛物线211y x x =--+,2221y x x =--+,2331y x x =--+,下列结论正确的序号是 ①②③ ;①抛物线1y ,2y ,3y 都经过点(0,1)C ;②抛物线2y ,3y 的对称轴由抛物线1y 的对称轴依次向左平移12个单位得到; ③抛物线1y ,2y ,3y 与直线1y =的交点中,相邻两点之间的距离相等. 形成概念(2)把满足21(n y x nx n =--+为正整数)的抛物线称为“系列平移抛物线”. 知识应用在(2)中,如图2.①“系列平移抛物线”的顶点依次为1P ,2P ,3P ,⋯,n P ,用含n 的代数式表示顶点n P 的坐标,并写出该顶点纵坐标y 与横坐标x 之间的关系式;②“系列平移抛物线”存在“系列整数点(横、纵坐标均为整数的点)”:1C ,2C ,3C ,⋯,n C ,其横坐标分别为1k --,2k --,3k --,⋯,(k n k --为正整数),判断相邻两点之间的距离是否都相等,若相等,直接写出相邻两点之间的距离;若不相等,说明理由. ③在②中,直线1y =分别交“系列平移抛物线”于点1A ,2A ,3A ,⋯,n A ,连接n n C A ,11n n C A --,判断n n C A ,11n n C A --是否平行?并说明理由.【解答】解:(1)①当0x =时,分别代入抛物线1y ,2y ,3y ,即可得1231y y y ===;①正确;②2221y x x =--+,2331y x x =--+的对称轴分别为1x =-,32x =-,211y x x =--+的对称轴12x =-,由12x =-向左移动12得到1x =-,再向左移动12得到32x =-,②正确;③当1y =时,则211x x --+=, 0x ∴=或1x =-;2211x x --+=, 0x ∴=或2x =-;2311x x --+=, 0x ∴=或3x =-;∴相邻两点之间的距离都是1,③正确; 故答案为①②③;(2)①21n y x nx =--+的顶点为(2n-,24)4n +,令2nx =-,244n y +=,21y x ∴=+;②横坐标分别为1k --,2k --,3k --,⋯,(k n k --为正整数), 当x k n =--时,21y k nk =--+,∴纵坐标分别为21k k --+,221k k --+,231k k --+,⋯,21k nk --+,∴ ∴相邻两点之间的距离都相等;③当1y =时,211x nx --+=, 0x ∴=或x n =-,1(1,1)A ∴-,2(2,1)A -,3(3,1)A -,⋯,(,1)n A n -,21(1,1)C k k k ----+,22(2,21)C k k k ----+,23(3,31)C k k k ----+,⋯,2(,1)n C k n k nk ----+,211111k k k k --+-=+--+,2211122k k k k --+-=+--+,2311133k k k k --+-=+--+,⋯,2111k nk k k n n--+-=+--+,11//n n n n C A C A --∴;。
2019年江西省中考数学试卷(详解版)

12计算:3如图是手提水果篮抽象的几何体,以箭头所指的方向为主视图方向,则它的俯视图为(4根据《居民家庭亲子阅读消费调查报告》中的相关数据制成扇形统计图,由图可知,下列说法错B 选项:每天阅读分钟以上的居民家庭孩子的百分比为,超过,此选项正确.C 选项:每天阅读小时以上的居民家庭孩子占,此选项错误.D 选项:每天阅读分钟至小时的居民家庭孩子对应扇形的圆心角是,此选项正确.故选C.答案解析A.反比例函数的解析式是B.两个函数图象的另一交点坐标为C.当或时,D.正比例函数与反比例函数都随的增大而增大已知正比例函数的图象与反比例函数的图象相交于点,下列说法正确的是().5C∵正比例函数的图象与反比例函数的图象相交于点,∴正比例函数,反比例函数,∴两个函数图象的另一个角点为,∴,选项错误,∵正比例函数中,随的增大而增大,反比例函数中,在每个象限内随的增大而减小,∴选项错误,∵当或时,,∴选项正确.故选.如图,由根完全相同的小棒拼接而成,请你再添根与前面完全相同的小棒,拼接后的图形恰好有个菱形的方法共有().67因式分解:8我国古代数学名著《孙子算经》有估算方法:9设:10如图,在11斑马线前秒,可得:.12在平面直角坐标系中,三点的坐标分别为,,,点在轴上,点在直线的坐标为.13请回答下列各题:14解不等式组:15在16为纪念建国17如图,在平面直角坐标系中,点18某校为了解七、八年级学生英语听力训练情况(七、八年级学生人数相同),某周从这两个年级19如图20图,21数学活动课上,张老师引导同学进行如下探究:22在图23特例感知.,∴或,,∴或,∴相邻两点之间的距离都是,③正确,故答案为:①②③.的顶点为,令,,∴.1∵横坐标分别为,,,,(为正整数),当时,,∴纵坐标分别为,,,,,∴相邻两点间距离分别为,∴相邻两点之间的距离都相等.2当时,,∴或,∴,,,,,,,,,,∵,,,,,∴.3(2)。
2019年江西中考数学试题(解析版)

在图 1 中作弦 EF,使 EF {解析}本题考查了无刻度直尺作图.
{答案}解:(1)如图 1 所示,延长 BA、CA 分别交半圆于点 E、F,连接 EF,则 EF 就是所求
的
弦
,
F
EF {分值}6 {章节:[1-24-1-4]圆周角} {难度:3-中等难度} {类别:创新作图} {考点:圆周角定理}
{答案}B
{解析}本题考查了分式的除法运算, 根据分式除法法则先把除法转化为乘法,即
1
1
1 a2
a ,因此本题选 B.
a
a2
a
{分值}3 {章节:[1-15-2-1]分式的乘除} {考点:两个分式的乘除} {类别:常考题} {难度:2-最简单}
{题目}3. (2019 江西)如图是手提水果篮的几何体,以箭头所指方向为主视图方向,则它 的俯视图为( )
{ 题 目 }17. ( 2019 江 西 ) 如 图 , 在 平 面 直 角 坐 标 系 中 , 点 A 、 B 的 坐 标 分 别 为
(- 3 , 0),( 3 ,1),连接 AB,以 AB 为边向上作等边三角形 ABC.
,0)
{解析}本题考查了相似三角形的性质,设 P(m,0) 如图 1,∠CPD=90°,△OCP∽△PAD ∴
即: ∴m=2 ∴P(2,0) 如图 2,∠CPD=90°,△OCP∽△APD ∴
即:
∴m=
∴ P(
综上分析可知:P(2,0), P(
,0) P( ,0), P(
,0) ,0)
5
y
C
B
y
C
{答案}A
{解析}本题考查了三视图的知识,该几何体由手提部分和圆柱组成,俯视图的手提部 分为实线,圆柱部分为圆形, 因此本题选 A.
