江苏省苏州市中考数学试题(word版)
江苏省苏州市2020年中考数学试题(Word版,含答案与解析)

江苏省苏州市2020年中考数学试卷一、选择题(共10题;共20分)1.在下列四个实数中,最小的数是()C. 0D. √3A. -2B. 13【答案】A【考点】实数大小的比较<√3,【解析】【解答】解:根据实数大小比较的方法,可得-2<0<13所以四个实数中,最小的数是-2.故答案为:A.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.2.某种芯片每个探针单元的面积为0.00000164cm2,0.00000164用科学记数法可表示为()A. 1.64×10−5B. 1.64×10−6C. 16.4×10−7D. 0.164×10−5【答案】B【考点】科学记数法—表示绝对值较小的数【解析】【解答】解:0.00000164=1.64×10-6,故答案为:B.【分析】绝对值小于1的数利用科学记数法表示的一般形式为a×10-n,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.3.下列运算正确的是()A. a2⋅a3=a6B. a3÷a=a3C. (a2)3=a5D. (a2b)2=a4b2【答案】 D【考点】同底数幂的乘法,同底数幂的除法,积的乘方,幂的乘方【解析】【解答】解:A、a2⋅a3=a5,此选项错误;B、a3÷a=a2,此选项错误;C、(a2)3=a6,此选项错误;D、(a2b)2=a4b2,此选项正确;故答案为:D.【分析】根据幂的运算法则逐一计算可得.4.如图,一个几何体由5个相同的小正方体搭成,该几何体的俯视图是()A. B. C. D.【答案】C【考点】简单组合体的三视图【解析】【解答】组合体从上往下看是横着放的三个正方形.故答案为:C.【分析】根据组合体的俯视图是从上向下看的图形,即可得到答案.5.不等式2x−1≤3的解集在数轴上表示正确的是()A. B.C. D.【答案】C【考点】解一元一次不等式,在数轴上表示不等式的解集【解析】【解答】解:移项得,2x≤3+1,合并同类项得,2x≤4,系数化为1得,x≤2,在数轴上表示为:故答案为:C.【分析】先求出不等式的解集,再在数轴上表示出来即可.6.某手表厂抽查了10只手表的日走时误差,数据如下表所示(单位:s):则这10只手表的平均日走时误差(单位:s)是()A. 0B. 0.6C. 0.8D. 1.1【答案】 D【考点】加权平均数及其计算【解析】【解答】由题意得:(0×3+1×4+2×2+3×1)÷10=1.1(s)故答案为:D.【分析】根据加权平均数的概念,列出算式,即可求解.7.如图,小明想要测量学校操场上旗杆AB的高度,他作了如下操作:(1)在点C处放置测角仪,测得旗杆顶的仰角∠ACE=α;(2)量得测角仪的高度CD=a;(3)量得测角仪到旗杆的水平距离DB= b.利用锐角三角函数解直角三角形的知识,旗杆的高度可表示为()A. a+btanαB. a+bsinαC. a+btanα D. a+bsinα【答案】A【考点】解直角三角形的应用﹣仰角俯角问题【解析】【解答】延长CE交AB于F,如图,根据题意得,四边形CDBF为矩形,∴CF=DB=b,FB=CD=a,在Rt△ACF中,∠ACF=α,CF=b,tan∠ACF= AFCF∴AF= CFtan∠ACF=btanα,AB=AF+BF= a+btanα,故答案为:A.【分析】延长CE交AB于F,得四边形CDBF为矩形,故CF=DB=b,FB=CD=a,在直角三角形ACF中,利用CF的长和已知的角的度数,利用正切函数可求得AF的长,从而可求出旗杆AB的长.8.如图,在扇形OAB中,已知∠AOB=90°,OA=√2,过AB⌢的中点C作CD⊥OA,CE⊥OB,垂足分别为D、E,则图中阴影部分的面积为()A. π−1B. π2−1 C. π−12D. π2−12【答案】B【考点】全等三角形的判定与性质,正方形的判定与性质,圆心角、弧、弦的关系,扇形面积的计算【解析】【解答】连接OC∵点C为AB⌢的中点∴∠AOC=∠BOC 在△CDO和△CEO中{∠AOC=∠BOC∠CDO=∠CEO=90°CO=CO∴△CDO≅△CEO(AAS)∴OD=OE,CD=CE 又∵∠CDO=∠CEO=∠DOE=90°∴四边形CDOE为正方形∵OC=OA=√2∴OD=OE=1∴S正方形CDOE=1×1=1由扇形面积公式得S扇形AOB=90π×(√2)2360=π2∴S阴影=S扇形AOB−S正方形CDOE=π2−1故答案为:B.【分析】连接OC,易证△CDO≅△CEO,进一步可得出四边形CDOE为正方形,再根据正方形的性质求出边长即可求得正方形的面积,根据扇形面积公式得出扇形AOB的面积,最后根据阴影部分的面积等于扇形AOB的面积剪去正方形CDOE的面积就可得出答案.9.如图,在ΔABC中,∠BAC=108°,将ΔABC绕点A按逆时针方向旋转得到ΔAB′C′.若点B′恰好落在BC边上,且AB′=CB′,则∠C′的度数为()A. 18°B. 20°C. 24°D. 28°【答案】C【考点】三角形内角和定理,旋转的性质【解析】【解答】解:设 ∠C ′ =x°.根据旋转的性质,得∠C=∠ C ′ = x°, AC ′ =AC, AB ′ =AB.∴∠ AB ′B =∠B.∵ AB ′=CB ′ ,∴∠C=∠CA B ′ =x°.∴∠ AB ′B =∠C+∠CA B ′ =2x°.∴∠B=2x°.∵∠C+∠B+∠CAB=180°, ∠BAC =108° ,∴x+2x+108=180.解得x=24.∴ ∠C ′ 的度数为24°.故答案为:C.【分析】根据旋转的性质得出边和角相等,找到角之间的关系,再根据三角形内角和定理进行求解,即可求出答案.10.如图,平行四边形 OABC 的顶点A 在x 轴的正半轴上,点 D(3,2) 在对角线 OB 上,反比例函数 y =k x (k >0,x >0) 的图像经过C 、D 两点.已知平行四边形 OABC 的面积是 152 ,则点B 的坐标为( )A. (4,83)B. (92,3)C. (5,103)D. (245,165)【答案】 B【考点】坐标与图形性质,平行四边形的性质,相似三角形的判定与性质,反比例函数图象上点的坐标特征【解析】【解答】解:如图,分别过点D 、B 作DE ⊥x 轴于点E ,DF ⊥x 轴于点F ,延长BC 交y 轴于点H∵四边形 OABC 是平行四边形∴易得CH=AF∵点 D(3,2) 在对角线 OB 上,反比例函数 y =kx (k >0,x >0) 的图像经过 C 、 D 两点∴k=2×3=6即反比例函数解析式为y=6x∴设点C坐标为(a,6a)∵DE∥BF∴△ODE∼△OBF∴DEBF =OEOF∴26a =3OF∴OF=3×6a2=9a∴OA=OF−AF=OF−HC=9a −a,点B坐标为(9a,6a)∵平行四边形OABC的面积是152∴(9a −a)⋅6a=152解得a1=2,a2=−2(舍去)∴点B坐标为(92,3)故答案为:B【分析】根据题意求出反比例函数解析式,设出点C坐标(a,6a),得到点B纵坐标,利用相似三角形性质,用a表示求出OA,再利用平行四边形OABC的面积是152构造方程求a即可.二、填空题(共8题;共8分)11.使√x−13在实数范围内有意义的x的取值范围是________.【答案】x≥1【考点】二次根式有意义的条件【解析】【解答】∵x-1≥0,∴x≥1.故答案是:x≥1.【分析】根据二次根式的被开方数是非负数,列出不等式,即可求解.12.若一次函数y=3x−6的图像与x轴交于点(m,0),则m=________.【答案】2【考点】一次函数图象与坐标轴交点问题【解析】【解答】解:∵一次函数y=3x-6的图象与x轴交于点(m,0),∴3m-6=0,解得m=2.故答案为:2.【分析】把点(m,0)代入y=3x-6即可求得m的值.13.一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上.每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是________.【答案】38【考点】几何概率【解析】【解答】解:∵由图可知,黑色方砖6块,共有16块方砖,∴黑色方砖在整个区域中所占的比值= 616=38,∴小球停在黑色区域的概率是38;故答案为:38【分析】先求出黑色方砖在整个地面中所占的比值,再根据其比值即可得出结论.14.如图,已知AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD.若∠C=40°,则∠B的度数是________ °.【答案】25【考点】三角形内角和定理,圆周角定理,切线的性质【解析】【解答】解:∵AC是⊙O的切线,∴∠OAC=90°∵∠C=40°,∴∠AOD=50°,∴∠B= 12∠AOD=25°故答案为:25.【分析】先由切线的性质可得∠OAC=90°,再根据三角形的内角和定理可求出∠AOD=50°,最后根据“同弧所对的圆周角等于圆心角的一半”即可求出∠B的度数.15.若单项式2x m−1y2与单项式13x2y n+1是同类项,则m+n=________.【答案】4【考点】同类项【解析】【解答】解:∵单项式2x m−1y2与单项式13x2y n+1是同类项,∴m-1=2,n+1=2,解得:m=3,n=1.∴m+n=3+1=4.故答案为:4.【分析】根据同类项的定义:所含字母相同,相同字母的指数也相同的单项式是同类项.可列式子m-1=2,n+1=2,分别求出m,n的值,再代入求解即可.16.如图,在ΔABC中,已知AB=2,AD⊥BC,垂足为D,BD=2CD.若E是AD的中点,则EC=________.【答案】1【考点】相似三角形的判定与性质【解析】【解答】∵BD=2DC∴BD DC=2∵E为AD的中点,∴AD=2DE,∴ADDE=2,∴BDDC =ADDE=2,∵AD⊥BC∴∠ADB=∠EDC=90°∴△ADB∼△EDC∴ABEC=BDDC=2∵AB=2∴EC=1故答案为:1.【分析】根据“两边对应成比例,夹角相等的两个三角形相似”证明△ADB∽△EDC,得ABEC =BDDC=2,由AB=2则可求出结论.17.如图,在平面直角坐标系中,点A、B的坐标分别为(−4,0)、(0,4),点C(3,n)在第一象限内,连接AC、BC.已知∠BCA=2∠CAO,则n=________.【答案】145【考点】坐标与图形性质,三角形全等及其性质,相似三角形的判定与性质,三角形全等的判定(ASA)【解析】【解答】解:如图,过点C作CD⊥y轴,交y轴于点D,则CD∥AO,∴∠DCE=∠CAO,∵∠BCA=2∠CAO,∴∠BCA=2∠DCE,∴∠DCE=∠DCB,∵CD⊥y轴,∴∠CDE=∠CDB=90°,又∵CD=CD,∴△CDE≌△CDB(ASA),∴DE=DB,∵B(0,4),C(3,n),∴CD=3,OD=n,OB=4,∴DE=DB=OB-OD=4-n,∴OE=OD-DE=n-(4-n)=2n-4,∵A(-4,0),∴AO=4,∵CD∥AO,∴△AOE∽△CDE,∴AOCD =OEDE,∴43=2n−44−n,解得:n=145,故答案为:145.【分析】过点C作CD⊥y轴,交y轴于点D,则CD∥AO,先证△CDE≌△CDB(ASA),进而可得DE=DB=4-n,再证△AOE∽△CDE,进而可得43=2n−44−n,由此计算即可求得答案.18.如图,已知∠MON是一个锐角,以点O为圆心,任意长为半径画弧,分别交OM、ON于点A、B,再分别以点A、B为圆心,大于12AB长为半径画弧,两弧交于点C,画射线OC.过点A作AD∥ON,交射线OC于点D,过点D作DE⊥OC,交ON于点E.设OA=10,DE=12,则sin∠MON=________.【答案】2425【考点】等腰三角形的性质,勾股定理,平行四边形的判定与性质,锐角三角函数的定义,作图-角的平分线【解析】【解答】连接AB交OD于点H,过点A作AG⊥ON于点G,由尺规作图步骤,可得:OD是∠MON的平分线,OA=OB,∴OH⊥AB,AH=BH,∵DE⊥OC,∴DE∥AB,∵AD∥ON,∴四边形ABED是平行四边形,∴AB=DE=12,∴AH=6,∴OH= √AO2−AH2=√102−62=8,∵OB∙AG=AB∙OH,∴AG= AB⋅OHOB = 12×810= 485,∴sin∠MON=AGOA = 2425.故答案是:2425.【分析】连接AB交OD于点H,过点A作AG⊥ON于点G,根据等腰三角形的性质得OH⊥AB,AH=BH,从而得四边形ABED是平行四边形,利用勾股定理和三角形的面积法,求得AG的值,进而即可求解.三、解答题(共9题;共81分)19.计算:√9+(−2)2−(π−3)0.【答案】解:原式=3+4−1=6.【考点】实数的运算【解析】【分析】根据算术平方根、乘方的定义、零指数幂法则计算即可.20.解方程:xx−1+1=2x−1.【答案】解:方程两边同乘以(x−1),得x+(x−1)=2.解这个一元一次方程,得x=32.经检验,x=32是原方程的解.【考点】解分式方程【解析】【分析】根据解分式方程的步骤解答即可.21.如图,“开心”农场准备用50m的护栏围成一块靠墙的矩形花园,设矩形花园的长为a(m),宽为b(m).(1)当a=20时,求b的值;(2)受场地条件的限制,a的取值范围为18≤a≤26,求b的取值范围.【答案】(1)解:由题意,得a+2b=50,当a=20时,20+2b=50.解得b=15.(2)解:∵18≤a≤26,a=50−2b,∴{50−2b≥1850−2b≤26解这个不等式组,得12≤b≤16.答:矩形花园宽的取值范围为12≤b≤16.【考点】二元一次方程的应用,一元一次不等式组的应用【解析】【分析】(1)根据等量关系“围栏的长度为50”可以列出代数式,再将a=20代入所列式子中求出b的值;(2)由(1)可得a,b之间的关系式,用含有b的式子表示a,再结合18≤a≤26,列出关于b 的不等式组,接着不等式组即可求出b的取值范围.22.为增强学生垃圾分类意识,推动垃圾分类进校园.某初中学校组织全校1200名学生参加了“垃圾分类知识竞赛”,为了解学生的答题情况,学校考虑采用简单随机抽样的方法抽取部分学生的成绩进行调查分析. (1)学校设计了以下三种抽样调查方案:方案一:从初一、初二、初三年级中指定部分学生成绩作为样本进行调查分析;方案二:从初一、初二年级中随机抽取部分男生成绩及在初三年级中随机抽取部分女生成绩进行调查分析;方案三:从三个年级全体学生中随机抽取部分学生成绩进行调查分析.其中抽取的样本具有代表性的方案是________.(填“方案一”、“方案二”或“方案三”)(2)学校根据样本数据,绘制成下表(90分及以上为“优秀”,60分及以上为“及格”):请结合表中信息解答下列问题:①估计该校1200名学生竞赛成绩的中位数落在哪个分数段内;②估计该校1200名学生中达到“优秀”的学生总人数.【答案】(1)方案三(2)解:①∵由表可知样本共有100名学生,∴这次竞赛成绩的中位数是第50和51个数的平均数,∴这次竞赛成绩的中位数落在落在90≤x<95分数段内;∴该校1200名学生竞赛成绩的中位数落在90≤x<95分数段内;②由题意得:1200×70%=840(人).∴该校1200名学生中达到“优秀”的学生总人数为840人.【考点】全面调查与抽样调查,用样本估计总体,中位数【解析】【解答】解:要调查学生的答题情况,需要考虑样本具有广泛性与代表性,就是抽取的样本必须是随机的,则抽取的样本具有代表性的方案是方案三.