2019年江西省中考数学试卷(含答案与解析)

绝密★启用前江西省2019年中等学校招生考试数 学(本试卷满分120分,考试试卷120分)一、选择题(本大题6小题,每小题3分,共18分) 1.2的相反数是( ) A .2B .2-C .12D .21-2.计算211()a a÷-的结果是( ) A .aB .a -C .31a -D .31a 3.如图是手提水果篮抽象的几何体,以箭头所指的方向为主视图方向,则它的俯视图为( )ABCD4.根据《居民家庭亲子阅读消费调查报告》中的相关数据制成扇形统计图,由图可知,下列说法错误的是( )A .扇形统计图能反映各部分在总体所占的百分比B .每天阅读30分钟以上的居民家庭孩子超过50%C .每天阅读1小时以上的居民家庭孩子占20%D .每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是108°5.已知正比例函数1y 的图象与反比例函数2y 的图象相交于点A (2,4),下列说法正确的是( )A .反比例函数2y 的解析式是28y x=-B .两个函数图象的另一个交点坐标为24-(,)C .当2x -<或02x <<时,12y y <D .正比例函数1y 与反比例函数2y 都随x 的增大而增大 6.如图,由10根完全相同的小棒拼接而成,请你再添2根与前面完全相同的小棒,拼接后的图形恰好有3个菱形的方法有( ) A .3种 B .4种 C .5种D .6种二、填空题(本大题共6小题,每小题3分,共18分) 7.因式分解:21x -=________.8.我国古代数学名著《孙子算经》有估算方法:“方五,邪(通“斜”)七。
见方求邪,七之,五而一”。
译文:如果正方形的边长为5,则它的对角线长为7,已知正方形的边长,求对角线,则先将边长乘以7再除以5,若正方形的边长为1,由勾股定理,依据《孙子算经》的方法,则它的对角线的长是________.9.设1x ,2x 是一元二次方程210x x --=的两根,则1212x x x x ++=________.10.如图,在ABC △中,点D 是BC 上的点,40BAD ABC ∠=∠=︒,将ABD △沿着AD 翻折得到AED △,则CDE ∠=________°. 11.将斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度.如图,某路口的斑马线路段A B C --横穿双向车道,其中6AB BC ==米,在绿灯亮时,小明共用11秒通过AC ,其中通过BC 的速度是通过AB 速度的1.2倍,求小明通过AB 时的速度,设小明通过AB 的速度是x 米/秒,根据题意列方程得:___________________.12.在平面直角坐标系中,A ,B ,C 三点的坐标分别为(4,0),(4,4),(0,4),点P 在x 轴上,点D 在直线AB 上,若1DA CP DP =⊥,于点P ,则点P 的坐标为___________________.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无------------------------------------毕业学校_____________ 姓名________________ 考生号________________________________ _____________三、解答题(本大题共5小题,每小题6分,共30分)13.(1)计算:0)22019(|2|)1(-+-+--(2)如图,四边形ABCD 中,AB CD AD BC ==,,对角线AC ,BD 相交于O 点,且OA OD =,求证:四边形ABCD 是矩形.14.解不等式组:⎪⎩⎪⎨⎧+≥->+2721)1(2x x x x ,并在数轴上表示它的解集.15.在ABC △中,AB AC =,点A 在以BC 为直径的半圆内,请使用无刻度的直尺分别按下列要求画图(保留画图痕迹).(1)在图1中作弦EF ,使得EF BC ∥; (2)在图2中以BC 为边作一个45°的圆周角.16.为了纪念建国70周年,某校举行班级歌咏比赛,歌曲有:《我爱你,中国》,《歌唱祖国》,《我和我的祖国》(分别用字母A ,B ,C )依次表示这三首歌曲.比赛时,将A ,B ,C 这三个字母分别写在3张无差别不透明的卡片上,洗匀后正面朝下放在桌面上,八(1)班班长先从中随机抽取一张卡片,放回后洗匀,再由八(2)班班长从中随机抽取一张卡片,进行歌咏比赛.(1)八(1)班抽中歌曲《我和我的祖国》的概率是________.(2)试用画树状图或列表的方法表示所有可能的结果,并求出八(1)班和八(2)班抽中不同歌曲的概率.17.如图,在平面直角坐标系中,点A ,B的坐标分别为2⎛⎫ ⎪ ⎪⎝⎭,2⎛⎫⎪ ⎪⎝⎭,连接AB ,以AB 为边向上作等边三角形ABC . (1)求点C 的坐标;(2)求线段BC 所在直线的解析式.四、(本大题共3小题,每小题8分。
2019江西中考数学解析

2019年江西省中等学校招生考试数学(满分150分,考试时间120分钟)一、选择题:本大题共6小题,每小题3分,共18分.不需写出解答过程,请把最后结果填在题后括号内. 1.(2019江西省,1,3分)2的相反数是( ) A.2 B.-2 C.21 D.21- 【答案】B【解析】利用相反数的定义“a 的相反数是-a ”求值. 【知识点】相反数2.(2019江西省,2,3分)计算)1(12aa -÷的结果为( ) A.a B. -a C.31a - D.31a【答案】B 【解析】a a aa a -=-⋅=-÷)(1)1(122. 【知识点】分式的除法3.(2019江西省,3,3分)如图是手提水果篮抽象的几何体,以箭头所指的方向为主视图方向,则它的俯视图为( )【答案】A【解析】俯视图反映几何体的长和宽,通过观察几何体可以画出对应的视图. 【知识点】几何体的三视图4.(2019江西省,4,3分)根据《居民家庭亲子阅读消费调查报告)中的相关数据制成扇形统计图,由图可知,下列说法错误的是( )A.扇形统计图能反映各部分在总体中所占的百分比B.每天阅读30分钟以上的居民家庭孩子超过50%C.每天阅读1小时以上的居民家庭孩子占20%D.每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是108°【答案】C【解析】∵每天阅读1小时以上的居民家庭孩子占20%+10%=30%,∴C 错误. 【知识点】扇形统计图5.(2019江西省,5,3分)已知正比例函数1y 的图象与反比例函数2y 的图象相交于点A(2,4),下列说法正确的是( )A.反比例函数2y 的解析式是xy 82-= B.两个函数图象的另一交点坐标为(2,-4) C.当x <-2或0<x <2时,1y <2y D.正比例函数1y 与反比例函数2y 都随x 的增大而增大 【答案】C【解析】设正比例函数解析式为1y =ax ,反比例函数解析式为xb y =2, ∵正比例函数1y 的图象与反比例函数2y 的图象相交于点A(2,4), ∴2a=4,24b =,∴a=2,b=8,∴正比例函数解析式为1y =2x ,反比例函数解析式为xy 82=.故A 错误; 由⎪⎩⎪⎨⎧==x y xy 82得⎩⎨⎧==42y x 或⎩⎨⎧-=-=42y x ,∴两个函数图象的另一交点坐标为(-2,-4) ,故B 错误; 由函数图象可知:当x <-2时,1y <2y ;当0<x <2时,1y <2y .∴C 正确∵正比例函数1y 随x 的增大而增大;在每个象限内,反比例函数2y 都随x 的增大而减小.∴D 错误.【知识点】待定系数法求函数解析式、正比例函数图象及性质、反比例函数图象及性质、函数与方程组的关系、函数与不等式的关系 6.(2019江西省,6,3分)如图,由10根完全相同的小棒拼接而成,请你再添2根与前面完全相同的小棒,拼接后的图形恰好有3个菱形的方法共有( ) A.3种 B.4种 C.5种 D.6种【答案】B【思路分析】通过拼接实验确定答案.【解题过程】具体拼法有4种,如图所示:【知识点】菱形的性质与判定二、填空题:本大题共6小题,每小题3分,共18分.不需写出解答过程,请把最后结果填在题中横线上. 7.(2019江西省,7,3分)因式分解:12-x = . 【答案】(x+1)(x-1) 【解析】12-x =(x+1)(x-1)【知识点】平方差公式 8.(2019江西省,8,3分) 我国古代数学名著《孙子算经》有估算方法:“方五,邪(通“斜”)七.见方求邪,七之,五而一.”