答案是:方案三;【分析】(1)抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的.(2)①根据中位数的定义,即可求出这次竞赛成绩的中位数所落的分数段;②用优秀率乘以该校共有的学生数,即可求出答案.23.如图,在矩形ABCD中,E是BC的中点,DF⊥AE,垂足为F.(1)求证:ΔABE∽ΔDFA;(2)若AB=6,BC=4,求DF的长. 【答案】(1)证明:∵四边形ABCD是矩形,∴∠B=90°,AD∥BC.∴∠AEB=∠DAF,∵DF⊥AE,∴∠DFA=90°.∴∠B=∠DFA,∴ΔABE∽ΔDFA.(2)解:∵ΔABE∽ΔDFA,∴ABDF =AEAD.∵BC=4,E是BC的中点,∴BE=12BC=12×4=2.∴在RtΔABE中,AE=√AB2+BE2=√62+22=2√10. 又∵AD=BC=4,∴6DF =2√104,∴DF=6√105.【考点】勾股定理,矩形的性质,相似三角形的性质,相似三角形的判定【解析】【分析】(1)根据矩形的性质可得,∠B=90°,AD∥BC.再根据“两直线平行,内错角相等”可得∠AEB=∠DAF,再由垂直的定义可得∠DFA=90°.从而得出∠B=∠DFA,再根据“有两组角对应相等的两个三角形相似”可得出结论;(2)根据中点的定义可求出BE=2,然后根据勾股定理求出AE= 2√10.再根据相似三角形的性质求解即可.24.如图,二次函数y=x2+bx的图像与x轴正半轴交于点A,平行于x轴的直线l与该抛物线交于B、C两点(点B位于点C左侧),与抛物线对称轴交于点D(2,−3).(1)求b 的值;(2)设P 、Q 是x 轴上的点(点P 位于点Q 左侧),四边形 PBCQ 为平行四边形.过点P 、Q 分别作x 轴的垂线,与抛物线交于点 P ′(x 1,y 1) 、 Q ′(x 2,y 2) .若 |y 1−y 2|=2 ,求 x 1 、 x 2 的值.【答案】 (1)解:∵直线 l 与抛物线 y =x 2+bx 的对称轴交于点 D(2,−3) ,∴抛物线 y =x 2+bx 的对称轴为直线 x =2 ,即 −b 2=2 ,∴ b =−4 .(2)解:由(1)得:抛物线的解析式为 y =x 2−4x ,把 y =−3 代入抛物线的解析式 y =x 2−4x ,得 x 2−4x =−3 ,解得 x =1 或3,∴B 、C 两点的坐标为 B(1,−3) , C(3,−3) ,∴ BC =2 ,∵四边形 PBCQ 为平行四边形,∴ PQ =BC =2 ,∴ x 2−x 1=2 ,又∵ y 1=x 12−4x 1 , y 2=x 22−4x 2 , |y 1−y 2|=2 ,∴ |(x 12−4x 1)−(x 22−4x 2)|=2 , ∴ |x 1+x 2−4|=1 ,∴ x 1+x 2=5 或 x 1+x 2=3 ,由 {x 2−x 1=2x 1+x 2=5 ,解得 {x 1=32x 2=72由 {x 2−x 1=2x 1+x 2=3 解得 {x 1=12x 2=52∴ x 1 、 x 2 的值为 {x 1=32x 2=72 或 {x 1=12x 2=52. 【考点】平行四边形的性质,二次函数图象上点的坐标特征,二次函数y=ax^2+bx+c 的性质【解析】【分析】(1)根据直线l与抛物线对称轴交于点D(2,−3)可得对称轴为直线x=2,由此即可求得b 的值;(2)先求得点B、C的坐标,可得BC=2,再根据四边形PBCQ为平行四边形可得PQ=BC=2,即x2−x1=2,最后根据y1=x12−4x1,y2=x22−4x2,|y1−y2|=2可得x1+x2=5或x1+x2=3,由此分别与x2−x1=2联立方程组求解即可.25.问题1:如图①,在四边形ABCD中,∠B=∠C=90°,P是BC上一点,PA=PD,∠APD=90°.(1)求证:AB+CD=BC.(2)如图②,在四边形ABCD中,∠B=∠C=45°,P是BC上一点,PA=PD,∠APD= 90°.求AB+CDBC的值.【答案】(1)证明:∵∠B=90°,∴∠APB+∠BAP=90°.∵∠APD=90°,∴∠APB+∠CPD=90°.∴∠BAP=∠CPD.在△ABP和△PCD中,{∠B=∠C∠BAP=∠CPDPA=DP,∴△ABP≌△PCD(AAS).∴AB=PC,BP=CD,∴AB+CD=BP+PC=BC.问题2:(2)解:如图,分别过点A、D作BC的垂线,垂足为E、F.由(1)可知AE+DF=EF,在Rt△ABE和Rt△DFC中,∠B=∠C=45°,∴AE=BE,DF=CF,AB=AEsin45°=√2AE,CD=DFsin45°=√2DF.∴BC=BE+EF+CF=2(AE+DF),AB+CD=√2(AE+DF).∴AB+CDBC =√2(AE+DF)2(AE+DF)=√22.【考点】三角形全等及其性质,解直角三角形,三角形全等的判定(AAS)【解析】【分析】问题1:先根据AAS证明△ABP≌△PCD,可得AB=PC,BP=CD,由此即可证得结论;问题2:分别过点A、D作BC的垂线,垂足为E、F,由(1)可知AE+DF=EF,利用45°的三角函数值可得AB=AEsin45°=√2AE,CD=DFsin45°=√2DF,由此即可计算得到答案.26.某商店代理销售一种水果,六月份的销售利润y(元)与销售量x(kg)之间函数关系的图像如图中折线所示.请你根据图像及这种水果的相关销售记录提供的信息,解答下列问题:(1)截止到6月9日,该商店销售这种水果一共获利多少元?(2)求图像中线段BC所在直线对应的函数表达式.【答案】(1)解:200×(10−8)=400(元).答:截止到6月9日,该商店销售这种水果一共获利400元.(2)解:设点B坐标为(a,400).根据题意,得(10−8)×(600−a)+(10−8.5)×200=1200−400,解这个方程,得a=350.∴点B坐标为(350,400).设线段BC所在直线的函数表达式为y=kx+b,∵B,C两点的坐标分别为(350,400),(800,1200),∴{350k+b=400800k+b=1200解这个方程组,得{k=169b=−20009.∴线段BC所在直线的函数表达式为y=169x−20009.【考点】分段函数,一次函数的实际应用【解析】【分析】(1)根据利润= (售价-成本价)×销售量计算即可;(2)设点B坐标为(a,400),根据题意列出方程计算即可求得a=350,再利用待定系数法即可求得线段BC所在直线对应的函数表达式.销售量27.如图,已知∠MON=90°,OT是∠MON的平分线,A是射线OM上一点,OA=8cm.动点P从点A出发,以1cm/s的速度沿AO水平向左作匀速运动,与此同时,动点Q从点O出发,也以1cm/s的速度沿ON竖直向上作匀速运动.连接PQ,交OT于点B.经过O、P、Q三点作圆,交OT 于点C,连接PC、QC.设运动时间为t(s),其中0<t<8.(1)求OP+OQ的值;(2)是否存在实数t,使得线段OB的长度最大?若存在,求出t的值;若不存在,说明理由.(3)求四边形OPCQ的面积.【答案】(1)解:由题可得:OP=8−t,OQ=t.∴OP+OQ=8−t+t=8(cm).(2)解:当t=4时,线段OB的长度最大.如图,过B作BD⊥OP,垂足为D,则BD//OQ.∵OT平分∠MON,∴∠BOD=∠OBD=45°,∴BD=OD,OB=√2BD.设线段BD的长为x,则BD=OD=x,OB=√2BD=√2x,PD=8−t−x.∵BD//OQ,∴△PBD∽△PQO,∴PDOP =BDOQ,∴8−t−x8−t =xt,解得:x=8t−t28.∴OB=√2⋅8t−t28=−√28(t−4)2+2√2.∴当t=4时,线段OB的长度最大,最大为2√2cm.(3)解:∵∠POQ=90°,∴PQ是圆的直径.∴∠PCQ=90°.∵∠PQC=∠POC=45°,∴△PCQ是等腰直角三角形.∴S△PCQ=12PC⋅QC=12×√22PQ⋅√22PQ=14PQ2.在Rt△POQ中,PQ2=OP2+OQ2=(8−t)2+t2. ∴四边形OPCQ的面积S=S△POQ+S△PCQ=12OP⋅OQ+14PQ2=12t(8−t)+14[(8−t)2+t2]=4t−12t2+12t2+16−4t=16.∴四边形OPCQ的面积为16cm2.【考点】勾股定理,圆周角定理,相似三角形的判定与性质,二次函数y=ax^2+bx+c的性质,角平分线的定义【解析】【分析】(1)根据题意可得OP=8−t,OQ=t,由此可求得OP+OQ的值;(2)过B作BD⊥OP,垂足为D,则BD//OQ,设线段BD的长为x,可得BD=OD=x,OB=√2BD=√2x,PD=8−t−x,根据BD//OQ可得△PBD∽△PQO,进而可得PD OP=BD OQ,由此可得x=8t−t2 8,由此可得OB=√2⋅8t−t28=−√28(t−4)2+2√2,则可得到答案;(3)先证明△PCQ是等腰直角三角形,由此可得S△PCQ=14PQ2,再利用勾股定理可得PQ2=(8−t)2+t2,最后根据四边形OPCQ的面积S=S△POQ+S△PCQ即可求得答案.。
江苏省苏州市2023年中考数学试卷(及参考答案)

江苏省苏州市2023年中考数学试卷一、选择题:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用rId8铅笔涂在答题卡相对应的位置上.1.有理数的相反数是()A.B.C.D.2.古典园林中的花窗通常利用对称构图,体现对称美.下面四个花窗图案,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.如图,在正方形网格内,线段的两个端点都在格点上,网格内另有四个格点,下面四个结论中,正确的是()A.连接,则B.连接,则C.连接,则D.连接,则4.今天是父亲节,小东同学准备送给父亲一个小礼物.已知礼物外包装的主视图如图所示,则该礼物的外包装不可能是()A.长方体B.正方体C.圆柱D.三棱锥5.下列运算正确的是()A.B.C.D.6.如图,转盘中四个扇形的面积都相等,任意转动这个转盘1次,当转盘停止转动时,指针落在灰色区域的概率是()A.B.C.D.7.如图,在平面直角坐标系中,点的坐标为,点的坐标为,以为边作矩形.动点分别从点同时出发,以每秒1个单位长度的速度沿向终点移动.当移动时间为4秒时,的值为()A.B.C.D.8.如图,是半圆的直径,点在半圆上,,连接,过点作,交的延长线于点.设的面积为的面积为,若,则的值为()A.B.C.D.二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相对应的位置上.9.使有意义的x的取值范围是.10.因式分解:a2+ab=.11.分式方程的解为.12.在比例尺为的地图上,量得两地在地图上的距离为厘米,即实际距离为28000000厘米.数据28000000用科学记数法可表示为.13.小惠同学根据某市统计局发布的2023年第一季度高新技术产业产值数据,绘制了如图所示的扇形统计图,则“新材料”所对应扇形的圆心角度数是.14.已知一次函数的图象经过点和,则.15.如图,在中,,垂足为.以点为圆心,长为半径画弧,与分别交于点.若用扇形围成一个圆锥的侧面,记这个圆锥底面圆的半径为;用扇形围成另一个圆锥的侧面,记这个圆锥底面圆的半径为,则.(结果保留根号)16.如图,.过点作,延长到,使,连接.若,则.(结果保留根号)三、解答题:本大题共11小题,共82分.把解答过程写在答题卡相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.17.计算:.18.解不等式组:19.先化简,再求值:,其中.20.如图,在中,为的角平分线.以点圆心,长为半径画弧,与分别交于点,连接.(1)求证:;(2)若,求的度数.21.一只不透明的袋子中装有4个小球,分别标有编号,这些小球除编号外都相同.(1)搅匀后从中任意摸出1个球,这个球的编号是2的概率为.(2)搅匀后从中任意摸出1个球,记录球的编号后放回、搅匀,再从中任意摸出1个球.求第2次摸到的小球编号比第1次摸到的小球编号大1的概率是多少?(用画树状图或列表的方法说明)22.某初中学校为加强劳动教育,开设了劳动技能培训课程.为了解培训效果,学校对七年级320名学生在培训前和培训后各进行一次劳动技能检测,两次检测项目相同,评委依据同一标准进行现场评估,分成“合格”、“良好”、“优秀”3个等级,依次记为2分、6分、8分(比如,某同学检测等级为“优秀”,即得8分).学校随机抽取32名学生的2次检测等级作为样本,绘制成下面的条形统计图:(1)这32名学生在培训前得分的中位数对应等级应为;(填“合格”、“良好”或“优秀”)(2)求这32名学生培训后比培训前的平均分提高了多少?(3)利用样本估计该校七年级学生中,培训后检测等级为“良好”与“优秀”的学生人数之和是多少?23.四边形不具有稳定性,工程上可利用这一性质解决问题.如图是某篮球架的侧面示意图,为长度固定的支架,支架在处与立柱连接(垂直于,垂足为),在处与篮板连接(所在直线垂直于),是可以调节长度的伸缩臂(旋转点处的螺栓改变的长度,使得支架绕点旋转,从而改变四边形的形状,以此调节篮板的高度).已知,测得时,点离地面的高度为.调节伸缩臂,将由调节为,判断点离地面的高度升高还是降低了?升高(或降低)了多少?(参考数据:)24.如图,一次函数的图象与反比例函数的图象交于点.将点沿轴正方向平移个单位长度得到点为轴正半轴上的点,点的横坐标大于点的横坐标,连接的中点在反比例函数的图象上.(1)求的值;(2)当为何值时,的值最大?最大值是多少?25.如图,是的内接三角形,是的直径,,点在上,连接并延长,交于点,连接,作,垂足为.(1)求证:;(2)若,求的长.26.某动力科学研究院实验基地内装有一段笔直的轨道,长度为的金属滑块在上面做往返滑动.如图,滑块首先沿方向从左向右匀速滑动,滑动速度为,滑动开始前滑块左端与点重合,当滑块右端到达点时,滑块停顿,然后再以小于的速度匀速返回,直到滑块的左端与点重合,滑动停止.设时间为时,滑块左端离点的距离为,右端离点的距离为,记与具有函数关系.已知滑块在从左向右滑动过程中,当和时,与之对应的的两个值互为相反数;滑块从点出发到最后返回点,整个过程总用时(含停顿时间).请你根据所给条件解决下列问题:(1)滑块从点到点的滑动过程中,的值;(填“由负到正”或“由正到负”)(2)滑块从点到点的滑动过程中,求与的函数表达式;(3)在整个往返过程中,若,求的值.27.如图,二次函数的图像与轴分别交于点(点A在点的左侧),直线是对称轴.点在函数图象上,其横坐标大于4,连接,过点作,垂足为,以点为圆心,作半径为的圆,与相切,切点为.(1)求点的坐标;(2)若以的切线长为边长的正方形的面积与的面积相等,且不经过点,求长的取值范围.答案1.【答案】A2.【答案】C3.【答案】B4.【答案】D5.【答案】B6.【答案】C7.【答案】D8.【答案】A9.【答案】10.【答案】a(a+b)11.【答案】-312.【答案】13.【答案】72°14.【答案】-615.【答案】16.【答案】17.【答案】解:.18.【答案】解:解不等式①得:解不等式②得:∴不等式组的解集为:.19.【答案】解:;当时,原式.20.