译文为:如果正方形的边长为五,则它的对角线长为七.已知正方形的边长,求对角线长,则先将边长乘以七再除以五.若正方形的边长为1,由勾股定理得对角线长为2,依据《孙子算经》的方法,则它的对角线的长是 . 【答案】57 【解析】根据阅读材料中的对角线求法“已知正方形的边长,求对角线长,则先将边长乘以七再除以五”可以得到答案为57. 【知识点】阅读分析题9.(2019江西省,9,3分)设1x ,2x 是一元二次方程012=--x x 的两根,则2121x x x x ++= . 【答案】0【解析】∵1x ,2x 是一元二次方程012=--x x 的两根, ∴=+21x x 1,=21x x -1, ∴2121x x x x ++=1+(-1)=0.【知识点】一元二次方程根与系数的关系 10.(2019江西省,10,3分)如图,在△ABC 中,点D 是BC 上的点,∠BAD =∠ABC =40°,将△ABD 沿着AD 翻折得到△AED ,则∠CDE= °.【答案】20【解析】∵∠BAD =∠ABC =40°,∴∠ADC=∠BAD+∠ABC=40°+40°=80°.∵将△ABD 沿着AD 翻折得到△AED ,∴∠ADE=∠ADB=180°-∠ADC=180°-80°=100°. ∴∠CDE=∠ADE-∠ADC=100°-80°=20°.【知识点】三角形外角的性质、邻补角的性质、轴对称的性质、角的和差计算11.(2019江西省,11,3分)斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度.如图,某路口的班马线路段A-B-C 横穿双向行驶车道,其中AB =BC =6米,在绿灯亮时,小明共用11秒通过AC ,其中通过BC 的速度是通过AB 速度的1.2倍,求小明通过AB 时的速度.设小明通过AB 时的速度是x 米/秒,根据题意列方程得: .【答案】112.166=+xx 【解析】设小明通过AB 时的速度是x 米/秒,则通过BC 的速度是通1.2x 米/秒,根据题意列方程得112.166=+xx . 【知识点】分式方程的应用 12.(2019江西省,12,3分)在平面直角坐标系中,A ,B ,C 三点的坐标分别为(4,0)、(4,4),(0,4),点P 在x 轴上,点D 在直线AB 上,若DA =1,CP ⊥DP 于点P ,则点P 的坐标为 . 【答案】(42322216+++,0)或(42322216+-+,0)【思路分析】首先根据DA=1,点D 在直线AB 上,确定点D 的位置有两种情况:(1)点D 在线段AB 上;(2)点D 在线段BA 的延长线上,然后再根据CP ⊥DP ,利用勾股定理列方程求点P 的坐标. 【解题过程】设点P 的坐标为(x ,0), (1)当点D 在线段AB 上时,如图所示:∵DA=1,∴点D 的坐标为(224-,22). ∴222)224()]224(4[-+--=CD 22)22(2416)22(+-+=2417-=, 222)22()]224([+--=x PD 222)22()224()224(2+-+--=x x 2417)28(2-+--=x x , 2224)4(+-=x PC 3282+-=x x .∵CP ⊥DP 于点P ,∴222CD PD PC =+,∴2417)28(2-+--x x 3282+-+x x 2417-=,即032)216(22=+--x x ,∵△=3224)]216([2⨯⨯---=2322-<0,∴原方程无解,即符合要求的点P 不存在.(2)当点D 在线段BA 的延长线上,如图所示:∵DA=1,∴点D 的坐标为(224+,22-). ∴222)]22(4[)]224(4[--++-=CD 22)224()22(++-=2417+=, 222)22()]224([-++-=x PD 222)22()224()224(2++++-=x x 2417)28(2+++-=x x , 2224)4(+-=x PC 3282+-=x x .∵CP ⊥DP 于点P ,∴222CD PD PC =+,∴2417)28(2+++-x x 3282+-+x x 2417+=,即032)216(22=++-x x ,∵△=3224)]216([2⨯⨯-+-=2322+>0,∴222322216⨯+±+=x 42322216+±+=, ∴点P 的坐标为(42322216+++,0)或(42322216+-+,0).【知识点】勾股定理、一元二次方程的解法、根的判别式三、解答题(本大题共5小题,每小题6分,满分30分,解答应写出文字说明、证明过程或演算步骤)13.(2019江西省,13,6分) (1)计算:0)22019(|2|)1(-+-+--;(2)如图,四边形ABCD 中,AB =CD ,AD =BC ,对角线AC 、BD 相交于点O ,且OA =OD. 求证:四边形ABCD 是矩形.【思路分析】(1)利用相反数、绝对值的定义、0指数次幂的求法进行计算求值;(2)先利用两组对边分别相等证明四边形是平行四边形,再利用对角线相等证明四边形是矩形.【解题过程】解:(1)0)22019(|2|)1(-+-+--=4.(2)∵AB =CD ,AD =BC ,∴四边形ABCD 是平行四边形,∴AC 、BD 互相平分,又∵OA =OD ,∴AC=BD ,∴四边形ABCD 是矩形.【知识点】相反数、绝对值、0指数次幂、平行四边形的判定和性质、矩形的判定14.(2019江西省,14,6分) 解.不等式组:⎪⎩⎪⎨⎧+≥-+2721)1(2x x x x >,并在数轴上表示它的解集.【思路分析】先分别解每一个不等式,再把解集表示在数轴上,最后确定不等式组的解集.【解题过程】解:⎪⎩⎪⎨⎧+≥-+②①>2721)1(2x x x x,解①得,x >-2,解②得,x ≤-1,∴不等式组的解集为:-2<x ≤-1. 在数轴上表示为:【知识点】一元一次不等式组的解法、在数轴上表示不等式组的解集 15.(2019江西省,15,6分)在△ABC 中,AB =AC ,点A 在以BC 为直径的半圆内,请仅用无刻度的直尺分别按下列要求画图(保留画图痕迹). (1)在图1中作弦EF ,使EF∥BC ;(2)在图2中以BC 为边作一个45°的圆周角.【思路分析】(1)延长BA 、CA ,分别交半圆于点D 、E ,连接DE.则DE ∥BC ;(2)延长BA 、CA ,分别交半圆于点F 、H ;延长BH 、CF 交于点P ;连接AP 交半圆于点M ;连接MB.则∴∠MBC 即为所求.【解题过程】解:(1)如图所示∴DE 即为所求. (2)如图所示∴∠MBC 即为所求.【知识点】尺规作图、圆周角定理及推论、等腰三角形的判定与性质、平行线的判定、等腰三角形的“三线合一”、中垂线的性质、等腰直角三角形的判定与性质16.(2019江西省,16,6分)为纪念建国70周年,某校举行班级歌咏比赛,歌曲有:《我爱你,中国》,《歌唱祖国》,《(我和我的祖国》(分别用字母A ,B ,C 依次表示这三首歌曲).比赛时,将A ,B ,C 这三个字母分别写在3张无差别不透明的卡片正面上,洗匀后正面向下放在桌面上,八(1)班班长先从中随机轴取一张卡片,放回后洗匀,再由八(2)班班长从中随机抽取一张卡片,进行歌比赛. (1)八(1)班抽中歌曲《我和我的祖国》的概率是 .(2)试用画树状图或列表的方法表示所有可能的结果,并求出八(1)班和八(2)班抽中不同歌曲的概率. 【思路分析】(1)利用简单枚举法求八(1)班抽中歌曲《我和我的祖国》的概率; (2)利用画树状图或列表的方法求八(1)班和八(2)班抽中不同歌曲的概率. 【解题过程】解:(1)∵总共有三种可能的抽取结果,抽中歌曲《我和我的祖国》的可能结果有一种, ∴八(1)班抽中歌曲《我和我的祖国》的概率是31. (2)画树状图如下:∵总共有9种可能的抽取结果,八(1)班和八(2)班抽中不同歌曲的结果有6种, ∴八(1)班抽中歌曲《我和我的祖国》的概率是3296=. 【知识点】17.(2019江西省,17,6分)如图,在平面直角坐标系中,点A 、B 的坐标分别为(23-,0),(23,1),连接AB ,以AB 为边向上作等边三角形ABC. (1)求点C 的坐标;(2)求线段BC 所在直线的解析式.【思路分析】(1)作BD ⊥x 轴于点D ,利用点A ,B 的坐标求出∠BAD=30°,AB=2,再利用等边△ABC 得到∠BAC=60°,AC=2,从而得到点C 的坐标;(2)使用待定系数法求线段BC 所在直线的解析式. 