【答案】(1)证明:∵AD为△ABC的角平分线,∴∠BAD=∠CAD,由作图可得AE=AF,在△ADE和△ADF中,,∴△ADE≌△ADF(SAS);(2)解:∵∠BAC=80°,AD为△ABC的角平分线,∴∠EAD=40°由作图可得AE=AD,∴∠ADE=70°,∵AB=AC,AD为△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴∠BDE=∠ADB-∠ADE=20°.21.【答案】(1)(2)解:如图,画树状图如下:所有可能的结果数为16个,第2次摸到的小球编号比第1次摸到的小球编号大1的结果数为3个,∴第2次摸到的小球编号比第1次摸到的小球编号大1的概率为:.22.【答案】(1)合格(2)解:32名学生在培训前的平均分为:(分),32名学生在培训后的平均分为:(分),这32名学生培训后比培训前的平均分提高了(分);(3)解:培训后检测等级为“良好”与“优秀”的学生人数之和是:(人).23.【答案】解:点C离地面的高度升高了,理由如下:如图,延长BC与底面交于点K,过D作DQ⊥CK于Q,则四边形DHKQ为矩形,∴QK=DH=208cm,∵AH⊥MN,BC⊥MN,∴AD∥BC,∵AD=BC,∴四边形ABCD是平行四边形,∴AB∥CD,当∠GAE=60°时,则∠QCD=∠QBA=∠GAE=60°,此时∠CDQ=30°,CQ=288-208=80cm,∴CD=2CQ=160cm;当∠GAE=54°时,则∠QCD=∠QBA=∠GAE=54°,∴CQ=CD·cos54°≈160×0.6=96,而96>80,96-80=16cm,∴点C离地面的高度升高了,升高了16cm.24.【答案】(1)解:把点A(4,n)代入y=2x,∴n=2×4,解得:n=8,∴A(4,8),把点A(4,8)代入,得k=32;(2)解:∵将点A沿x轴正方向平移m个单位长度得到点B,∴B(4+m,8),AB=m,∵点C是BD的中点,∴点C的纵坐标为4,将y=4代入得x=8,∴C(8,4),∴D(12-m,0),∴OD=12-m,∴AB·OD=m(12-m)=-(m-6)2+36,∴当m=6时,AB·OD取得最大值,最大值为36.25.【答案】(1)证明:∵是的直径,,∴,∵,∴;(2)解:∵,,∴,,∵,∴,∵,∴,∴,设,则,,∵,,∴,∴,∴,则,∴,∴,∴,解得,∴.26.【答案】(1)由负到正(2)解:设轨道AB的长为n,当滑块从左向右滑动时,∵,∴,∴∴d是t一次函数,∵当t=4.5s和5.5s时,与之对应d的两个值互为相反数;∴当t=5时,d=0,∴,∴,∴滑块从点A到点B所用的时间为(91-1)÷9=10s,∵整个过程总用时27s(含停顿时间).当滑块右端到达点B时,滑块停顿2s,∴滑块从点B到点A的滑动时间为27-2-10=15s,∴滑块返回的速度为(91-1)÷15=6m/s,∴当时,,∴,∴,∴d与t的函数表达式为;(3)解:当d=18时,有两种情况,由(2)可得,①当0≤t≤10时,,解得:;②当12≤t≤27时,,解得:,综上所述,当或时,.27.【答案】(1)解:令y=x2-6x+8中的y=0,则有:x2-6x+8=0,解得:x1=2,x2=4,∴A(2,0),B(4,0);(2)解:∵抛物线过A(2,0),B(4,0)∴抛物线的对称轴为x=3,设P(m,m2-6m+8),∵PM⊥l,∴M(3,m2-6m+8),如图:连接MT,则MT⊥PT,∴,∴切线PT为边长的正方形的面积为,过点P作PH⊥x轴,垂足为H,则:,∴∵,∴,假设过点N(3,2),则有以下两种情况:①如图1:当点M在点N的上方,即M(3,3),∴,解得:或,∵∴;②如图2:当点M在点N的下方,即M(3,1),∴,解得:,∵∴;综上,或.∴当不经过点时,或或.。
2020年江苏省苏州市中考数学试卷(Word解析版)-精选.docx

2019年江苏省苏州市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.5的相反数是()A. 15B. −15C. 5D. −52.有一组数据:2,2,4,5,7,这组数据的中位数为()A. 2B. 4C. 5D. 73.苏州是全国重点旅游城市,2018年实现旅游总收入约为26000000万元,数据26000000用科学记数法可表示为()A. 0.26×108B. 2.6×108C. 26×106D.2.6×1074.如图,已知直线a∥b,直线c与直线a,b分别交于点A,B.若∠1=54°,则∠2等于()A. 126∘B. 134∘C. 136∘D. 144∘5.如图,AB为⊙O的切线,切点为A连接AO、BO,BO与⊙O交于点C,延长BO与⊙O交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为()A. 54∘B. 36∘C. 32∘D. 27∘6.小明用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完),已知每本硬面笔记本比软面笔记本贵3元,且小明和小丽买到相同数量的笔记本,设软面笔记本每本售价为x元,根据题意可列出的方程为()A. 15x =24x+3B. 15x=24x−3C. 15x+3=24xD. 15x−3=24x7.若一次函数y=kx+b(k,b为常数,且k≠0)的图象经过点A(0,-1),B(1,1),则不等式kx+b>1的解为()A. x<0B. x>0C. x<1D. x>18.如图,小亮为了测量校园里教学楼AB的高度,将测角仪CD竖直放置在与教学楼水平距离为18√3m的地面上,若测角仪的高度是1.5m.测得教学楼的顶部A处的仰角为30°.则教学楼的高度是()A. 55.5mB. 54mC. 19.5mD. 18m9.如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C的方向平移,得到△A'B'O'.当点A'与点C重合时,点A与点B'之间的距离为()1A. 6B. 8C. 10D. 1210.如图,在△ABC中,点D为BC边上的一点,且AD=AB=2,AD⊥AB.过点D作DE⊥AD,DE交AC于点E.若DE=1,则△ABC的面积为()A. 4√2B. 4C. 2√5D. 8二、填空题(本大题共8小题,共24.0分)11.计算:a2•a3=______.12.因式分解:x2-xy=______.13.若√x−6在实数范围内有意义,则x的取值范围为______.14.若a+2b=8,3a+4b=18,则a+b的值为______.15.“七巧板”是我们祖先的一项卓越创造,可以拼出许多有趣的图形,被誉为“东方魔板”.图①是由边长为10cm的正方形薄板分为7块制作成的“七巧板”,图②是用该“七巧板”拼成的一个“家”的图形.该“七巧板”中7块图形之一的正方形边长为______cm(结果保留根号).16.如图,将一个棱长为3的正方体的表面涂上红色,再把它分割成棱长为1的小正方体,从中任取一个小正方体,则取得的小正方体恰有三个面涂有红色的概率为______.17.18.23 19. 如图,扇形OAB 中,∠AOB =90°.P 为弧AB 上的一点,过点P 作PC ⊥OA ,垂足为C ,PC 与AB 交于点D .若PD =2,CD =1,则该扇形的半径长为______.20.21.22.23.24. 如图,一块含有45°角的直角三角板,外框的一条直角边长为8cm ,三角板的外框线和与其平行的内框线之间的距离均为√2cm ,则图中阴影部分的面积为______cm 2(结果保留根号).三、计算题(本大题共1小题,共6.0分)25.先化简,再求值:x−3x 2+6x+9÷(1-6x+3),其中,x =√2-3. 26.27.28.29.30.31.32.四、解答题(本大题共9小题,共70.0分)33.计算:(√3)2+|-2|-(π-2)0 34.35.36.37.38.39.40.41.解不等式组:{2(x +4)>3x +7x+1<5 42.43.44.45.46.47.48.49.在一个不透明的盒子中装有4张卡片,4张卡片的正面分别标有数字1,2,3,4,这些卡片除数字外都相同,将卡片搅匀. 50.(1)从盒子中任意抽取一张卡片,恰好抽到标有奇数卡片的概率是______; 51.(2)先从盒了中任意抽取一张卡片,再从余下的3张卡片中任意抽取一张卡片,求抽取的2张卡片标有数字之和大于4的概率.(请用画树状图或列表等方法求解). 52.53.54.55.56.57.58.59.某校计划组织学生参加“书法”、“摄影”、“航模、“围棋”四个课外兴趣小组,要求每人必须参加,并且只能选择其中一个小组,为了解学生对四个课外兴趣小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的扇形统计图和条形统计图(部分信息未给出),请你根据给出的信息解答下列问题:60.(1)求参加这次问卷调查的学生人数,并补全条形统计图(画图后请标注相应的数据);61.(2)m=______,n=______;62.(3)若该校共有1200名学生,试估计该校选择“围棋”课外兴趣小组的学生有多少人?63.64.如图,△ABC中,点E在BC边上,AE=AB,将线段AC绕A点旋转到AF的位置,使得∠CAF=∠BAE,连接EF,EF与AC交于点G.65.(1)求证:EF=BC;66.(2)若∠ABC=65°,∠ACB=28°,求∠FGC的度数.67.如图,A为反比例函数y=kx(其中x>0)图象上的一点,在x轴正半轴上有一点B,OB=4.连接OA,AB,且OA=AB=2√10.68.(1)求k的值;69.(2)过点B作BC⊥OB,交反比例函数y=kx(其中x>0)的图象于点C,连接OC交AB于点D,求ADDB 的值.70.71.72.4573. 如图,AB 为⊙O 的直径,C 为⊙O 上一点,D 是弧BC 的中点,BC 与AD 、OD 分别交于点E 、F .74. (1)求证:DO ∥AC ;75. (2)求证:DE •DA =DC 2;76. (3)若tan ∠CAD =12,求sin ∠CDA 的值.77.78.79.80. 已知矩形ABCD 中,AB =5cm ,点P 为对角线AC 上的一点,且AP =2√5cm .如图①,动点M 从点A 出发,在矩形边上沿着A →B →C 的方向匀速运动(不包含点C ).设动点M 的运动时间为t (s ),△APM 的面积为S (cm 2),S 与t 的函数关系如图②所示.81. (1)直接写出动点M 的运动速度为______cm /s ,BC 的长度为______cm ;82. (2)如图③,动点M 重新从点A 出发,在矩形边上按原来的速度和方向匀速运动,同时,另一个动点N 从点D 出发,在矩形边上沿着D →C →B 的方向匀速运动,设动点N 的运动速度为v (cm /s ).已知两动点M ,N 经过时间x (s )在线段BC 上相遇(不包含点C ),动点M ,N 相遇后立即同时停止运动,记此时△APM 与△DPN 的面积分别为S 1(cm 2),S 2(cm 2)83. ①求动点N 运动速度v (cm /s )的取值范围;84. ②试探究S 1•S 2是否存在最大值,若存在,求出S 1•S 2的最大值并确定运动时间x 的值;若不存在,请说明理由85. .86.87.如图①,抛物线y=-x2+(a+1)x-a与x轴交于A,B两点(点A位于点B的左侧),与y轴交于点C.已知△ABC的面积是6.88.(1)求a的值;89.(2)求△ABC外接圆圆心的坐标;90.(3)如图②,P是抛物线上一点,Q为射线CA上一点,且P、Q两点均在第三象限内,Q、A是位于直线BP同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2d,且∠PAQ=∠AQB,求点Q的坐标.91.6答案和解析1.【答案】D【解析】解:5的相反数是-5.故选:D.根据只有符号不同的两数叫做互为相反数解答.本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.【答案】B【解析】解:这组数据排列顺序为:2,2,4,5,7,∴这组数据的中位数为4,故选:B.将数据从小到大重新排列后根据中位数的定义求解可得.本题主要考查中位数,熟练掌握中位数的定义是解题的关键.3.【答案】D【解析】解:将26000000用科学记数法表示为:2.6×107.故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】A【解析】解:如图所示:∵a∥b,∠1=54°,∴∠1=∠3=54°,∴∠2=180°-54°=126°.故选:A.直接利用平行线的性质得出∠3的度数,再利用邻补角的性质得出答案.此题主要考查了邻补角的性质以及平行线的性质,正确得出∠3的度数是解题关键.5.【答案】D【解析】解:∵AB为⊙O的切线,∴∠OAB=90°,∵∠ABO=36°,∴∠AOB=90°-∠ABO=54°,∵OA=OD,∴∠ADC=∠OAD,∵∠AOB=∠ADC+∠OAD,∴∠ADC=∠AOB=27°;故选:D.7由切线的性质得出∠OAB=90°,由直角三角形的性质得出∠AOB=90°-∠ABO=54°,由等腰三角形的性质得出∠ADC=∠OAD,再由三角形的外角性质即可得出答案.本题考查了切线的性质、直角三角形的性质、等腰三角形的性质以及三角形的外角性质;熟练掌握切线的性质和等腰三角形的性质是解题的关键.6.【答案】A【解析】解:设软面笔记本每本售价为x元,根据题意可列出的方程为:=.故选:A.直接利用用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本,得出等式求出答案.此题主要考查了由实际问题抽象出分式方程,正确找出等量关系是解题关键.7.【答案】D【解析】解:如图所示:不等式kx+b>1的解为:x>1.故选:D.直接利用已知点画出函数图象,利用图象得出答案.此题主要考查了一次函数与一元一次不等式,正确数形结合分析是解题关键.8.【答案】C【解析】解:过D作DE⊥AB,∵在D处测得旗杆顶端A的仰角为30°,∴∠ADE=30°,∵BC=DE=18m,∴AE=DE•tan30°=18m,∴AB=AE+BE=AE+CD=18+1.5=19.5m,故选:C.根据三角函数和直角三角形的性质解答即可.此题考查了仰角的定义.注意能借助仰角构造直角三角形并解直角三角形是解此题的关键.9.【答案】C【解析】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=OC=AC=2,OB=OD=BD=8,∵△ABO沿点A到点C的方向平移,得到△A'B'O',点A'与点C重合,∴O'C=OA=2,O'B'=OB=8,∠CO'B'=90°,∴AO'=AC+O'C=6,∴AB'===10;故选:C.由菱形的性质得出AC⊥BD,AO=OC=AC=2,OB=OD=BD=8,由平移的性质得出O'C=OA=2,O'B'=OB=8,∠CO'B'=90°,得出AO'=AC+O'C=6,由勾股定理即可得出答案.本题考查了菱形的性质、平移的性质、勾股定理;熟练掌握菱形的性质和平移的性质是解题的关键.810.【答案】B【解析】解:∵AB⊥AD,AD⊥DE,∴∠BAD=∠ADE=90°,∴DE∥AB,∴∠CED=∠CAB,∵∠C=∠C,∴△CED∽△CAB,∵DE=1,AB=2,即DE:AB=1:2,∴S△DEC:S△ACB=1:4,∴S四边形ABDE:S△ACB=3:4,∵S四边形ABDE=S△ABD+S△ADE =×2×2+×2×1=2+1=3,∴S△ACB=4,故选:B.由题意得到三角形DEC与三角形ABC相似,由相似三角形面积之比等于相似比的平方两三角形面积之比,进而求出四边形ABDE与三角形ABC面积之比,求出四边形ABDE面积,即可确定出三角形ABC面积.此题考查了相似三角形的判定与性质,以及等腰直角三角形,熟练掌握相似三角形的判定与性质是解本题的关键.11.【答案】a5【解析】解:a2•a3=a2+3=a5.故答案为:a5.根据同底数的幂的乘法,底数不变,指数相加,计算即可.熟练掌握同底数的幂的乘法的运算法则是解题的关键.12.【答案】x(x-y)【解析】解:x2-xy=x(x-y).故答案为:x(x-y).直接提取公因式x,进而分解因式即可.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.13.【答案】x≥6【解析】解:若在实数范围内有意义,则x-6≥0,解得:x≥6.故答案为:x≥6.直接利用二次根式有意义的条件分析得出答案.此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.14.【答案】5【解析】解:∵a+2b=8,3a+4b=18,则a=8-2b,代入3a+4b=18,解得:b=3,9则a=2,故a+b=5.故答案为:5.直接利用已知解方程组进而得出答案.此题主要考查了解二元一次方程组,正确掌握解题方法是解题关键.15.【答案】5√22【解析】解:10×10=100(cm2)=(cm)答:该“七巧板”中7块图形之一的正方形边长为cm.故答案为:.观察图形可知该“七巧板”中7块图形之一的正方形面积是大正方形面积的,先根据正方形面积公式求出大正方形面积,从而得到小正方形面积,进一步得到该“七巧板”中7块图形之一的正方形边长.考查了七巧板,关键是得到该“七巧板”中7块图形之一的正方形面积是大正方形面积的.16.【答案】827【解析】解:由题意可得:小立方体一共有27个,恰有三个面涂有红色的有8个,故取得的小正方体恰有三个面涂有红色的概率为:.故答案为:.直接根据题意得出恰有三个面涂有红色的有8个,再利用概率公式求出答案.此题主要考查了概率公式的应用,正确得出三个面涂有红色小立方体的个数是解题关键.17.【答案】5【解析】解:连接OP,如图所示.∵OA=OB,∠AOB=90°,∴∠OAB=45°.∵PC⊥OA,∴△ACD为等腰直角三角形,∴AC=CD=1.设该扇形的半径长为r,则OC=r-1,在Rt△POC中,∠PCO=90°,PC=PD+CD=3,∴OP2=OC2+PC2,即r2=(r-1)2+9,解得:r=5.故答案为:5.连接OP,利用等腰三角形的性质可得出∠OAB=45°,结合PC⊥OA可得出△ACD为等腰直角三角形,进而可得出AC=1,设该扇形的半径长为r,则OC=r-1,在Rt△POC中,利用勾股定理可得出关于r的方程,解之即可得出结论.10本题考查了勾股定理、等腰直角三角形以及圆的认识,利用勾股定理,找出关于扇形半径的方程是解题的关键. 18.【答案】(10+12√2) 【解析】 解:如图,EF=DG=CH=,∵含有45°角的直角三角板, ∴BC=,GH=2, ∴FG=8--2-=6-2, ∴图中阴影部分的面积为:8×8÷2-(6-2)×(6-2)÷2 =32-22+12=10+12(cm 2)答:图中阴影部分的面积为(10)cm 2.故答案为:(10).图中阴影部分的面积=外框大直角三角板的面积-内框小直角三角板的面积,根据等腰直角三角形的性质求出内框直角边长,再根据三角形面积公式计算即可求解.考查了等腰直角三角形,相似三角形的判定与性质,平行线之间的距离,关键是求出内框直角边长.19.【答案】解:原式=x−3(x+3)2÷(x+3x+3-6x+3) =x−3(x+3)2÷x−3x+3=x−3(x+3)2•x+3x−3=1x+3,当x =√2-3时,原式=1√2−3+3=1√2=√22. 【解析】先根据分式的混合运算顺序和运算法则化简原式,再将x 的值代入计算可得.本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则. 20.【答案】解:原式=3+2-1=4.【解析】直接利用绝对值的性质以及零指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.21.【答案】解:解不等式x +1<5,得:x <4,解不等式2(x +4)>3x +7,得:x <1,则不等式组的解集为x <1.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.【答案】12【解析】解:(1)从盒子中任意抽取一张卡片,恰好抽到标有奇数卡片的概率是为=,故答案为:.题意列表得:1 2 3 41 3 4 52 3 5 63 4 5 74 5 6 7由表可知,共有12种等可能结果,其中抽取的2张卡片标有数字之和大于4的有8种结果,所以抽取的2张卡片标有数字之和大于4的概率为=.(1)直接利用概率公式计算可得;(2)用列表法将所有等可能的结果一一列举出来即可,找到符合条件的结果数,再利用概率公式计算.本题考查列表法与树状图法,解答本题的关键是明确题意,画出相应的树状图或表格,求出相应的概率.23.【答案】36 16【解析】解:(1)参加这次问卷调查的学生人数为30÷20%=150(人),航模的人数为150-(30+54+24)=42(人),补全图形如下:(2)m%=×100%=36%,n%=×100%=16%,即m=36、n=16,故答案为:36、16;(3)估计该校选择“围棋”课外兴趣小组的学生有1200×16%=192(人).(1)由书法小组人数及其对应百分比可得总人数,再根据各小组人数之和等于总人数求得航模人数,从而补全图形;(2)根据百分比的概念可得m、n的值;(3)总人数乘以样本中围棋的人数所占百分比.本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.【答案】(1)证明:∵∠CAF =∠BAE ,∴∠BAC =∠EAF .∵将线段AC 绕A 点旋转到AF 的位置,∴AC =AF .在△ABC 与△AEF 中,{AB =AE ∠BAC =∠EAF AC =AF ,∴△ABC ≌△AEF (SAS ),∴EF =BC ;(2)解:∵AB =AE ,∠ABC =65°,∴∠BAE =180°-65°×2=50°,∴∠FAG =∠BAE =50°.∵△ABC ≌△AEF ,∴∠F =∠C =28°,∴∠FGC =∠FAG +∠F =50°+28°=78°.【解析】(1)由旋转的性质可得AC=AF ,利用SAS 证明△ABC ≌△AEF ,根据全等三角形的对应边相等即可得出EF=BC ;(2)根据等腰三角形的性质以及三角形内角和定理求出∠BAE=180°-65°×2=50°,那么∠FAG=50°.由△ABC ≌△AEF ,得出∠F=∠C=28°,再根据三角形外角的性质即可求出∠FGC=∠FAG+∠F=78°. 本题考查了旋转的性质,全等三角形的判定与性质,等腰三角形的性质,三角形内角和定理以及三角形外角的性质,证明△ABC ≌△AEF 是解题的关键.25.【答案】解:(1)过点A 作AH ⊥x 轴,垂足为点H ,AH 交OC 于点M ,如图所示. ∵OA =AB ,AH ⊥OB , ∴OH =BH =12OB =2, ∴AH =√OA 2−OH 2=6,∴点A 的坐标为(2,6).∵A 为反比例函数y =k x图象上的一点,∴k =2×6=12. (2)∵BC ⊥x 轴,OB =4,点C 在反比例函数y =12x 上,∴BC =k OB =3.∵AH ∥BC ,OH =BH ,∴MH =12BC =32,∴AM =AH -MH =92.∵AM ∥BC ,∴△ADM ∽△BDC , ∴AD DB =AM BC =32.【解析】(1)过点A 作AH ⊥x 轴,垂足为点H ,AH 交OC 于点M ,利用等腰三角形的性质可得出DH 的长,利用勾股定理可得出AH 的长,进而可得出点A 的坐标,再利用反比例函数图象上点的坐标特征即可求出k 值;(2)由OB 的长,利用反比例函数图象上点的坐标特征可得出BC 的长,利用三角形中位线定理可求出MH 的长,进而可得出AM 的长,由AM ∥BC 可得出△ADM ∽△BDC ,利用相似三角形的性质即可求出的值.本题考查了反比例函数图象上点的坐标特征、等腰三角形的性质、勾股定理以及相似三角形的判定与性质,解题的关键是:(1)利用等腰三角形的性质及勾股定理,求出点A 的坐标;(2)利用相似三角形的性质求出的值. 26.【答案】解:(1)∵点D 是BC⏜中点,OD 是圆的半径, ∴OD ⊥BC ,∵AB 是圆的直径,∴∠ACB =90°,∴AC ∥OD ;(2)∵CD⏜=BD ⏜, ∴∠CAD =∠DCB ,∴△DCE ∽△DCA ,∴CD 2=DE •DA ; (3)∵tan ∠CAD =12, ∴△DCE 和△DAC 的相似比为:12,设:DE =a ,则CD =2a ,AD =4a ,AE =3a ,∴AE DE =3,即△AEC 和△DEF 的相似比为3,设:EF =k ,则CE =3k ,BC =8k ,tan ∠CAD =12,∴AC =6k ,AB =10k , ∴sin ∠CDA =35.【解析】(1)点D 是中点,OD 是圆的半径,又OD ⊥BC ,而AB 是圆的直径,则∠ACB=90°,故:AC ∥OD ;(2)证明△DCE ∽△DCA ,即可求解;(3)=3,即△AEC 和△DEF 的相似比为3,设:EF=k ,则CE=3k ,BC=8k ,tan ∠CAD=,则AC=6k ,AB=10k ,即可求解.本题为圆的综合运用题,涉及到三角形相似等知识点,本题的关键是通过相似比,确定线段的比例关系,进而求解.27.【答案】2 10【解析】解:(1)∵t=2.5s 时,函数图象发生改变,∴t=2.5s 时,M 运动到点B 处,∴动点M 的运动速度为:=2cm/s ,∵t=7.5s 时,S=0,∴t=7.5s 时,M 运动到点C 处,∴BC=(7.5-2.5)×2=10(cm ),故答案为:2,10;(2)①∵两动点M,N在线段BC上相遇(不包含点C),∴当在点C相遇时,v==(cm/s),当在点B相遇时,v==6(cm/s),∴动点N运动速度v(cm/s)的取值范围为cm/s<v≤6cm/s;②过P作EF⊥AB于F,交CD于E,如图3所示:则EF∥BC,EF=BC=10,∴=,∵AC==5,∴=,解得:AF=2,∴DE=AF=2,CE=BF=3,PF==4,∴EP=EF-PF=6,∴S1=S△APM=S△APF+S梯形PFBM-S△ABM=×4×2+(4+2x-5)×3-×5×(2x-5)=-2x+15,S2=S△DPM=S△DEP+S梯形EPMC-S△DCM=×2×6+(6+15-2x)×3-×5×(15-2x)=2x,∴S1•S2=(-2x+15)×2x=-4x2+30x=-4(x-)2+,∵2.5<<7.5,在BC边上可取,∴当x=时,S1•S2的最大值为.(1)由题意得t=2.5s时,函数图象发生改变,得出t=2.5s时,M运动到点B处,得出动点M 的运动速度为:=2cm/s,由t=7.5s时,S=0,得出t=7.5s时,M运动到点C处,得出BC=10(cm);(2)①由题意得出当在点C相遇时,v==(cm/s),当在点B相遇时,v==6(cm/s),即可得出答案;②过P作EF⊥AB于F,交CD于E,则EF∥BC,由平行线得出=,得出AF=2,DE=AF=2,CE=BF=3,由勾股定理得出PF=4,得出EP=6,求出S1=S△APM=S△APF+S梯形PFBM-S△ABM=-2x+15,S2=S△DPM=S△DEP+S梯形EPMC-S△DCM=2x,得出S1•S2=(-2x+15)×2x=-4x2+30x=-4(x-)2+,即可得出结果.本题是四边形综合题目,考查了矩形的性质、函数的图象、三角形面积公式、梯形面积公式、平行线的性质、勾股定理等知识;本题综合性强,有一定难度,正确理解函数图象是解题的关键.28.【答案】解:(1)∵y =-x 2+(a +1)x -a令y =0,即-x 2+(a +1)x -a =0解得x 1=a ,x 2=1由图象知:a <0∴A (a ,0),B (1,0)∵s △ABC =6 ∴12(1−a)(−a)=6解得:a =-3,(a =4舍去)(2)设直线AC :y =kx +b ,由A (-3,0),C (0,3),可得-3k +b =0,且b =3∴k =1即直线AC :y =x +3,A 、C 的中点D 坐标为(-32,32)∴线段AC 的垂直平分线解析式为:y =-x ,线段AB 的垂直平分线为x =-1代入y =-x ,解得:y =1∴△ABC 外接圆圆心的坐标(-1,1)(3)作PM ⊥x 轴,则s △BAP =12AB ⋅PM =12×4×d∵s △PQB =S△PAB ∴A 、Q 到PB 的距离相等,∴AQ ∥PB设直线PB 解析式为:y =x +b∵直线经过点B (1,0)所以:直线PB 的解析式为y =x -1联立{y =x −1y=−x 2−2x+3x=−4解得:{y=−5∴点P坐标为(-4,-5)又∵∠PAQ=∠AQB可得:△PBQ≌△ABP(AAS)∴PQ=AB=4设Q(m,m+3)由PQ=4得:解得:m=-4,m=-8(舍去)∴Q坐标为(-4,-1)【解析】(1)由y=-x2+(a+1)x-a,令y=0,即-x2+(a+1)x-a=0,可求出A、B坐标结合三角形的面积,解出a=-3;(2)三角形外接圆圆心是三边垂直平分线的交点,求出两边垂直平分线,解交点可求出;(3)作PM⊥x轴,则=由可得A、Q到PB的距离相等,得到AQ∥PB,求出直线PB的解析式,以抛物线解析式联立得出点P坐标,由于△PBQ≌△ABP,可得PQ=AB=4,利用两点间距离公式,解出m值.本题考查二次函数的综合应用,函数和几何图形的综合题目,抛物线和直线“曲直”联立解交点,利用三角形的全等和二次函数的性质把数与形有机的结合在一起,转化线段长求出结果.。
2021江苏省苏州市中考数学(Word版,含答案)