【解题过程】(1)如图所示,作BD ⊥x 轴于点D ,∵点A 、B 的坐标分别为(23-,0),(23,1), ∴AD=23)23(--=3,BD=1, ∴21)3(2222=+=+=BD AD AB ,3331tan ===∠AD BD BAD , ∴∠BAD=30°.∵△ABC 是等边三角形, ∴∠BAC=60°,AC=AB=2,∴∠CAD=∠BAD+∠BAC=30°+60°=90°, ∴点C 的坐标为(23-,2); (2)设线段BC 所在直线的解析式为y=kx+b , ∵点C 、B 的坐标分别为(23-,2),(23,1),∴⎪⎪⎩⎪⎪⎨⎧=+=+-123223b k b k ,解得⎪⎪⎩⎪⎪⎨⎧=-=2333b k , ∴线段BC 所在直线的解析式为:2333+-=x y . 【知识点】勾股定理、锐角三角函数、等边三角形的性质、待定系数法求一次函数解析式四、(本大题共3小题,每小题8分,共24分) 18.(2019江西省,18,8分)某校为了解七、八年级学生英语听力训练情况(七、八年级学生人数相同),某周从这两个年级学生中分别随机抽查了30名同学,调查了他们周一至周五的听力训练情况,根据调查情况得到如下统计图表:周一至周五英语听力训练人数统计表年级 参加英语听力训练人数周一 周二 周三 周四 周五 七年级 15 20 a 30 30 八年级 20 24 26 30 30 合计3544516060参加英语听力训练学生的平均调练时间折线统计图(1)填空:a = ;(2)根据上述统计图表完成下表中的相关统计量:年级 平均训练时间的中位数参加英语听力训练人数的方差七年级 2434八年级14.4(3)请你利用上述统计图表,对七、八年级英语听力训练情况写出两条合理的评价;(4)请你结合周一至周五英语听力训练人数统计表,估计该校七、八年级共480名学生中周一至周五平均每天有多少人进行英语听力训练. 【思路分析】(1)利用七、八年级参加英语听力训练的人数和求a ;(2)利用八年级参加英语听力训练的人数20、24、26、30、30求中位数; (3)利用统计图表确定合理的信息;(4)利用平均数的计算公式进行计算求值,进而得到答案. 【解题过程】解:(1)∵a+26=51,∴a=25. 答案:25(2)∵八年级参加英语听力训练的人数分别为:20、24、26、30、30, ∴中位数为26. 答案:26(3)答案不唯一.如:八年级周一至周五参加英语听力训练人数逐渐增加;七、八年级周四与周五参加英语听力训练人数相同;八年级级周一至周五参加英语听力训练人数比较稳定,等等.(4)∵七年级抽查的30名同学在周一至周五参加英语听力训练人数的平均数为:2453030252051=++++,八年级抽查的30名同学在周一至周五参加英语听力训练人数的平均数为:2653030262420=++++,∴由此估计该校七年级共480名学生中周一至周五平均每天有24人进行英语听力训练;八年级共480名学生中周一至周五平均每天有26人进行英语听力训练.【知识点】统计图表、平均数、中位数、方差、样本估计总体19.(2019江西省,19,8分)如图1,AB 为半圆的直径,点O 为圆心,AF 为半圆的切线,过半圆上的点C 作CD ∥AB 交AF 于点D ,连接BC.(1)连接DO ,若BC ∥OD ,求证:CD 是半圆的切线;(2)如图2,当线段CD 与半圆交于点E 时,连接AE ,AC ,判断∠AED 和∠ACD 的数量关系,并证明你的结论.【思路分析】(1)连接OC ,证明CD ⊥OC ,即可得到CD 是半圆的切线;(2)利用AF 为半圆的切线,得到∠EAD=∠ACD ,由CD ∥AB 可得∠AED=∠BAE ,进而得到∠AED 和∠ACD 互余. 【解题过程】(1)如图所示,连接OC ,∵CD ∥AB ,BC ∥OD ,∴四边形BODC 是平行四边形, ∴BC=OD ,∠CBO=∠DOA , 又∵BO=OA,∴△CBO ≌△DOA , ∴∠BOC=∠OAD.∵AF 为半圆的切线,CD ∥AB , ∴∠OCD=∠BOC=∠OAD=90°, ∴CD 是半圆的切线;(2)如图所示,连接BE ,∵AF 为半圆的切线,∴∠DAE+∠BAE=∠BAD=90°. ∵AB 是半圆O 的直径, ∴∠BEA=90°,∴∠ABE+∠BAE=90°. ∴∠EAD=∠ACD. ∵CD ∥AB∴∠AED=∠BAE,∴∠AED+∠ACD=∠BAE+∠EAD=∠BAD=90°.∴∠AED和∠ACD互余.【知识点】平行四边形的判定和性质、切线的判定和性质、平行线的性质、互余的判定和性质20.(2019江西省,20,8分)图1是一台实物投影仪,图2是它的示意图,折线B—A—O表示固定支架,AO 垂直水平桌面OE于点O,点B为旋转点,BC可转动,当BC绕点B顺时针旋转时,投影探头CD始终垂直于水平桌面OE,经测量:AO=6.8cm,CD=8cm,AB=30cm,BC=35cm.(结果精确到01)(1)如图2,∠ABC=70°,BC∥OE.①填空:∠BAO=°;②求投影探头的端点D到桌面OE的距离.(2)如图3,将(1)中的BC向下旋转,当投影探头的端点D到桌面OE的距离为6cm时,求∠ABC的大小.(参考数:sin70°≈0.94,cos20°≈0.94,sin36.8°≈0.60,cos53.2°≈0.60)【思路分析】(1)①延长OA交BC于点F,利用BC∥OE,OA⊥OE得∠BFA=90°,最后利用外角的性质求∠BAO 的度数;②求出OF的长度减去CD即可得到点D到桌面OE的距离.(2)作BH⊥CD于点H,利用OF求出CH的长度,并利用∠CBH的正弦值求出其度数,最后求出∠ABC的度数. 【解题过程】解:(1)①如图所示,延长OA交BC于点F,∵BC∥OE,OA⊥OE,∴∠BFA=∠AOE=90°,∴∠BAO=∠BFA+∠ABC=90°+70°=160°.答案:160②∵∠BFA=90°,∠ABC=70°,AB=30cm,sin70°≈0.94,∴AF=AB·sin70°≈30×0.94=28.2(cm).∵OA=6.8cm,∴OF=AF+OA=28.2+6.8=35(cm).又∵CD始终垂直于水平桌面OE,且CD=8cm,∴点D到桌面OE的距离为:OF-CD=35-8=27(cm).(2)如图所示,作BH⊥CD于点H,∵D到桌面OE的距离为6cm,H到桌面OE的距离为35cm,CD=8cm,∴CH=35-8-6=21(cm ), 又∵BC =35cm ,∠H=90°, ∴sin ∠CBH=6.0533521===BC CH , ∵sin36.8°≈0.60, ∴∠CBH=36.8°. 又∵∠ABH=70°,∴∠ABC=∠ABH-∠CBH=70°-36.8°=33.2°.【知识点】平行线的性质、三角形外角的性质、锐角三角函数、角的和差运算五、(本大题共2小题,每小题9分,共18分) 21.(2019江西省,21,9分)数学活动课上,张老师引导同学进行如下探究:如图1,将长为12cm 的铅笔AB 斜靠在垂直于水平桌面AE 的直尺FO 的边沿上,一端A 固定在桌面上,图2是示意图. 活动一如图3,将铅笔AB 绕端点A 顺时针旋转,AB 与OF 交于点D ,当旋转至水平位置时,铅笔AB 的中点C 与点O 重合.数学思考(1)设CD=xcm ,点B 到OF 的距离GB=ycm.①用含x 的代数式表示:AD 的长是 cm ,BD 的长是 cm ; ②y 与x 的函数关系式是 ,自变量x 的取值范围是 . 活动二(2)①列表:根据(1)中所求函数关系式计算并补全表格.x(cm) 6 5 4 3.5 3 2.5 2 1 0.5 0y(cm)0.551.21.582.4734.295.08②描点:根据表中的数值,继续描出①中剩余的两个点(x ,y ). ③连线:在平面直角坐标系中,请用平滑的曲线画出该函数的图象. 数学思考(3)请你结合函数的图象,写出该函数的两条性质或结论.【思路分析】(1)①由题意得OA=AC=BC=21AB=21×12=6(cm ),AD=6+x ,BD=6-x ; ②利用△BGD ∽△AOD 可以得到y 与x 的函数关系式及自变量x 的取值范围;(2)利用(1)中是函数解析式可以求出表格中所缺的数据,进而描出对应点,最后画出函数图象; (3)结合函数图象确定正确信息; 【解题过程】(1)①由题意得OA=AC=BC=21AB=21×12=6(cm ),AD=6+x ,BD=6-x , 答案:6+x ;6-x②由题意得AO ⊥CF ,BG ⊥AF , ∴AO ∥BG ,∴△BGD ∽△AOD , ∴AD BDAO BG =. ∵BG=y ,AO=6,BD=6-x ,AD=6+x , ∴xxy +-=666 ∴y 与x 的函数关系式为xxy +-=6636, 由题意得自变量x 的取值范围0≤x ≤6.答案:xxy +-=6636;0≤x ≤6. (2)当x=3时,x x y +-=6636363636+⨯-=2918==,当x=0时,x x y +-=66366060636=+⨯-=,∴并补全表格如下:x(cm) 6 54 3.5 3 2.5 2 1 0.5 0 y(cm)0.551.21.5822.4734.295.086描点,画函数图象如下:(3)答案不唯一.结合函数图象可知:函数图象与x 轴交于点(6,0);函数图象与y 轴交于点(0,6);y 随x 的增大而减小;等等.【知识点】平行线的判定、相似三角形的判定和性质、函数值的计算、函数图象的画法、函数图象的性质22.(2019江西省,22,9分)在图1,2,3中,已知:□ABCD ,∠ABC=120°,点E 为线段BC 上的动点,连接AE ,以AE 为边向上作菱形AEFG ,且∠EAG=120°.(1)如图1,当点E 与点B 重合时,∠CEF= °;(2)如图2,连接AF.①填空:∠FAD ∠EAB(填>”,"<”,“=”); ②求证:点F 在∠ABC 的平分线上;(3)如图3,连接EG ,DG ,并延长DG 交BA 的延长线于点H ,当四边形AEGH 是平行四边形时,求ABBC的值. 【思路分析】(1)利用已知角的度数和菱形的性质求∠CEF 的度数;(2)①利用已知角的度数和菱形的性质得到∠EAF=∠BAD=60°,进而证明∠FAD=∠EAB ;②连接BE ,以BE 为边向下作等边△BEP ,通过证明△BEF ≌△PEA 得到∠EBF=∠P=60°,再由∠ABC=120°可以证明点F 在∠ABC 的平分线上;(3)由四边形AEGH 是平行四边形,四边形AEFG 是菱形,可得GH=AE=AG=DF=FE.由∠EAG=120°,可得∠H=∠HAG=∠AGE=∠FGE=∠AEG=∠FEG=∠BAE=∠DAE=∠ADE=∠AEB=30°,进而得到DF=FG=GH=AE ,AB=BE.最后利用△ABE ∽△HAD 得到ABBC的值. 【解题过程】解:(1)当点E 与点B 重合时, ∵四边形AEFG 是菱形,∴∠ABE=∠AEF=180°-∠EAG=180°-120°=60°, ∵∠ABC=120°,∴∠CEF=∠ABC-∠ABE=120°-60°=60°. 答案:60;(2)①∵□ABCD 中∠ABC=120°,∴∠BAD=180°-∠ABC=180°-120°=60°. ∵菱形AEFG 中∠EAG=120°,∴∠EAF=21∠EAG=21×120°=60°. ∴∠FAD=∠EAB.答案:=②如图所示,连接BE ,以BE 为边向下作等边△BEP ,则BE=PE ,∠BEP=∠AEF=∠P=60°,AE=FE , ∴△BEF ≌△PEA , ∴∠EBF=∠P=60°, 又∵∠ABC=120°, ∴∠EBF=21∠ABC , ∴点F 在∠ABC 的平分线上.(3)∵四边形AEGH 是平行四边形,四边形AEFG 是菱形,∴GH=AE=AG=DF=FE.∵∠EAG=120°,∴∠H=∠HAG=∠AGE=∠FGE=∠AEG=∠FEG=∠BAE=∠DAE=∠ADE=∠AEB=30°. ∴DF=FG=GH=AE ,AB=BE. ∵AE ∥GH ,∴△ABE ∽△HAD , ∴33====AEAEAE DH BE AD AB BC . 【知识点】菱形的性质、平行四边形的性质、全等三角形的判定和性质、角的和差计算、角平分线的定义、等腰三角形的判定和性质、相似三角形的判定和性质六、(本大题共12分)23.(2019江西省,23,12分)特例感知(1)如图1,对于抛物线121+--=x x y ,1222+--=x x y ,1323+--=x x y 下列结论正确的序号是 ;①抛物线1y ,2y ,3y 都经过点C(0,1);②抛物线2y ,3y 的对称轴由抛物线1y 的对称轴依次向左平移21个单位得到; ③抛物线1y ,2y ,3y 与直线y=1的交点中,相邻两点之间的距离相等. 形成概念(2)把满足12+--=nx x y n (n 为正整数)的抛物线称为“系列平移抛物线”.知识应用在(2)中,如图2.①“系列平移抛物线”的顶点依次为1P ,2P ,3P ,…,n P ,用含n 的代数式表示顶点n P 的坐标,并写出该顶点纵坐标y 与横坐标x 之间的关系式;②“系列平移抛物线”存在“系列整数点(横、纵坐标均为整数的点)”:1C ,2C ,3C ,…,n C ,其横坐标分别为-k-1,-k-2,-k-3,…,-k-n(k 为正整数),判断相邻两点之间的距离是否都相等,若相等,直接写出相邻两点之间的距离;若不相等,说明理由;③在②中,直线y=1分别交“系列平移抛物线”于点1A ,2A ,3A ,…,n A ,连接n n A C ,11--n n A C ,判断n n A C ,11--n n A C 是否平行?并说明理由.【思路分析】(1)分别计算抛物线121+--=x x y ,1222+--=x x y ,1323+--=x x y 与y 轴的交点坐标、对称轴坐标、与直线y=1的另一个交点的横坐标,进而判定三种说法的正确性;(2)①利用顶点的坐标公式求出各条抛物线的顶点坐标,并确定顶点坐标与序号n 的关系式; ②将已知横坐标代入抛物线的解析式可以求出系列整点的纵坐标,进而求出相邻两点的距离;③将y=1代入系列平移抛物线的解析式,求出点1A ,2A ,3A ,…,n A 的坐标,进而判定n n A C ,11--n n A C 是否平行.【解题过程】解:(1)对于抛物线121+--=x x y ,1222+--=x x y ,1323+--=x x y 来说,∵抛物线1y ,2y ,3y 都经过点C(0,1),∴①正确; ∵抛物线1y ,2y ,3y 的对称轴分别为:21)1(211-=-⨯--=x ,1)1(222-=-⨯--=x ,23)1(233-=-⨯--=x 的∴抛物线2y ,3y 的对称轴由抛物线1y 的对称轴依次向左平移21个单位得到,∴②正确; ∵抛物线1y ,2y ,3y 与直线y=1的另一个交点的横坐标分别为:-1、-2、-3, ∴抛物线1y ,2y ,3y 与直线y=1的交点中,相邻两点之间的距离相等.∴③正确. 答案:①②③(2)①由12+--=nx x y n 可知,顶点坐标为n P (2n -,442+n ),∴该顶点纵坐标y 与横坐标x 之间的关系式为144)2(44222+=+-=+=x x n y ; ②当横坐标分别为-k-1,-k-2,-k-3,…,-k-n(k 为正整数),对应的纵坐标为:12+--k k ,122+--k k ,132+--k k ,…,12+--nk k ,∴1C 2C 2222)]12()1[()]2()1[(+---+--+-----=k k k k k k2222)121()21(-+++--+++--=k k k k k k21k +=,2C 3C 2222)]13()12[()]3()2[(+---+--+-----=k k k k k k2222)1312()32(-+++--+++--=k k k k k k21k +=,…,1-n C n C 2222)}1(]1)1({[)}()]1({[+---+---+------=nk k k n k n k n k2222]11)1([)1(-+++---++++--=nk k k n k n k n k21k +=,∴相邻两点的距离相等,且距离为:21k +.③将y=1代入12+--=nx x y n 可得112=+--nx x ,∴x=-n (0舍去),∴点1A (-1,1),2A (-2,1),3A (-3,1),…,n A (-n ,1).∵当横坐标分别为-k-1,-k-2,-k-3,…,-k-n(k 为正整数),对应的纵坐标为:12+--k k ,122+--k k ,132+--k k ,…,12+--nk k ,∴点1C (-k-1,12+--k k ),2C (-k-2,122+--k k ),3C (-k-3,132+--k k ),…,n C (-k-n ,12+--nk k ). 设n n A C ,11--n n A C 的解析式分别为:y=px+q ,y=mx+n , 则⎩⎨⎧+--=+--=+-1)(12nk k q p n k q np ,⎩⎨⎧+---=+---=+--1)1()]1([1)1(2k n k n m n k n m n ,解得p=k+n ,m=k+n-1, ∴p ≠m∴n n A C ,11--n n A C 不平行.【知识点】二次函数与其它直线(或坐标轴)的交点坐标计算、对称轴坐标的计算、顶点的坐标公式、勾股定理、待定系数法求一次函数解析式、一次函数图象的平行关系、两点之间的距离计算公式。