2021年苏州市初中毕业暨升学考试试卷数学本试卷由选择题、填空题和解答题三大题组成,共28小题,满分130分,考试时间120分钟. 注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;2.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题:3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效. 一、选择题:本大题共40小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置上.1.计算2的结果是( )A B .3C .D .92.如图,圆锥的主视图是( )A .B .C .D .3.如图,在方格纸中,将Rt AOB △绕点B 按顺时针方向旋转90°后得到Rt A O B ''△,则下列四个图形中正确的是( )A .B .C .D .4.已知两个不等于0的实数a 、b 满足0a b +=,则b aa b+等于( )A .2-B .1-C .1D .25.为增强学生的环保意识,共建绿色文明校园.某学校组织“废纸宝宝旅行记”活动.经统计,七年级5个班级一周回收废纸情况如下表;则每个班级回收废纸的平均重量为( ) A .5kg B .4.8kgC .4.6kgD .4.5kg6.已知点)A m ,3,2B n ⎛⎫⎪⎝⎭在一次函数21y x =+的图像上,则m 与n 的大小关系是( )A .m n >B .m n =C .m n <D .无法确定7.某公司上半年生产甲,乙两种型号的无人机若干架.已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机x 架,乙种型号无人机y 架.根据题意可列出的方程组是( )A .()()111,3122x x y y x y ⎧=+-⎪⎪⎨⎪=++⎪⎩B .()()111.3122x x y y x y ⎧=++⎪⎪⎨⎪=+-⎪⎩C .()()111,2123x x y y x y ⎧=+-⎪⎪⎨⎪=++⎪⎩D .()()111,2123x x y y x y ⎧=++⎪⎪⎨⎪=+-⎪⎩8.已知抛物线22y x kx k=+-的对称轴在y 轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则k 的值是( ) A .5-或2B .5-C .2D.2-9.如图,在平行四边形ABCD 中,将ABC △沿着AC 所在的直线翻折得到AB C '△,B C '交AD 于点E ,连接B D ',若60B ∠=︒,45ACB ∠=︒,AC =,则B D '的长是( )A .1B C D 10.如图,线段10AB =,点C 、D 在AB 上,1AC BD ==.已知点P 从点C 出发,以每秒1个单位长度的速度沿着AB 向点D 移动,到达点D 后停止移动,在点P 移动过程中作如下操作:先以点P 为圆心,PA 、PB 的长为半径分别作两个圆心角均为60°的扇形,再将两个扇形分别围成两个圆锥的侧面.设点P 的移动时间为(秒).两个圆锥的底面面积之和为S .则S 关于t 的函数图像大致是( )A .B .C .D .二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上, 11.全球平均每年发生的雷电次数约为16000000次,数据16000000用科学记数法可表示为______. 12.因式分解221x x -+=______.13.一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上.每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是______.14.如图.在Rt ABC △中,90C ∠=︒,AF EF =.若72CFE ∠=︒,则B ∠=______.15.若21m n +=,则2366m mn n ++的值为______. 16.若21x y +=,且01y <<,则x 的取值范围为______.17.如图,四边形ABCD 为菱形,70ABC ∠=︒,延长BC 到E ,在DCE ∠内作射线CM ,使得15ECM ∠=︒,过点D 作DF CM ⊥,垂足为F ,若DF =,则对角线BD 的长为______.(结果保留根号)18.如图,射线OM 、ON 互相垂直,8OA =,点B 位于射线OM 的上方,且在线段OA 的垂直平分线l 上,连接AB ,5AB =.将线段AB 绕点O 按逆时针方向旋转得到对应线段A B '',若点B '恰好落在射线ON 上,则点A '到射线ON 的距离d ≈______.三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔. 19.(本题满分5分)223--. 20.(本题满分5分) 解方程组:34,2 3.x y x y -=-⎧⎨-=-⎩21.(本题满分6分)先化简再求值:21111x x x -⎛⎫+⋅⎪-⎝⎭,其中1x . 22.(本题满分6分)某学校计划在八年级开设“折扇”、“刺绣”、“剪纸”、“陶艺”四门校本课程,要求每人必须参加,并且只能选择其中一门课程.为了解学生对这四门课程的选择情况,学校从八年级全体学生中随机抽取部分学生进行问卷调查.并根据调查结果绘制成如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据以上信息解决下列问题:(1)参加问卷调查的学生人数为______名.补全条形统计图(画图并标注相应数据); (2)在扇形统计图中,选择“陶艺”课程的学生占______%;(3)若该校八年级一共有1000名学生,试估计选择“刺绣”课程的学生有多少名? 23.(本题满分8分)4张相同的卡片上分别写有数字0、1、2-、3,将卡片的背面朝上,洗匀后从中任意抽取1张.将卡片上的数字记录下来;再从余下的3张卡片中任意抽取1张,同样将卡片上的数字记录下来. (1)第一次抽取的卡片上数字是负数的概率为______;(2)小敏设计了如下游戏规则:当第一次记录下来的数字减去第二次记录下来的数字所得结果为非负数时,甲获胜:否则,乙获胜.小敏设计的游戏规则公平吗?为什么?(请用画树状图或列表等方法说明理由). 24.(本题满分8分)如图,在平面直角坐标系中.四边形OABC 为矩形,点C 、A 分别在x 轴和y 轴的正半轴上,点D 为AB 的中点已知实数0k ≠,一次函数3y x k =-+的图像经过点C 、D ,反比例函数()0ky x x=>的图像经过点B ,求k 的值.25.(本题满分8分) 如图,四边形ABCD 内接于O ,12∠=∠,延长BC 到点E ,使得CE AB =,连接ED .(1)求证:BD ED =;(2)若4AB =,6BC =,60ABC ∠=︒,求tan DCB ∠的值.26.(本题满分10分)如图,二次函数()21y x m x m =-++(m 是实数,且10m -<<)的图像与x 轴交于A 、B 两点(点A 在点B 的左侧),其对称轴与x 轴交于点C ,已知点D 位于第一象限,且在对称轴上,OD BD ⊥,点E 在x 轴的正半轴上,OC EC =.连接ED 并延长交y 轴于点F ,连接AF . (1)求A 、B 、C 三点的坐标(用数字或含m 的式子表示); (2)已知点Q 在抛物线的对称轴上,当AFQ △的周长的最小值等于125,求m 的值.27.(本题满分10分)如图①,甲,乙都是高为6米的长方体容器,容器甲的底面ABCD 是正方形,容器乙的底面EFGH 是矩形.如图②,已知正方形ABCD 与矩形EFGH 满足如下条件:正方形ABCD 外切于一个半径为5米的圆O ,矩形EFGH 内接于这个圆O ,2EF EH =.(1)求容器甲,乙的容积分别为多少立方米?(2)现在我们分别向容器甲,乙同时持续注水(注水前两个容器是空的),一开始注水流量均为25立方米/小时,4小时后.把容器甲的注水流量增加a 立方米/小时,同时保持容器乙的注水流量不变,继续注水2小时后,把容器甲的注水流量再一次增加50立方米/小时,同时容器乙的注水流量仍旧保持不变.直到两个容器的水位高度相同,停止注水.在整个注水过程中,当注水时间为t 时,我们把容器甲的水位高度记为h 甲,容器乙的水位高度记为h 乙,设h h h -=乙甲,已知h (米)关于注水时间t (小时)的函数图像如图③所示,其中MN 平行于横轴.根据图中所给信息,解决下列问题: ①求a 的值;②水图③中线段PN 所在直线的解析式.28.(本题满分10分)如图,在矩形ABCD 中,线段EF 、GH 分别平行于AD 、AB ,它们相交于点P ,点1P 、2P 分别在线段PF 、PH 上,1PP PG =,2PP PE =,连接1PH 、2P F ,1PH 与2P F 交于点Q .已知::1:2AG GD AE EB ==.设AG a =,AE b =.(1)四边形EBHP 的面积______四边形GPFD 的面积(填“>”、“=”或“<”); (2)求证:12PFQ P HQ ∽△△;(3)设四边形12PPQP 的面积为1S ,四边形CFQH 的面积为2S ,求12S S 的值.2021年苏州市初中毕业暨升学考试数学试题参考答案一、选择题:(每小题3分,共30分) 1.B2.A3.B4.A5.C6.C7.D8.B9.B10.D二、填空题:(每小题3分,共24分) 11.71.610⨯ 12.()21x - 13.29 14.54 15.316.102x <<17.18.245三、解答题:(共76分) 19.解:原式2295=+-=-. 20.解:由①2⨯,得628x y -=-.③ 由③-②,得55x =-,1x =-. 把1x =-代入①,得1y =.原方程组的解为1,1.x y =-⎧⎨=⎩21.解:原式()()111111x x x x x x+--+=⋅=+-.当1x =时,原式= 22.解:(1)50,画图并标注相应数据,如下图所示.(2)10;(3)由题意得:10100020050⨯=(名). 答:选择“刺绣”课程有200名学生, 23.解:(1)14;(2)用树状图或表格列出所有等可能的结果:∵P (结果为非负数)122==, P (结果为负数)61122==.∴游戏规则公平.24.解:把0y =代入3y x k =-+,得3k x =. ∴,03k C ⎛⎫⎪⎝⎭.∵BC x ⊥轴,∴点B 横坐标为3k .把3k x =代入ky x=,得3y =. ∴,33k B ⎛⎫⎪⎝⎭. ∵点D 为AB 的中点,∴AD BD =.∴,36k D ⎛⎫⎪⎝⎭. ∵点,36k D ⎛⎫⎪⎝⎭在直线3y x k =-+上, ∴336kk =-⨯+. ∴6k =.25.(1)证明:∵四边形.ABCD 是圆的内接四边形,∴180A BCD ∠+∠=︒. ∵180DCE BCD ∠+∠=︒, ∴A DCE ∠=∠.∵12∠=∠,∴AD CD =, ∴AD CD =.在ABD △和CED △中,,,.AB CE A DCE AD CD =⎧⎪∠=∠⎨⎪=⎩∴ABD CED ≌△△, ∴BD ED =.(2)解:过点D 作DM BE ⊥,垂足为M . ∵4AB =,6BC =,AB CE =, ∴10BE =.由(1)知BD ED =.∴5BM EM ==. ∴1CM =.∵60ABC ∠=︒,12∠=∠,∴230∠=︒.∴tan 305DM BM =⋅︒==.∴tan DM DCB CM ∠==.26.解:(1)由()210x m x m -++=得x m =或1,∴(),0A m ,()1,0B , ∴对称轴为直线12m x +=,∴1,02m C +⎛⎫⎪⎝⎭. (2)在Rt ODB △中,CD OB ⊥,12m OC +=,11122m mBC +-=-=.由COD CDB ∽△△,得22111224m m m CD OC CB +--=⋅=⋅=. ∵CD x ⊥轴,OF x ⊥轴,∴//CD OF . ∵OC EC =,∴2OF CD =. ∴22241OF CD m ==-.在Rt AOF △中,222AF OA OF =+,∴22211AF m m =+-=,即1AF =. ∵点A 与点B 关于对称轴对称,∴QA QB =.∴当点F 、Q 、B 三点共线时,FQ AQ +的长最小,此时AFQ △的周长最小.∴AFQ △的周长的最小值为125,∴FQ AQ +的长最小值为75,即75BF =. ∵222OF OB BF +=,∴2491125m -+=. ∴15m =±. ∵10m -<<,∴15m =-.27.(1)由图知,正方形ABCD 的边长10AB =,∴容器甲的容积为2106600⨯=立方米.如图,连接FH ,∵90FEH ∠=︒,∴FH 为直径.在Rt EFH △中, 2EF EH =,10FH =,根据勾股定理,得EF =EH =∴容器乙的容积为6240=立方米.(2)①当4t =时,425425 2.51 1.540100h ⨯⨯=-=-=. ∵MN 平行于横轴,∴()4,1.5M ,()6,1.5N .由上述结果,知6小时后高度差为1.5米,∴2562562 1.540100a ⨯⨯+-=. 解得37.5a =.②当注水t 小时后,由0h h -=乙甲,得()()25437.565025040100t t t t +-⨯+-⨯-=. 解得9t =.即()9,0P . 设线段PN 所在直线的解析式为h kt m =+,∵()6,1.5N 、()9,0P 在直线PN 上,∴ 1.56,09.k m k m =+⎧⎨=+⎩∴1,29.2k m ⎧=-⎪⎪⎨⎪=⎪⎩∴线段PN 所在直线的解析式为1922h t =-+. 28.解:(1)∵四边形ABCD 为矩形,∴90A B C ∠=∠=∠=︒. ∵//GH AB ,∴90B GHC ∠=∠=︒,90A PGD ∠=∠=︒.∵//EF AD ,∴90PGD HPF ∠=∠=︒.∴四边形PFCH 为矩形.同理可得:四边形AGPE 、GDFP 、EPHB 均为矩形.∵AG a =,AE b =,::1:2AG GD AE EB ==,∴PE a =,PG b =,2GD PF a ==,2EB PH b ==.∴四边形EBHP 的面积2PE PH ab =⋅=,四边形GPFD 的面积2PG PF ab =⋅=. .四边形EBHP 的面积=四边形GPFD 的面积.(2)∵1PP PG =,2PP PE =,由(1)中2PE PH ab ⋅=,2PG PF ab ⋅=, ∴21PP PH PP PF ⋅=⋅即21PP PF PP PH =, ∵21FPP HPP ∠=∠,∴21PPF PPH ∽△△. ∴21PFP PHP ∠=∠.∵12PQF PQH ∠=∠, ∴12PFQ P HQ ∽△△.(3)解法一:连接12PP ,FH , ∵2122PP a CH a ==,1122PP b CF b ==,∴21PP PP CH CF=. ∵1290PPP C ∠=∠=︒,∴12PPP CFH ∽△△.∴12112PP PP FH CF ==,12212 14PP P CFH S PP S FH ⎛⎫== ⎪⎝⎭△△. 由(2)12PFQ P HQ ∽△△,得12PQ FQ P Q HQ =,∴12PQ P Q FQ HQ =. ∵12PQP FQH ∠=∠,∴12PQP FQH ∽△△. ∴1221214PQP FQH S PP S FH ⎛⎫== ⎪⎝⎭△△. ∵12121PPP PP QS S S =+△△,∴()1211114444CFH FQM CFH FQM S S S S S S =+=+=△△△△. ∴1214S S =. 解法二:连接12PP 、FH . ∵2122PP a CH a ==,1122PP b CF b ==,∴21PP PP CH CF =. ∵1290PPP C ∠=∠=︒,∴12PPP CFH ∽△△. ∴12112PP PP FH CF ==,12PPP CFH ∠=∠,21PP P CHF ∠=∠. 由(2)中12PFQ P HQ ∽△△,得12PQ FQ P Q HQ =, ∴12PQ P Q FQ HQ =. ∵12PQP FQH ∠=∠,∴12PQP FQH ∽△△. ∴121212PQ P Q PP FQ QH FH ===,21P PQ HFQ ∠=∠,12PPQ FHQ ∠=∠. ∴121212PQ P Q PP PP FQ HQ CF CH ====,1PPQ CFQ ∠=∠,2PPQ CHQ ∠=∠. 又12PPP C ∠=∠,12PQP FQH ∠=∠,∴四边形12PPOP∽的四边形CFQH.∴211214S PPS CF⎛⎫==⎪⎝⎭.。
2022年江苏省苏州市中考数学试卷(含答案解析版)