2019年江西省中考数学解析(含答案解析)
2小时以上30分钟至1小时20%1至2小时10%30分钟以下 40%2019年江西中考数学解析一、选择题(本大题6分,每小题3分,共18分,每小题只有一个正确选项) 1. 2的相反数是 ( B )A. 2B.-2C.12D.12-【考点】:相反数的定义 【解析】:只有符号不同的两个数叫做互为相反数 【答案】:B 2.计算的结果为 (B )A.aB. -aC.21a -D.21a【考点】:分式的计算 【答案】B3.如图是手提水果篮的几何体,以箭头所指方向为主视图方向,则它的俯视图为(A )考点:三视图解析:该几何体由手提部分和圆柱组成,俯视图的手提部分为实线,圆柱部分为圆形,故选A ,该题以我们生活中的提桶为原型,体现了生活中处处有数学。
4.根据《居民家庭亲子阅读消费调查报告》中的相关数据制成扇形统计图,由图可知,下列说法错误的是( C )A.扇形统计图能反映各部分在总体中所占的百分比B.每天阅读30分钟以上的居民家庭孩子超过50%C.每天阅读1小时以上的居民家庭孩子占20%D.每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是108° 考点:统计图中的扇形统计图解析:本题是七年级上册第六章第四节《统计图的选择》的内容,根据《居民家庭亲子阅读消费调查报告》中的相关数据制成扇形统计图,体现亲子阅读的重要性,灌输阅读要从娃娃抓起的思想.选项分别从扇形统计图的的特点、不同阅读时间所占百分比、通过扇形所占百分比来求扇形圆心角的度数.学生得分率会很高.5.已知正比例函数1y 的图象与反比例函数2y 的图象相交于点(2,4)A ,下列说法正确的是( C )A.反比例函数2y 的解析式是28y x =-B.两个函数图象的另一交点坐标为(2,4)-C.当2x <-或02x <<时,12y y < D.正比例函数1y 与反比例函数2y 都随x 的增大而增大【解析】CA.反比例函数2y 的解析式是28y x =,故A 选项错误B.根据对称性可知,两个函数图象的另一交点坐标为(2,4)--,故B 选项错误C.当2x <-或02x <<时,12y y <,故C 选项正确D.正比例函数1y 随x 的增大而增大,反比例函数2y 在每一个象限内随x 的增大而减小,故D 选项错误6.如图,由10根完全相同的小棒拼接而成,请你再添2根与前面完全相同的小棒,拼接后的图形恰好有3个菱形的方法共有( D )A. 3种B. 4种C. 5种D. 6种【解析】D共有如下6种拼接方法:二、填空题(本大题6分,每小题3分,共18分)③②①⑥⑤④7.因式分解:21x -= (1)(1)x x +- .【答案】(1)(1)x x +- 【考点】因式分解【解析】直接使用平方差公式即可得到结果为:(1)(1)x x +-8.我国古代数学名著《孙子算经》有估算方法:“方五,邪(通“斜”)七。
2019年江西省中考数学试题 解析版
2小时以上30分钟至1小时20%1至2小时10%30分钟以下 40%2019年江西省中考数学试题(解析版)一、选择题(本大题6分,每小题3分,共18分,每小题只有一个正确选项) 1. 2的相反数是 ( B )A. 2B.-2C.12D.12-【考点】:相反数的定义 【解析】:只有符号不同的两个数叫做互为相反数 【答案】:B 2.计算的结果为 (B )A.aB. -aC.21a -D.21a【考点】:分式的计算 【答案】B3.如图是手提水果篮的几何体,以箭头所指方向为主视图方向,则它的俯视图为(A )考点:三视图解析:该几何体由手提部分和圆柱组成,俯视图的手提部分为实线,圆柱部分为圆形,故选A ,该题以我们生活中的提桶为原型,体现了生活中处处有数学。
4.根据《居民家庭亲子阅读消费调查报告》中的相关数据制成扇形统计图,由图可知,下列说法错误的是( C ) A.扇形统计图能反映各部分在总体中所占的百分比B.每天阅读30分钟以上的居民家庭孩子超过50%C.每天阅读1小时以上的居民家庭孩子占20%D.每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是108° 考点:统计图中的扇形统计图解析:本题是七年级上册第六章第四节《统计图的选择》的内容,根据《居民家庭亲子阅读消费调查报告》中的相关数据制成扇形统计图,体现亲子阅读的重要性,灌输阅读要从娃娃抓起的思想.选项分别从扇形统计图的的特点、不同阅读时间所占百分比、通过扇形所占百分比来求扇形圆心角的度数.学生得分率会很高.5.已知正比例函数1y 的图象与反比例函数2y 的图象相交于点(2,4)A ,下列说法正确的是( C )A.反比例函数2y 的解析式是28y x =-B.两个函数图象的另一交点坐标为(2,4)-C.当2x <-或02x <<时,12y y < D.正比例函数1y 与反比例函数2y 都随x 的增大而增大【解析】CA.反比例函数2y 的解析式是28y x =,故A 选项错误B.根据对称性可知,两个函数图象的另一交点坐标为(2,4)--,故B 选项错误C.当2x <-或02x <<时,12y y <,故C 选项正确D.正比例函数1y 随x 的增大而增大,反比例函数2y 在每一个象限内随x 的增大而减小,故D 选项错误6.如图,由10根完全相同的小棒拼接而成,请你再添2根与前面完全相同的小棒,拼接后的图形恰好有3个菱形的方法共有( D )A. 3种B. 4种C. 5种D. 6种【解析】D共有如下6种拼接方法:③②①⑥⑤④二、填空题(本大题6分,每小题3分,共18分)7.因式分解:21x -= (1)(1)x x +- .【答案】(1)(1)x x +-【考点】因式分解【解析】直接使用平方差公式即可得到结果为:(1)(1)x x +-8.我国古代数学名著《孙子算经》有估算方法:“方五,邪(通“斜”)七。
2019年江西省中考数学试卷含答案
绝密★启用前江西省2019年中等学校招生考试数学(本试卷满分120分,考试试卷120分)一、选择题(本大题6小题,每小题3分,共18分)1.2的相反数是()A .2B .2-C.12D .21-2.计算211()a a÷-的结果是()A .aB .a-C .31a -D .31a 3.如图是手提水果篮抽象的几何体,以箭头所指的方向为主视图方向,则它的俯视图为()ABCD4.根据《居民家庭亲子阅读消费调查报告》中的相关数据制成扇形统计图,由图可知,下列说法错误的是()A .扇形统计图能反映各部分在总体所占的百分比B .每天阅读30分钟以上的居民家庭孩子超过50%C .每天阅读1小时以上的居民家庭孩子占20%D .每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是108°5.已知正比例函数1y 的图象与反比例函数2y 的图象相交于点A (2,4),下列说法正确的是()A .反比例函数2y 的解析式是28y x=-B .两个函数图象的另一个交点坐标为24-(,)C .当2x -<或02x <<时,12y y <D .正比例函数1y 与反比例函数2y 都随x 的增大而增大6.如图,由10根完全相同的小棒拼接而成,请你再添2根与前面完全相同的小棒,拼接后的图形恰好有3个菱形的方法有()A .3种B .4种C .5种D .6种二、填空题(本大题共6小题,每小题3分,共18分)7.因式分解:21x -=________.8.我国古代数学名著《孙子算经》有估算方法:“方五,邪(通“斜”)七。
见方求邪,七之,五而一”。
译文:如果正方形的边长为5,则它的对角线长为7,已知正方形的边长,求对角线,则先将边长乘以7再除以5,若正方形的边长为1,由勾股定理得对角线为2,依据《孙子算经》的方法,则它的对角线的长是________.9.设1x ,2x 是一元二次方程210x x --=的两根,则1212x x x x ++=________.10.如图,在ABC △中,点D 是BC 上的点,40BAD ABC ∠=∠=︒,将ABD △沿着AD 翻折得到AED △,则CDE ∠=________°.11.将斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度.如图,某路口的斑马线路段A B C --横穿双向车道,其中6AB BC ==米,在绿灯亮时,小明共用11秒通过AC ,其中通过BC 的速度是通过AB 速度的1.2倍,求小明通过AB 时的速度,设小明通过AB 的速度是x 米/秒,根据题意列方程得:___________________.12.在平面直角坐标系中,A ,B ,C 三点的坐标分别为(4,0),(4,4),(0,4),点P在x 轴上,点D 在直线AB 上,若1DA CP DP =⊥,于点P ,则点P 的坐标为___________________.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无------------------------------------毕业学校_____________姓名________________考生号_____________________________________________三、解答题(本大题共5小题,每小题6分,共30分)13.(1)计算:)22019(|2|)1(-+-+--(2)如图,四边形ABCD 中,AB CD AD BC ==,,对角线AC ,BD 相交于O 点,且OA OD =,求证:四边形ABCD是矩形.14.解不等式组:⎪⎩⎪⎨⎧+≥->+2721)1(2x x x x,并在数轴上表示它的解集.15.在ABC △中,AB AC =,点A 在以BC 为直径的半圆内,请使用无刻度的直尺分别按下列要求画图(保留画图痕迹).(1)在图1中作弦EF ,使得EF BC ∥;(2)在图2中以BC 为边作一个45°的圆周角.16.为了纪念建国70周年,某校举行班级歌咏比赛,歌曲有:《我爱你,中国》,《歌唱祖国》,《我和我的祖国》(分别用字母A ,B ,C )依次表示这三首歌曲.比赛时,将A ,B ,C 这三个字母分别写在3张无差别不透明的卡片上,洗匀后正面朝下放在桌面上,八(1)班班长先从中随机抽取一张卡片,放回后洗匀,再由八(2)班班长从中随机抽取一张卡片,进行歌咏比赛.(1)八(1)班抽中歌曲《我和我的祖国》的概率是________.(2)试用画树状图或列表的方法表示所有可能的结果,并求出八(1)班和八(2)班抽中不同歌曲的概率.17.如图,在平面直角坐标系中,点A ,B的坐标分别为2⎛⎫- ⎪ ⎪⎝⎭,2⎛⎫⎪ ⎪⎝⎭,连接AB ,以AB 为边向上作等边三角形ABC .(1)求点C 的坐标;(2)求线段BC所在直线的解析式.四、(本大题共3小题,每小题8分。
2019年江西中考数学试题含详解
江西省2019年中等学校招生考试数学试题卷{题型:1-选择题}一、选择题(本大题6分,每小题3分,共18分,每小题只有一个正确选项){题目}1.(2019江西) 2的相反数是 ( ) A. 2B.-2C.12D.12-{答案}B{}本题考查了相反数的定义,只有符号不同的两个数叫做互为相反数, 因此本题选B . {分值}3{章节:[1-1-2-3]相反数} {考点:相反数的定义} {类别:常考题} {难度:1-最简单}{题目}2. (2019江西)计算211aa 骣÷ç?÷ç÷ç桫的结果为 ( ) A.aB. -aC.21a -D.21a {答案}B{}本题考查了分式的除法运算, 根据分式除法法则先把除法转化为乘法,即22111a a aa a骣÷ç?=-?-÷ç÷ç桫,因此本题选B .{分值}3{章节:[1-15-2-1]分式的乘除} {考点:两个分式的乘除} {类别:常考题} {难度:2-最简单}{题目}3. (2019江西)如图是手提水果篮的几何体,以箭头所指方向为主视图方向,则它的俯视图为( ){答案}A{}本题考查了三视图的知识,该几何体由手提部分和圆柱组成,俯视图的手提部分为实线,圆柱部分为圆形, 因此本题选A .{分值}3{章节:[1-29-2]三视图}{考点:简单组合体的三视图} {类别:高度原创} {难度:1-最简单}{题目}4.(2019江西)根据《居民家庭亲子阅读消费调查报告》中的相关数据制成扇形统计图,由图可知,下列说法错误的是( ) A.扇形统计图能反映各部分在总体中所占的百分比 B.每天阅读30分钟以上的居民家庭孩子超过50% C.每天阅读1小时以上的居民家庭孩子占20%D.每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是108°{答案}C{}本题考查了扇形统计图,根据扇形统计图可知:每天阅读1小时以上的居民家庭孩子占30%,所以选项C 的说法是错误的, 因此本题选C . {分值}3{章节:[1-10-1]统计调查} {考点:扇形统计图} {类别:常考题} {难度:2-最简单}{题目}5. (2019江西)已知正比例函数1y 的图象与反比例函数2y 的图象相交于点(2,4)A ,下列说法正确的是( ) A.反比例函数2y 的式是28y x=- B.两个函数图象的另一交点坐标为(2,4)-C.当2x <-或02x <<时,12y y <D.正比例函数1y 与反比例函数2y 都随x 的增大而增大{答案}C{}本题考查了反比例函数和正比例函数,A.反比例函数2y 的式是28y x=,故A 选项错误;B.根据对称性可知,两个函数图象的另一交点坐标为(2,4)--,故B 选项错误;C.当2x <-或02x <<时,12yy <,故C 选项正确;D.正比例函数1y 随x 的增大而增大,反比例函数2y 在每一个象限内随x 的增大而减小,故D 选项错误,因此本题选C . {分值}3{章节:[1-26-1]反比例函数的图像和性质} {考点:反比例函数与一次函数的综合} {类别:易错题}2小时以上30分钟至1小时20%1至2小时10%30分钟以下 40%{难度:3-中等难度}{题目}6. (2019江西)如图,由10根完全相同的小棒拼接而成,请你再添2根与前面完全相同的小棒,拼接后的图形恰好有3个菱形的方法共有( ) A.3种 B. 4种 C. 5种 D. 6种{答案}D{}本题考查了菱形性质与判定,共有如下6种拼接方法:因此本题选D . {分值}3{章节:[1-18-2-2]菱形} {考点:菱形的判定} {考点:几何选择压轴} {类别:高度原创} {难度:4-较高难度}{题型:2-填空题}二、填空题(本大题6分,每小题3分,共18分){题目}7. (2019江西)因式分解:21x - . {答案}(1)(1)x x +-③②①⑥⑤④{}本题考查了整式的因式分解,直接使用平方差公式即可得到结果为:(1)(1)x x +-,因此本题答案为(1)(1)x x +-. {分值}3{章节:[1-14-3]因式分解} {考点:因式分解-平方差} {类别:常考题} {难度:2-简单}{题目}8. (2019江西)我国古代数学名著《孙子算经》有估算方法:“方五,邪(通“斜”)七。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江西省2019年中等学校招生考试数 学(本试卷满分120分,考试试卷120分)一、选择题(本大题6小题,每小题3分,共18分) 1.2的相反数是( )A.2B.2-C.12D.21-2.计算211()a a÷-的结果是( ) A.aB.a -C.31a -D.31a 3.如图是手提水果篮抽象的几何体,以箭头所指的方向为主视图方向,则它的俯视图为( )ABCD4.根据《居民家庭亲子阅读消费调查报告》中的相关数据制成扇形统计图,由图可知,下列说法错误的是( )A.扇形统计图能反映各部分在总体所占的百分比B.每天阅读30分钟以上的居民家庭孩子超过50%C.每天阅读1小时以上的居民家庭孩子占20%D.每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是108°5.已知正比例函数1y 的图象与反比例函数2y 的图象相交于点A (2,4),下列说法正确的是( )A.反比例函数2y 的解析式是28y x=-B.两个函数图象的另一个交点坐标为24-(,)C.当2x -<或02x <<时,12y y <D.正比例函数1y 与反比例函数2y 都随x 的增大而增大 6.如图,由10根完全相同的小棒拼接而成,请你再添2根与前面完全相同的小棒,拼接后的图形恰好有3个菱形的方法有( ) A.3种 B.4种 C.5种D.6种二、填空题(本大题共6小题,每小题3分,共18分) 7.因式分解:21x -=________.8.我国古代数学名著《孙子算经》有估算方法:“方五,邪(通“斜”)七。
见方求邪,七之,五而一”。