2022年江苏省苏州市中考数学试卷(含答案解析版) 2022年江苏省苏州市中考数学试卷一、选择题:本大题共10个小题,每题3分,共30分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的. 1.〔3分〕〔﹣21〕÷7的结果是〔〕A.3B.﹣3 C. D.2.〔3分〕有一组数据:2,5,5,6,7,这组数据的平均数为〔〕 A.3 B.4 C.5 D.6 3.〔3分〕小亮用天平称得一个罐头的质量为2.026kg,用四舍五入法将2.026精确到0.01的近似值为〔〕 A.2 B.2.0 C.2.02 D.2.03 4.〔3分〕关于x的一元二次方程x2﹣2x+k=0有两个相等的实数根,那么k的值为〔〕 A.1 B.﹣1 C.2 D.﹣2 5.〔3分〕为了鼓励学生课外阅读,学校公布了“阅读奖励〞方案,并设置了“赞成、反对、无所谓〞三种意见.现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对〞和“无所谓〞意见的共有30名学生,估计全校持“赞成〞意见的学生人数约为〔〕A.70 B.720 C.1680 D.2370 6.〔3分〕假设点A〔m,n〕在一次函数y=3x+b 的图象上,且3m﹣n>2,那么b的取值范围为〔〕A.b>2 B.b>﹣2 C.b<2 D.b<﹣2 7.〔3分〕如图,在正五边形ABCDE 中,连接BE,那么∠ABE的度数为〔〕A.30° B.36° C.54° D.72°28.〔3分〕假设二次函数y=ax+1的图象经过点〔﹣2,0〕,那么关于x的方程a〔x﹣2〕2+1=0的实数根为〔〕 A.x1=0,x2=4 B.x1=﹣2,x2=6C.x1=,x2=D.x1=﹣4,x2=09.〔3分〕如图,在Rt△ABC中,∠ACB=90°,∠A=56°.以BC为直径的⊙O交AB于点D.E是⊙O上一点,且=,连接OE.过点E作EF⊥OE,交AC的延长线于点F,那么∠F的度数为〔〕第1页〔共25页〕A.92° B.108° C.112° D.124° 10.〔3分〕如图,在菱形ABCD中,∠A=60°,AD=8,F是AB的中点.过点F作FE⊥AD,垂足为E.将△AEF沿点A 到点B的方向平移,得到△A'E'F'.设 P、P'分别是 EF、E'F'的中点,当点A'与点B重合时,四边形PP'CD的面积为〔〕A.28 B.24 C.32 D.32﹣8二、填空题〔每题3分,总分值24分,将答案填在答题纸上〕 11.〔3分〕计算:〔a2〕2= . 12.〔3分〕如图,点D在∠AOB的平分线OC上,点E在OA上,ED∥OB,∠1=25°,那么∠AED的度数为°.13.〔3分〕某射击俱乐部将11名成员在某次射击训练中取得的成绩绘制成如下图的条形统计图.由图可知,11名成员射击成绩的中位数是环.14.〔3分〕分解因式:4a2﹣4a+1= . 15.〔3分〕如图,在“3×3〞网格中,有3个涂成黑色的小方格.假设再从余下的6个小方格中随机选取1个涂成黑色,那么完成的图案为轴对称图案的概率是.第2页〔共25页〕16.〔3分〕如图,AB是⊙O的直径,AC是弦,AC=3,∠BOC=2∠AOC.假设用扇形OAC〔图中阴影局部〕围成一个圆锥的侧面,那么这个圆锥底面圆的半径是. 17.〔3分〕如图,在一笔直的沿湖道路l上有A、B两个游船码头,观光岛屿C在码头 A北偏东60°的方向,在码头 B北偏西45°的方向,AC=4km.游客小张准备从观光岛屿C乘船沿CA回到码头A或沿CB回到码头B,设开往码头A、B的游船速度分别为v1、v2,假设回到 A、B所用时间相等,那么果保存根号〕. = 〔结18.〔3分〕如图,在矩形ABCD中,将∠ABC绕点A按逆时针方向旋转一定角度后,BC的对应边B'C'交CD边于点G.连接BB'、CC'.假设AD=7,CG=4,AB'=B'G,那么= 〔结果保存根号〕.三、解答题〔本大题共10小题,共76分.解容许写出文字说明、证明过程或演算步骤.〕第3页〔共25页〕19.〔5分〕计算:|﹣1|+20.〔5分〕解不等式组:﹣〔π﹣3〕0..〕÷,其中x=﹣2.21.〔6分〕先化简,再求值:〔1﹣22.〔6分〕某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y〔元〕是行李质量x〔kg〕的一次函数.行李质量为20kg时需付行李费2元,行李质量为50kg时需付行李费8元.〔1〕当行李的质量x超过规定时,求y与x之间的函数表达式;〔2〕求旅客最多可免费携带行李的质量. 23.〔8分〕初一〔1〕班针对“你最喜爱的课外活动工程〞对全班学生进行调查〔每名学生分别选一个活动工程〕,并根据调查结果列出统计表,绘制成扇形统计图.男、女生所选工程人数统计表工程男生〔人数〕女生〔人数〕 7 9 机器人 m 4 3D打印 2 2 航模 5 n 其他根据以上信息解决以下问题:〔1〕m= ,n= ;〔2〕扇形统计图中机器人工程所对应扇形的圆心角度数为°;〔3〕从选航模工程的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法〔画树状图或列表〕求所选取的2名学生中恰好有1名男生、1名女生的概率. 24.〔8分〕如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.〔1〕求证:△AEC≌△BED;〔2〕假设∠1=42°,求∠BDE的度数.25.〔8分〕如图,在△ABC中,AC=BC,AB⊥x轴,垂足为A.反比例函数第4页〔共25页〕y=〔x>0〕的图象经过点C,交AB于点D.AB=4,BC=.〔1〕假设OA=4,求k的值;〔2〕连接OC,假设BD=BC,求OC的长.26.〔10分〕某校机器人兴趣小组在如图①所示的矩形场地上开展训练.机器人从点A出发,在矩形ABCD边上沿着A→B→C→D的方向匀速移动,到达点D时停止移动.机器人的速度为1个单位长度/s,移动至拐角处调整方向需要1s 〔即在B、C处拐弯时分别用时1s〕.设机器人所用时间为t〔s〕时,其所在位置用点P表示,P到对角线BD的距离〔即垂线段 PQ的长〕为d个单位长度,其中d与t的函数图象如图②所示.〔1〕求AB、BC的长;〔2〕如图②,点M、N分别在线段EF、GH上,线段MN平行于横轴,M、N的横坐标分别为t1、t2.设机器人用了t1〔s〕到达点P1处,用了t2〔s〕到达点P2处〔见图①〕.假设CP1+CP2=7,求t1、t2的值.27.〔10分〕如图,△ABC内接于⊙O,AB是直径,点D在⊙O上,OD∥BC,过点D作DE⊥AB,垂足为E,连接CD交OE边于点F.〔1〕求证:△DOE∽△ABC;〔2〕求证:∠ODF=∠BDE;〔3〕连接OC,设△DOE的面积为S1,四边形BCOD的面积为S2,假设求sinA 的值.=,第5页〔共25页〕28.〔10分〕如图,二次函数y=x2+bx+c的图象与x轴交于 A、B两点,与y 轴交于点C,OB=OC.点D在函数图象上,CD∥x轴,且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点.〔1〕求b、c的值;〔2〕如图①,连接BE,线段OC上的点F关于直线l的对称点F'恰好在线段BE上,求点F的坐标;〔3〕如图②,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由.第6页〔共25页〕2022年江苏省苏州市中考数学试卷参考答案与试题解析一、选择题:本大题共10个小题,每题3分,共30分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的. 1.〔3分〕〔﹣21〕÷7的结果是〔〕A.3B.﹣3 C. D.【分析】根据有理数的除法法那么计算即可.【解答】解:原式=﹣3,应选B.【点评】此题考查有理数的除法法那么,属于根底题. 2.〔3分〕有一组数据:2,5,5,6,7,这组数据的平均数为〔〕 A.3 B.4 C.5 D.6【分析】把给出的这5个数据加起来,再除以数据个数5,就是此组数据的平均数.【解答】解:〔2+5+5+6+7〕÷5 =25÷5 =5答:这组数据的平均数是5.应选C 【点评】此题主要考查了平均数的意义与求解方法,关键是把给出的这5个数据加起来,再除以数据个数5. 3.〔3分〕小亮用天平称得一个罐头的质量为2.026kg,用四舍五入法将2.026精确到0.01的近似值为〔〕 A.2 B.2.0 C.2.02 D.2.03≈2.03,应选D.【点评】此题考查近似数和有效数字,解答此题的关键是明确近似数和有效数字的表示方法. 4.〔3分〕关于x的一元二次方程x2﹣2x+k=0有两个相等的实数根,那么k的值为〔〕A.1 B.﹣1 C.2 D.﹣2【分析】根据方程的系数结合根的判别式,即可得出△=4﹣4k=0,解之即可得出k值.【解答】解:∵关于x的一元二次方程x2﹣2x+k=0有两个相等的实数根,∴△=〔﹣2〕2﹣4k=4﹣4k=0,解得:k=1.应选A.第7页〔共25页〕【点评】此题考查了根的判别式,熟练掌握“当△=0时,方程有两个相等的实数根〞是解题的关键. 5.〔3分〕为了鼓励学生课外阅读,学校公布了“阅读奖励〞方案,并设置了“赞成、反对、无所谓〞三种意见.现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对〞和“无所谓〞意见的共有30名学生,估计全校持“赞成〞意见的学生人数约为〔〕A.70 B.720 C.1680 D.2370【分析】先求出100名学生中持“赞成〞意见的学生人数,进而可得出结论.【解答】解:∵100名学生中持“反对〞和“无所谓〞意见的共有30名学生,∴持“赞成〞意见的学生人数=100﹣30=70名,∴全校持“赞成〞意见的学生人数约=2400×=1680〔名〕.应选C.【点评】此题考查的是用样本估计总体,先根据题意得出100名学生中持赞成〞意见的学生人数是解答此题的关键. 6.〔3分〕假设点A〔m,n〕在一次函数y=3x+b的图象上,且3m﹣n>2,那么b的取值范围为〔〕A.b>2 B.b>﹣2 C.b<2 D.b<﹣2【分析】由点A的坐标结合一次函数图象上点的坐标特征,可得出3m+b=n,再由3m﹣n>2,即可得出b<﹣2,此题得解.【解答】解:∵点A〔m,n〕在一次函数y=3x+b的图象上,∴3m+b=n.∵3m﹣n>2,∴﹣b>2,即b<﹣2.应选D.【点评】此题考查了一次函数图象上点的坐标特征,根据一次函数图象上点的坐标特征结合3m﹣n>2,找出﹣b>2是解题的关键. 7.〔3分〕如图,在正五边形ABCDE中,连接BE,那么∠ABE的度数为〔〕A.30° B.36° C.54° D.72°【分析】在等腰三角形△ABE中,求出∠A的度数即可解决问题.【解答】解:在正五边形ABCDE中,∠A=×〔5﹣2〕×180=108°又知△ABE是等腰三角形,∴AB=AE,第8页〔共25页〕∴∠ABE=〔180°﹣108°〕=36°.应选B.【点评】此题主要考查多边形内角与外角的知识点,解答此题的关键是求出正五边形的内角,此题根底题,比拟简单. 8.〔3分〕假设二次函数y=ax2+1的图象经过点〔﹣2,0〕,那么关于x的方程a〔x﹣2〕2+1=0的实数根为〔〕 A.x1=0,x2=4 B.x1=﹣2,x2=6C.x1=,x2=D.x1=﹣4,x2=0【分析】二次函数y=ax2+1的图象经过点〔﹣2,0〕,得到4a+1=0,求得a=﹣,代入方程a〔x﹣2〕2+1=0即可得到结论.【解答】解:∵二次函数y=ax2+1的图象经过点〔﹣2,0〕,∴4a+1=0,∴a=﹣,∴方程a〔x﹣2〕2+1=0为:方程﹣〔x﹣2〕2+1=0,解得:x1=0,x2=4,应选A.【点评】此题考查了二次函数与x轴的交点问题,一元二次方程的解,正确的〔3分〕如图,在Rt△ABC中,∠ACB=90°,∠A=56°.以理解题意是解题的关键. 9.BC为直径的⊙O交AB于点D.E是⊙O上一点,且=,连接OE.过点E作EF⊥OE,交AC的延长线于点F,那么∠F的度数为〔〕A.92° B.108° C.112° D.124°【分析】直接利用互余的性质再结合圆周角定理得出∠COE的度数,再利用四边形内角和定理得出答案.第9页〔共25页〕【解答】解:∵∠ACB=90°,∠A=56°,∴∠ABC=34°,∵=,∴2∠ABC=∠COE=68°,又∵∠OCF=∠OEF=90°,∴∠F=360°﹣90°﹣90°﹣68°=112°.应选:C.【点评】此题主要考查了圆周角定理以及四边形内角和定理,正确得出∠OCE 的度数是解题关键. 10.〔3分〕如图,在菱形ABCD中,∠A=60°,AD=8,F 是AB的中点.过点F作FE⊥AD,垂足为E.将△AEF沿点A到点B的方向平移,得到△A'E'F'.设 P、P'分别是 EF、E'F'的中点,当点A'与点B重合时,四边形PP'CD的面积为〔〕A.28 B.24 C.32 D.32﹣8【分析】如图,连接BD,DF,DF交PP′于H.首先证明四边形PP′CD是平行四边形,再证明DF⊥PP′,求出DH即可解决问题.【解答】解:如图,连接BD,DF,DF交PP′于H.由题意PP′=AA′=AB=CD,PP′∥AA′∥CD,∴四边形PP′CD是平行四边形,∵四边形ABCD是菱形,∠A=60°,∴△ABD是等边三角形,∵AF=FB,∴DF⊥AB,DF⊥PP′,在Rt△AEF中,∵∠AEF=90°,∠A=60°,AF=4,∴AE=2,EF=2,∴PE=PF=,在Rt△PHF中,∵∠FPH=30°,PF=,∴HF=PF=,第10页〔共25页〕∵DF=4∴DH=4,﹣=,×8=28.∴平行四边形PP′CD的面积=应选A.【点评】此题考查菱形的性质、平行四边形的判定和性质、等边三角形的判定和性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考选择题中的压轴题.二、填空题〔每题3分,总分值24分,将答案填在答题纸上〕 11.〔3分〕计算:〔a2〕2= a4 .【分析】根据幂的乘方和积的乘方的运算法那么求解.【解答】解:〔a2〕2=a4.故答案为:a4.【点评】此题考查了幂的乘方和积的乘方,解答此题的关键是掌握幂的乘方和积的乘方的运算法那么. 12.〔3分〕如图,点D在∠AOB的平分线OC上,点E在OA上,ED∥OB,∠1=25°,那么∠AED的度数为 50 °.【分析】根据平行线的性质得到∠3=∠1,根据角平分线的定义得到∠1=∠2,等量代换得到∠2=∠3,由三角形的外角的性质即可得到结论.【解答】解:∵ED∥OB,∴∠3=∠1,∵点D在∠AOB的平分线OC上,∴∠1=∠2,∴∠2=∠3,∴∠AED=∠2+∠3=50°,故答案为:50.【点评】此题考查了平行线的性质,角平分线的定义,三角形外角的性质,熟练掌握平行线的性质是解题的关键.第11页〔共25页〕13.〔3分〕某射击俱乐部将11名成员在某次射击训练中取得的成绩绘制成如下图的条形统计图.由图可知,11名成员射击成绩的中位数是 8 环.【分析】11名成员射击成绩处在第6位的是8,那么中位数为8.【解答】解:∵按大小排列在中间的射击成绩为8环,那么中位数为8.故答案为:8.【点评】此题考查了中位数的意义,中位数是将一组数据从小到大〔或从大到小〕重新排列后,最中间的那个数〔最中间两个数的平均数〕,叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错. 14.〔3分〕分解因式:4a2﹣4a+1= 〔2a﹣1〕2 .【分析】根据完全平方公式的特点:两项平方项的符号相同,另一项为哪一项两底数积的2倍,此题可用完全平方公式分解因式.