译文:如果正方形的边长为5,则它的对角线长为7,已知正方形的边长,求对角线,则先将边长乘以7再除以5,若正方形的边长为1,由勾股定理得对角线为2,依据《孙子算经》的方法,则它的对角线的长是________.9.设1x ,2x 是一元二次方程210x x --=的两根,则1212x x x x ++=________. 10.如图,在ABC △中,点D 是BC 上的点,40BAD ABC ∠=∠=︒,将ABD △沿着AD 翻折得到AED △,则CDE ∠=________°.11.将斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度.如图,某路口的斑马线路段A B C --横穿双向车道,其中6AB BC ==米,在绿灯亮时,小明共用11秒通过AC ,其中通过BC 的速度是通过AB 速度的1.2倍,求小明通过AB 时的速度,设小明通过AB 的速度是x 米/秒,根据题意列方程得:___________________.12.在平面直角坐标系中,A ,B ,C 三点的坐标分别为(4,0),(4,4),(0,4),点P 在x 轴上,点D 在直线AB 上,若1DA CP DP =⊥,于点P ,则点P 的坐标为___________________.三、解答题(本大题共5小题,每小题6分,共30分)13.(1)计算:0)22019(|2|)1(-+-+--毕业学校_____________ 姓名________________ 考生号________________________________ _____________(2)如图,四边形ABCD 中,AB CD AD BC ==,,对角线AC ,BD 相交于O 点,且OA OD =,求证:四边形ABCD 是矩形.14.解不等式组:⎪⎩⎪⎨⎧+≥->+2721)1(2x x x x ,并在数轴上表示它的解集.15.在ABC △中,AB AC =,点A 在以BC 为直径的半圆内,请使用无刻度的直尺分别按下列要求画图(保留画图痕迹).(1)在图1中作弦EF ,使得EF BC ∥; (2)在图2中以BC 为边作一个45°的圆周角.16.为了纪念建国70周年,某校举行班级歌咏比赛,歌曲有:《我爱你,中国》,《歌唱祖国》,《我和我的祖国》(分别用字母A ,B ,C )依次表示这三首歌曲.比赛时,将A ,B ,C 这三个字母分别写在3张无差别不透明的卡片上,洗匀后正面朝下放在桌面上,八(1)班班长先从中随机抽取一张卡片,放回后洗匀,再由八(2)班班长从中随机抽取一张卡片,进行歌咏比赛.(1)八(1)班抽中歌曲《我和我的祖国》的概率是________.(2)试用画树状图或列表的方法表示所有可能的结果,并求出八(1)班和八(2)班抽中不同歌曲的概率.17.如图,在平面直角坐标系中,点A ,B的坐标分别为2⎛⎫- ⎪ ⎪⎝⎭,2⎫⎪⎪⎝⎭,连接AB ,以AB 为边向上作等边三角形ABC . (1)求点C 的坐标;(2)求线段BC 所在直线的解析式.四、(本大题共3小题,每小题8分。
共24分)18.某校为了解七、八年级学生英语听力训练情况(七、八年级学生人数相同),某周从-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无------------------------------------毕业学校_____________ 姓名________________ 考生号________________________________ _____________这两个年级学生中分别随机抽查了30名同学,调查了他们周一到周五的听力训练情况,根据调查情况得到如下统计图:参加英语听力训练学生的平均训练时间折线统计图(1)填空:a =_________;(2(3)请你利用上述统计图表,对七、八年级听力训练情况写出两条合理的评价;(4)请你结合周一到周五英语听力训练人数统计表,估计该校七、八年级共有480名学生中周一到周五的每天有多少人进行英语听力训练.19.如图1,AB 为半圆的直径,点O 为圆心,AF 为半圆的切线,过半圆上的点C 作CD AB ∥交AF 于点D ,连接BC .(1)连接DO ,若BC OD ∥,求证CD 是半圆的切线;(2)如图2,当线段CD 与半圆交于点E 时,连接AE ,AC ,判断AED ∠和ACD ∠的数量关系,并证明你的结论.20.图1是一台实物投影仪,图2是它的示意图,折线B A O --表示固定支架,AO 垂直水平桌面OE 于点O ,点B 为旋转点,BC 可转动,当BC 绕点B 顺时针旋转时,投影探头CD 始终垂直于水平桌面OE ,经测量: 6.8cm OA =,8cm CD =,30cm AB =,35cm BC =(结果精确到0.1)(1)如图2,70.ABC BCOE ∠=︒,①填空:BAO ∠=_______.②求投影探头的端点D 到桌面OE 的距离.(2)如图3,将(1)的BC 向下旋转,当投影探头的端点D 到桌面OE 的距离为6cm时,求ABC ∠的大小.(参考数据sin700.94cos200.94sin36.80.60cos53.20.60︒≈︒≈︒≈︒≈,,,)五、(本大题共2小题,每小题9分,共18分) 21.数学活动课上,张老师引导同学进行如下探究:如图1,将长为12 cm 的铅笔AB 斜靠在垂直于水平桌面AE 的直尺FO 的边沿上,一端A 固定在桌面上,图2是示意图. 活动一如图3,将铅笔AB 绕端点A 顺时针旋转,AB 与OF 交于点D ,当旋转至水平位置时,铅笔AB 的中点C 与点O 重合.数学思考(1)设cm CD x =,点B 到OF 的距离cm GB y =.①用含x 的代数式表示:AD 的长是________cm ,BD 的长是________cm ; ②y 与x 的函数关系式是________,自变量x 的取值范围是________. 活动二②描点:根据表中数值,继续描出①中剩余的两个点(,y ). ③连线:在平面直角坐标系中,请用平滑的曲线画出该函数的图象. 数学思考(3)请你结合函数图象,写出该函数的两条性质或结论.22.在图1,2,3中,已知平行四边形ABCD ,120ABC ∠=︒,点E 为线段BC 上的动点,连接AE ,以AE 为边向上作菱形AEFG ,且120EAG ∠=︒.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无------------------------------------(1)如图1,当点E 与点B 重合时,∠CEF =________°. (2)如图2,连接AF .①填空:FAD ∠________EAB ∠(填“>”、“<”或“=”);②求证:点F 在ABC ∠的平分线上.(3)如图3,连接EG ,DG ,并延长DG 交BA 的延长线于点H ,当四边形AEGH 是平行四边形时,求BCAB的值.六、(本大题12分) 23.特例感知(1)如图1,对于抛物线13,12,1232221+--=+--=+--=x x y x x y x x y ,下列结论正确的序号是________; ①抛物线321,,y y y 都经过点C (0,1);②抛物线32,y y 的对称轴由抛物线1y 的对称轴依次向左平移12个单位得到; 形成概念(2)把满足21n y x nx =--+(n 为正整数)的抛物线称为“系列平移抛物线”.知识应用在(2)中,如图2.①“系列平移抛物线”的顶点依次为n P P P P ,,,,321⋯,用含n 的代数式表示顶点n P 的坐标,并写出该顶点纵坐标y 与横坐标x 之间的关系式;②“系列平移抛物线”存在“系列整数点(横纵坐标均为整数的点)”:n C C C C ,,,,321⋯,其横坐标分别为n k k k k --⋯------,,3,2,1(k 为正整数),判断相邻两点之间的距离是否相等,若相等,直接写出相邻两点之间的距离;若不相等,说明理由.③在②中,直线1y =分别交“系列平移抛物线”于点123n ,,,A A A A ⋯,,连接,,11--n n n n A C A C 判断11,,n n n n C A C A --是否平行?并说明理由.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________江西省2019年中等学校招生考试数学答案解析一、选择题 1.【答案】B【解析】只有符号不同的两个数叫做互为相反数 【考点】相反数的定义2.【答案】B【解析】()22111()==÷---a a a a as【考点】分数的除法运算 3.【答案】A【解析】该几何体由手提部分和圆柱组成,俯视图的手提部分为实线,圆柱部分为圆形,故选A ,该题以我们生活中的提桶为原型,体现了生活中处处有数学。