【解答】解:4a2﹣4a+1=〔2a﹣1〕2.故答案为:〔2a﹣1〕2.【点评】此题考查用完全平方公式法进行因式分解,能用完全平方公式法进行因式分解的式子的特点需熟练掌握. 15.〔3分〕如图,在“3×3〞网格中,有3个涂成黑色的小方格.假设再从余下的6个小方格中随机选取1个涂成黑色,那么完成的图案为轴对称图案的概率是.【分析】根据轴对称的性质设计出图案即可.【解答】解:如图,∵可选2个方格∴完成的图案为轴对称图案的概率==.故答案为:.第12页〔共25页〕【点评】此题考查的是利用轴对称设计图案,熟知轴对称的性质是解答此题的关键. 16.〔3分〕如图,AB是⊙O的直径,AC是弦,AC=3,∠BOC=2∠AOC.假设用扇形OAC〔图中阴影局部〕围成一个圆锥的侧面,那么这个圆锥底面圆的半径是.【分析】根据平角的定义得到∠AOC=60°,推出△AOC是等边三角形,得到OA=3,根据弧长的规定得到的长度==π,于是得到结论.【解答】解:∵∠BOC=2∠AOC,∠BOC+∠AOC=180°,∴∠AOC=60°,∵OA=OC,∴△AOC是等边三角形,∴OA=3,∴的长度==π,∴圆锥底面圆的半径=,故答案为:.【点评】此题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长. 17.〔3分〕如图,在一笔直的沿湖道路l上有A、B两个游船码头,观光岛屿C在码头 A北偏东60°的方向,在码头 B北偏西45°的方向,AC=4km.游客小张准备从观光岛屿C乘船沿CA回到码头A或沿CB回到码头B,设开往码头A、B的游船速度分别为v1、v2,假设回到 A、B所用时间相等,那么果保存根号〕.= 〔结第13页〔共25页〕【分析】作CD⊥AB于点D,在Rt△ACD中利用三角函数求得CD的长,然后在Rt△BCD中求得BC的长,然后根据=求解.【解答】解:作CD⊥AB于点B.∵在Rt△ACD中,∠CAD=90°﹣60°=30°,∴CD=AC?sin∠CAD=4×=2〔km〕,∵Rt△BCD中,∠CBD=90°,∴BC=CD=2〔km〕,∴===..故答案是:【点评】此题考查了解直角三角形的应用,作出辅助线,转化为直角三角形的计算,求得BC的长是关键. 18.〔3分〕如图,在矩形ABCD中,将∠ABC绕点A按逆时针方向旋转一定角度后,BC的对应边B'C'交CD边于点G.连接BB'、CC'.假设AD=7,CG=4,AB'=B'G,那么=〔结果保存根号〕.第14页〔共25页〕【分析】先连接AC,AG,AC',构造直角三角形以及相似三角形,根据△ABB'∽△ACC',可得到=,设AB=AB'=x,那么AG=x,DG=x﹣4,Rt△ADG中,根据勾股定理可得方程72+〔x﹣4〕2=〔x〕2,求得AB的长以及AC的长,即可得到所求的比值.【解答】解:连接AC,AG,AC',由旋转可得,AB=AB',AC=AC',∠BAB'=∠CAC',∴=,∴△ABB'∽△ACC',∴=,∵AB'=B'G,∠AB'G=∠ABC=90°,∴△AB'G是等腰直角三角形,∴AG=AB',设AB=AB'=x,那么AG=x,DG=x﹣4,∵Rt△ADG中,AD2+DG2=AG2,∴72+〔x ﹣4〕2=〔x〕2,解得x1=5,x2=﹣13〔舍去〕,∴AB=5,∴Rt△ABC中,AC=∴====,故答案为:【点评】此题主要考查了旋转的性质,相似三角形的判定与性质,等腰直角三角形的性质,解一元二次方程以及勾股定理的综合应用,解决问题的关键是作辅助线构造直角三角形以及相似三角形,依据相似三角形的对应边成比例,将化为转,并依据直角三角形的勾股定理列方程求解,从而得出矩形的宽AB,这也是此题的难点所在.三、解答题〔本大题共10小题,共76分.解容许写出文字说明、证明过程或演算步骤.〕 19.〔5分〕计算:|﹣1|+﹣〔π﹣3〕0.【分析】直接利用绝对值的性质以及二次根式的性质和零指数幂的性质分别化简第15页〔共25页〕求出答案.【解答】解:原式=1+2﹣1=2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.〔5分〕解不等式组:.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:由x+1≥4,解得x≥3,由2〔x﹣1〕>3x﹣6,解得x<4,所以不等式组的解集是3≤x <4.【点评】此题考查的是解一元一次不等式组,正确求出每一个不等式解集是根底,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到〞的原那么是解答此题的关键.21.〔6分〕先化简,再求值:〔1﹣〕÷,其中x=【分析】把分式进行化简,再把x的值代入即可求出结果.【解答】解:原式=当时,原式=..【点评】此题主要考查了分式的混合运算﹣化简求值问题,在解题时要乘法公式的应用进行化简. 22.〔6分〕某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y〔元〕是行李质量x 〔kg〕的一次函数.行李质量为20kg时需付行李费2元,行李质量为50kg时需付行李费8元.〔1〕当行李的质量x超过规定时,求y与x之间的函数表达式;〔2〕求旅客最多可免费携带行李的质量.【分析】〔1〕根据〔20,2〕、〔50,8〕利用待定系数法,即可求出当行李的质量x超过规定时,y与x之间的函数表达式;〔2〕令y=0,求出x值,此题得解.【解答】解:〔1〕设y与x的函数表达式为y=kx+b.将〔20,2〕、〔50,8〕代入y=kx+b中,,解得:,∴当行李的质量x超过规定时,y与x之间的函数表达式为y=x﹣2.〔2〕当y=0时,x﹣2=0,解得:x=10.答:旅客最多可免费携带行李10kg.第16页〔共25页〕【点评】此题考查了一次函数的应用、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,解题的关键是:〔1〕利用待定系数法求出y与x之间的函数表达式;〔2〕令y=0,求出x值. 23.〔8分〕初一〔1〕班针对“你最喜爱的课外活动工程〞对全班学生进行调查〔每名学生分别选一个活动工程〕,并根据调查结果列出统计表,绘制成扇形统计图.男、女生所选工程人数统计表工程男生〔人数〕女生〔人数〕 7 9 机器人 m 4 3D打印 2 2 航模 5 n 其他根据以上信息解决以下问题:〔1〕m= 8 ,n= 3 ;〔2〕扇形统计图中机器人工程所对应扇形的圆心角度数为 144 °;〔3〕从选航模工程的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法〔画树状图或列表〕求所选取的2名学生中恰好有1名男生、1名女生的概率.【分析】〔1〕由航模的人数和其所占的百分比可求出总人数,进而可求出3D 打印的人数,那么m的值可求出,从而n的值也可求出;〔2〕由机器人工程的人数所占总人数的百分比即可求出所对应扇形的圆心角度数;〔3〕应用列表法的方法,求出恰好选到1名男生和1名女生的概率是多少即可.【解答】解:〔1〕由两种统计表可知:总人数=4÷10%=40人,∵3D 打印工程占30%,∴3D打印工程人数=40×30%=12人,∴m=12﹣4=8,∴n=40﹣16﹣12﹣4﹣5=3,故答案为:8,3;〔2〕扇形统计图中机器人工程所对应扇形的圆心角度数=故答案为:144;×360°=144°,〔3〕列表得:男1男2 女1 女2 第17页〔共25页〕男1 ﹣﹣男2男1 女1男1 女2男1 男2 男1男2 ﹣﹣女1男2 女2男2 女1 男1女1 男2女1 ﹣﹣女2女1 女2 男1女2 男2女2 女1女2 ﹣﹣由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中“1名男生、1名女生〞有8种可能.所以P〔 1名男生、1名女生〕=.【点评】此题主要考查了列表法与树状图法,以及扇形统计图、条形统计图的应用,要熟练掌握. 24.〔8分〕如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.〔1〕求证:△AEC≌△BED;〔2〕假设∠1=42°,求∠BDE的度数.【分析】〔1〕根据全等三角形的判定即可判断△AEC≌△BED;〔2〕由〔1〕可知:EC=ED,∠C=∠BDE,根据等腰三角形的性质即可知∠C的度数,从而可求出∠BDE的度数;【解答】解:〔1〕证明:∵AE和BD相交于点O,∴∠AOD=∠BOE.在△AOD和△BOE中,∠A=∠B,∴∠BEO=∠2.又∵∠1=∠2,∴∠1=∠BEO,∴∠AEC=∠BED.在△AEC和△BED中,,∴△AEC≌△BED〔ASA〕.〔2〕∵△AEC≌△BED,∴EC=ED,∠C=∠BDE.在△EDC中,∵EC=ED,∠1=42°,∴∠C=∠EDC=69°,∴∠BDE=∠C=69°.【点评】此题考查全等三角形,解题的关键是熟练运用全等三角形的性质与判定,第18页〔共25页〕此题属于中等题型. 25.〔8分〕如图,在△ABC中,AC=BC,AB⊥x轴,垂足为A.反比例函数y=〔x>0〕的图象经过点C,交AB于点D.AB=4,BC=.〔1〕假设OA=4,求k的值;〔2〕连接OC,假设BD=BC,求OC的长.【分析】〔1〕利用等腰三角形的性质得出AE,BE的长,再利用勾股定理得出OA的长,得出C点坐标即可得出答案;〔2〕首先表示出D,C点坐标进而利用反比例函数图象上的性质求出C点坐标,再利用勾股定理得出CO的长.【解答】解:〔1〕作CE⊥AB,垂足为E,∵AC=BC,AB=4,∴AE=BE=2.在Rt△BCE中,BC=,BE=2,∴CE=,∴CE=,∵OA=4,∴C点的坐标为:〔,2〕,∵点C在∴k=5,的图象上,〔2〕设A点的坐标为〔m,0〕,∵BD=BC=,∴AD=,∴D,C两点的坐标分别为:〔m,〕,〔m﹣,2〕.∵点C,D都在的图象上,第19页〔共25页〕∴m=2〔m﹣〕,∴m=6,∴C点的坐标为:〔,2〕,作CF⊥x轴,垂足为F,∴OF=,CF=2,在Rt△OFC中, OC2=OF2+CF2,∴OC=.【点评】此题主要考查了等腰三角形的性质以及勾股定理和反比例函数图象上的性质,正确得出C点坐标是解题关键. 26.〔10分〕某校机器人兴趣小组在如图①所示的矩形场地上开展训练.机器人从点A出发,在矩形ABCD边上沿着A→B→C→D的方向匀速移动,到达点D时停止移动.机器人的速度为1个单位长度/s,移动至拐角处调整方向需要1s〔即在B、C处拐弯时分别用时1s〕.设机器人所用时间为t〔s〕时,其所在位置用点P表示,P到对角线BD的距离〔即垂线段 PQ的长〕为d个单位长度,其中d与t的函数图象如图②所示.〔1〕求AB、BC的长;〔2〕如图②,点M、N分别在线段EF、GH上,线段MN平行于横轴,M、N的横坐标分别为t1、t2.设机器人用了t1〔s〕到达点P1处,用了t2〔s〕到达点P2处〔见图①〕.假设CP1+CP2=7,求t1、t2的值.【分析】〔1〕作AT⊥BD,垂足为T,由题意得到AB=8,AT=中,根据勾股定理得到BT=,在Rt△ABT,根据三角函数的定义即可得到结论;第20页〔共25页〕〔2〕如图,连接P1P2.过P1,P2分别作BD的垂线,垂足为Q1,Q2.那么P1Q1∥P2Q2.根据平行线的性质得到d1=d2,得到P1Q1=P2Q2.根据平行线分线段成比例定理得到.设M,N的横坐标分别为t1,t2,于是得到结论.,【解答】解:〔1〕作AT⊥BD,垂足为T,由题意得,AB=8,AT=在Rt△ABT 中,AB2=BT2+AT2,∴BT=,,∵tan∠ABD=∴AD=6,即BC=6;〔2〕在图①中,连接P1P2.过P1,P2分别作BD的垂线,垂足为Q1,Q2.那么P1Q1∥P2Q2.∵在图②中,线段MN平行于横轴,∴d1=d2,即P1Q1=P2Q2.∴ P1P2∥BD.∴即..又∵CP1+CP2=7,∴CP1=3,CP2=4.设M,N的横坐标分别为t1,t2,由题意得,CP1=15﹣t1,CP2=t2﹣16,∴t1=12,t2=20.【点评】此题考查了动点问题的函数图象,勾股定理矩形的性质,平行线分线段成比例定理,正确的作出辅助线是解题的关键. 27.〔10分〕如图,△ABC 内接于⊙O,AB是直径,点D在⊙O上,OD∥BC,过点D作DE⊥AB,垂足为E,连接CD交OE边于点F.〔1〕求证:△DOE∽△ABC;〔2〕求证:∠ODF=∠BDE;〔3〕连接OC,设△DOE的面积为S1,四边形BCOD的面积为S2,假设第21页〔共25页〕=,求sinA的值.【分析】〔1〕根据圆周角定理和垂直求出∠DEO=∠ACB,根据平行得出∠DOE=∠ABC,根据相似三角形的判定得出即可;〔2〕根据相似三角形的性质得出∠ODE=∠A,根据圆周角定理得出∠A=∠BDC,推出∠ODE=∠BDC即可;〔3〕根据△DOE~△ABC求出S△ABC=4S△DOE=4S1,求出S△BOC=2S1,求出2BE=OE,解直角三角形求出即可.【解答】〔1〕证明:∵AB是⊙O的直径,∴∠ACB=90°,∵DE⊥AB,∴∠DEO=90°,∴∠DEO=∠ACB,∵OD∥BC,∴∠DOE=∠ABC,∴△DOE~△ABC;〔2〕证明:∵△DOE~△ABC,∴∠ODE=∠A,∵∠A和∠BDC是∴∠A=∠BDC,∴∠ODE=∠BDC,∴∠ODF=∠BDE;所对的圆周角,〔3〕解:∵△DOE~△ABC,∴,第22页〔共25页〕即S△ABC=4S△DOE=4S1,∵OA=OB,∴∵∴∴即∴,.,,即S△BOC=2S1,,【点评】此题考查了相似三角形的性质和判定,圆周角定理,平行线的性质,三角形的面积等知识点,能综合运用知识点进行推理是解此题的关键. 28.〔10分〕如图,二次函数y=x2+bx+c的图象与x轴交于 A、B两点,与y轴交于点C,OB=OC.点D在函数图象上,CD∥x轴,且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点.〔1〕求b、c的值;〔2〕如图①,连接BE,线段OC上的点F关于直线l的对称点F'恰好在线段BE上,求点F的坐标;〔3〕如图②,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由.【分析】〔1〕由条件可求得抛物线对称轴,那么可求得b的值;由OB=OC,可用c表示出B点坐标,代入抛物线解析式可求得c的值;〔2〕可设F〔0,m〕,那么可表示出F′的坐标,由B、E的坐标可求得直线BE的解析式,把F′坐标代入直线BE解析式可得到关于m的方程,可求得F点的坐标;第23页〔共25页〕〔3〕设点P坐标为〔n,0〕,可表示出PA、PB、PN的长,作QR⊥PN,垂足为R,那么可求得QR的长,用n可表示出Q、R、N的坐标,在Rt△QRN中,由勾股定理可得到关于n的二次函数,利用二次函数的性质可知其取得最小值时n 的值,那么可求得Q点的坐标,【解答】解:〔1〕∵CD∥x轴,CD=2,∴抛物线对称轴为x=1.∴.∵OB=OC,C〔0,c〕,∴B点的坐标为〔﹣c,0〕,∴0=c+2c+c,解得c=﹣3或c=0〔舍去〕,∴c=﹣3;〔2〕设点F的坐标为〔0,m〕.∵对称轴为直线x=1,∴点F关于直线l的对称点F的坐标为〔2,m〕.2由〔1〕可知抛物线解析式为y=x﹣2x﹣3=〔x﹣1〕2﹣4,∴E〔1,﹣4〕,∵直线BE经过点B〔3,0〕,E〔1,﹣4〕,∴利用待定系数法可得直线BE的表达式为y=2x﹣6.∵点F在BE上,∴m=2×2﹣6=﹣2,即点F的坐标为〔0,﹣2〕;〔3〕存在点Q满足题意.设点P坐标为〔n,0〕,那么PA=n+1,PB=PM=3﹣n,PN=﹣n2+2n+3.作QR⊥PN,垂足为R,∵S△PQN=S△APM,∴,∴QR=1.①点Q在直线PN的左侧时,Q点的坐标为〔n﹣1,n2﹣4n〕,R点的坐标为〔n,n2﹣4n〕,N点的坐标为〔n,n2﹣2n﹣3〕.∴在Rt△QRN中,NQ2=1+〔2n﹣3〕2,第24页〔共25页〕∴时,NQ取最小值1.此时Q点的坐标为;②点Q在直线PN的右侧时,Q点的坐标为〔n+1,n2﹣4〕.22同理,NQ=1+〔2n﹣1〕,∴时,NQ取最小值1.此时Q点的坐标为或..综上可知存在满足题意的点Q,其坐标为【点评】此题为二次函数的综合应用,涉及待定系数法、轴对称、三角形的面积、勾股定理、二次函数的性质、方程思想及分类讨论思想等知识.在〔1〕中求得抛物线的对称轴是解题的关键,在〔2〕中用F点的坐标表示出F′的坐标是解题的关键,在〔3〕中求得QR的长,用勾股定理得到关于n的二次函数是解题的关键.此题考查知识点较多,综合性较强,特别是最后一问,难度很大.第25页〔共25页〕。
江苏省苏州市2021年中考数学试题(word版)

苏州市初中毕业暨升学考试试卷1.(2015·江苏苏州)2的相反数是 A .2B .12C .-2D .-12【考点】本题考查相反数的概念,中考第一题的常考题型,难度很小。
【解析】给2 添上一个负号即可,故选C 。
2.(2015·江苏苏州)有一组数据:3,5,5,6,7,这组数据的众数为 A .3B .5C .6D .7【考点】考查众数的概念,是中考必考题型,难度很小。
【解析】众数是一组数据中出现次数最多的数值,5 出现了两次,其它数均只出现一次,故 选B 。
3.(2015·江苏苏州)月球的半径约为1 738 000m ,1 738 000这个数用科学记数法可表示为 A .1.738×106B .1.738×107C .0.1738×107D .17.38×105【考点】考查科学记数法,是中考必考题型,难度很小。
【解析】科学记数法的表示结果应满足:a ⨯10n (1≤ a <10)的要求,C,D 形式不满足, 排除,通过数值大小(移小数点位置)可得A 正确,故选A 。
4.(2015·江苏苏州)若()222m =⨯-,则有 A .0<m <1B .-1<m <0C .-2<m <-1D .-3<m <-2【难度】★☆【考点】考察实数运算与估算大小,实数估算大小往年中考较少涉及,但难度并不大。
【解析】化简得:m = - 2 ,因为- 4 < - 2 < - 1(A+提示:注意负数比较大小不要 弄错不等号方向),所以-2 < - 2 < -1。
故选C 。
通话时间x /min 0<x ≤5 5<x ≤10 10<x ≤1515<x ≤20频数(通话次数)201695则通话时间不超过15min 的频率为 A .0.1B .0.4C .0.5D .0.9【考点】考察概率,是中考必考题型,难度很小。
苏州市2023年中考数学真题+答案解析

苏州市2023年中考数学真题一、选择题:本大题共8小题,每小题3分,共24分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
请将选择题的答案用2B铅笔涂在答题卡相对应的位置上。
1.有理数23的相反数是()A.-23B.32C.-32D.±232.古典园林中的花窗通常利用对称构图,体现对称美。
下面四个花窗图案,既是轴对称图形又是中心对称图形的是()A. B.C. D.3.如图,在正方形网格内,线段PQ的两个端点都在格点上,网格内另有A,B,C,D四个格点,下面四个结论中,正确的是()A.连接AB,则AB∥PQB.连接BC,则BC∥PQC.连接BD,则BD⊥PQD.连接AD,则AD⊥PQ4.今天是父亲节,小东同学准备送给父亲一个小礼物。
已知礼物外包装的主视图如图所示,则该礼物的外包装不可能是()A.长方体B.正方体C.圆柱D.三棱锥5.下列运算正确的是()A.a3-a2=aB.a3⋅a2=a5C.a3÷a2=1D.a3 2=a6.如图,转盘中四个扇形的面积都相等,任意转动这个转盘1次,当转盘停止转动时,指针落在灰色区域的概率是()A.14B.13C.12D.347.如图,在平面直角坐标系中,点A 的坐标为9,0 ,点C 的坐标为0,3 ,以OA ,OC 为边作矩形OABC 。
动点E ,F 分别从点O ,B 同时出发,以每秒1个单位长度的速度沿OA ,BC 向终点A ,C 移动。
当移动时间为4秒时,AC ⋅EF 的值为()A.10B.910C.15D.308.如图,AB 是半圆O 的直径,点C ,D 在半圆上,CD=DB,连接OC ,CA ,OD ,过点B 作EB ⊥AB ,交OD 的延长线于点E 。
设△OAC 的面积为S 1,△OBE 的面积为S 2,若S 1S 2=23,则tan ∠ACO 的值为()A.2B.223C.75D.32二、填空题:本大题共8小题,每小题3分,共24分。
2020年江苏省苏州市中考数学试卷【初中数学,中考数学试卷,含答案word可编辑】

202X 年江苏省苏州市中考数学试卷一、选择题(每题3分,共30分)) 1. 2的倒数是() 4, 反比例函数y =-,在以下结论中,不正确的选项是()A.y 随x 的增大而减少 B.图象必经过点(1, 2) C.图象在第一、三象限 D.假设%>1,那么y<25. 由完全相同小正方体组成的立体图形如下图,那么这个几何体的左视图为(D .id A 旦 128. 以下二次函数中,图象以直线x = 2为对称轴、且经过点(0,1)的是()A.2B.-2 D.-j2. 以下计算中正确的选项是()A.x 3 + %3 = x 6 7B.V4 = ±2C.y 5 -T- y 2 = y 3 3. 如图,既是轴对称图形又是中心对称图形的个数是D.(xy 3)2 = xy 6 D.1个 C. A.4个C.2个A.y = (% — 2)2 + 1B.y = (x + 2)2 + 1C.y = (x — 2)2— 3D.y = (x + 2)2— 39. 如图,三角形纸片48。
中,乙B = 2江,把三角形纸片沿直线AQ折叠,点B落在4C 边上的E处,那么以下等式成立的是()K.AC = AD + BD B.AC = AB + BD C.AC = AD + CD D.AC = AB + CD10. 己知每一个小时有一列速度相同的动车从甲地开往乙地,图中MN分别是第一列动车和第二列动车离甲地的路程S(km)与运行时间t(/i)的函数图象,折线DB-BC是一列从乙地开往甲地速度为100km/h的普通快车距甲地的路程S(km)与运行时间t(/i) 的函数图象.以下说法错误的选项是()A. 普通快车比第一列动车晚发车0.5九B. 普通快车比第一列动车晚到达终点1.5/1C. 第二列动车出发后1九与普通快车相遇D. 普通快车与迎面的相邻两动车相遇的时间间隔为0.7龙二、填空题(每题3分,共30分))11. 2002年我国普通高校方案招生2 750 000人,将这个数用科学记数法表示为人.12. 函数y=N的自变量*的取值范围是__________ .X13. 不等式组[2%>牝的解集是________ .14. 把%3 - 2x2y + xy2分解因式,结果正确的选项是____ .15. 小聪的不透明笔袋里有2支红色签字笔和3支黑色签字笔,每支笔除颜色外均相同、小聪想用红色签字笔标注复习重点,那么他从此笔袋中随机拿出一支红色签字笔的概率是 ______ .16. __________________________________________ 如图,在平行四边形4BCD 中,AD//BC, AB //CD, AB = 6cm, AD = 8cm f DE 平分乙4DC交边于点£,那么线段BE的长度是_______________________________________________cm.17. 平面直角坐标系中,A(T, 4), 8(4,9),点PO, 0)为x轴上一点,假设3PB = 45°,那么 _________ ・18. 如图,在。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分析:根据众数的概念求解.
解答:解:这组数据中 3 出现的次数最多,
故众数为 3.
故选 B
点评:本题考查了众数的概念:一组数据中出现次数最多的数据叫做众数.
4.(2014•苏州)若式子
在实数范围内有意义,则 x 的取值范围是( )
A. x≤﹣4
B. x≥﹣4
C. x≤4
考点:二次根式有意义的条件 分析:二次根式有意义,被开方数是非负数.
3.(2014•苏州)有一组数据:1,3,3,4,5,这组数据的众数为( )祝福您及家人身体健康、万事如意、阖家欢乐!祝福同学们快乐成长,能够取得好成绩,为祖国奉献力量!祝福您及家人身体健康、万事如意、阖家欢乐!祝
福同学们快乐成长,能够取得好成绩,为祖国奉献力量!
A.1
B. 3
C. 4
D. 5
考点:众数
根据等腰三角形的性质即可得出结论.
解答:解:∵△ABD 中,AB=AD,∠B=80°,
∴∠B=∠ADB=80°,
2
∴∠ADC=180°﹣∠ADB=100°,
∵AD=CD,
∴∠C=
=
=40°.
故选 B.
点评:本题考查的是等腰三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.
7.(2014•苏州)下列关于 x 的方程有实数根的是( )
在 Rt△AOD 中,∵∠ADO=90°,∠AOD=30°,OA=4,
∴AD= OA=2.
在 Rt△ABD 中,∵∠ADB=90°,∠B=∠CAB﹣∠AOB=75°﹣30°=45°,
∴BD=AD=2, ∴AB= AD=2 . 即该船航行的距离(即 AB 的长)为 2 故选 C.
km.
点评: 本题考查了解直角三角形的应用﹣方向角问题,难度适中,作出辅助线构造直角三角形 是解题的关键.
10.(2014•苏州)如图,△AOB 为等腰三角形,顶点 A 的坐标(2, ),底边 OB 在 x 轴 上.将△AOB 绕点 B 按顺时针方向旋转一定角度后得△A′O′B′,点 A 的对应点 A′ 在 x 轴上,则点 O′的坐标为( )
4
A.( , )
B.( , ) C.( , ) D.( ,4 )
解答:解:过点 A 作 AE⊥BC 于点 E,
∵AB=AC=5, ∴BE= BC= ×8=4,∠BAE= ∠BAC,
∵∠BPC= ∠BAC,
∴∠BPC=∠BAE. 在 Rt△BAE 中,由勾股定理得
AE=
,
7
∴tan∠BPC=tan∠BAE=
.
故答案为: .
点评:求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函 数值,或者利用同角(或余角)的三角函数关系式求三角函数值.
15.(2014•苏州)如图,在△ABC 中,AB=AC=5,BC=8.若∠BPC= ∠BAC,则 tan∠BPC=
.
考点:锐角三角函数的定义;等腰三角形的性质;勾股定理. 菁优网版权所有
分析:先过点 A 作 AE⊥BC 于点 E,求得∠BAE= ∠BAC,故∠BPC=∠BAE.再在 Rt△BAE 中,由勾股定理得 AE 的长,利用锐角三角函数的定义,求得 tan∠BPC=tan∠BAE= .
14.(2014•苏州)某学校计划开设 A、B、C、D 四门校本课程供全体学生选修,规定每人 必须并且只能选修其中一门,为了了解个门课程的选修人数.现从全体学生中随机抽取了部 分学生进行调查,并把调查结果绘制成如图所示的条形统计图.已知该校全体学生人数为 1200 名,由此可以估计选修 C 课程的学生有 240 人.
A.
B.
C.
D.
考点:几何概率. 分析:设圆的面积为 6,易得到阴影区域的面积为 4,然后根据概率的概念计算即可. 解答:解:设圆的面积为 6,
∵圆被分成 6 个相同扇形, ∴每个扇形的面积为 1, ∴阴影区域的面积为 4,
∴指针指向阴影区域的概率= = .
故选 D. 点评:本题考查了求几何概率的方法:先利用几何性质求出整个几何图形的面积 n,再计算
菁优网版权所有
分析:科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数.确定 n 的值是易 错点,由于 510000000 有 9 位,所以可以确定 n=9﹣1=8.
解答:解:510 000 000=5.1×108. 故答案为:5.1×108.
点评:此题考查科学记数法表示较大的数的方法,准确确定 a 与 n 值是关键. 13.(2014•苏州)已知正方形 ABCD 的对角线 AC= ,则正方形 ABCD 的周长为 4 . 考点:正方形的性质.
解答:解:如图,过点 A 作 AC⊥OB 于 C,过点 O′作 O′D⊥A′B 于 D, ∵A(2, ), ∴OC=2,AC= ,
由勾股定理得,OA=
=
=3,
∵△AOB 为等腰三角形,OB 是底边, ∴OB=2OC=2×2=4, 由旋转的性质得,BO′=OB=4,∠A′BO′=∠ABO,
∴O′D=4× = ,
解:∵二次函数 y=ax2+bx﹣1(a≠0)的图象经过点(1,1),
∴a+b﹣1=1, ∴a+b=2, ∴1﹣a﹣b=1﹣(a+b)=1﹣2=﹣1. 故选 B.
3
点评:本题考查了二次函数图象上点的坐标特征,整体思想的利用是解题的关键. 9.(2014•苏州)如图,港口 A 在观测站 O 的正东方向,OA=4km,某船从港口 A 出发,沿 北偏东 15°方向航行一段距离后到达 B 处,此时从观测站 O 处测得该船位于北偏东 60°的方 向,则该船航行的距离(即 AB 的长)为( )
江苏省苏州市 2014 年中考数学试卷
一、选择题(共 10 小题,每小题 3 分,共 30 分)
1.(2014•苏州)(﹣3)×3 的结果是( )
A. ﹣9
B. 0
C. 9
D. ﹣6
考点:有理数的乘法. 分析:根据两数相乘,异号得负,可得答案. 解答:
解:原式=﹣3×3=﹣9,
故选:A. 点评:本题考查了有理数的乘法,先确定积的符号,再进行绝对值得运算.
菁优网版权所有
分析:设甲工程队平均每天疏通河道 xm,乙工程队平均每天疏通河道 ym,就有 4x+9y=120,8x+3y=120,由此构成方程组求出其解即可.
D. x≥4
1
解答: 解:依题意知,x﹣4≥0,
解得 x≥4. 故选:D. 点评:考查了二次根式的意义和性质.概念:式子 (a≥0)叫二次根式.性质:二次根式 中的被开方数必须是非负数,否则二次根式无意义. 5.(2014•苏州)如图,一个圆形转盘被分成 6 个圆心角都为 60°的扇形,任意转动这个转 盘 1 次,当转盘停止转动时,指针指向阴影区域的概率是( )
2.(2014•苏州)已知∠α 和∠β 是对顶角,若∠α=30°,则∠β 的度数为( )
A.30°
B. 60°
C. 70°
D. 150°
考点:对顶角、邻补角
分析:根据对顶角相等可得∠β 与∠α 的度数相等为 30°. 解答:解:∵∠α 和∠β 是对顶角,∠α=30°,
∴根据对顶角相等可得∠β=∠α=30°. 故选:A. 点评:本题主要考查了对顶角相等的性质,比较简单.
义务教育基础课程初中教学资料 祝福您及家人身体健康、万事如意、阖家欢乐!祝福您及家人身体健康、万事如意、阖家欢乐!祝福您及家人身体健康、万事如意、阖家欢乐!祝福您及家人身体健康、万事如意、阖家欢乐!祝福您及家人身体健康、万事如意、阖家欢乐!祝福您及家人身体健康、万事如意、阖家欢乐!祝福您及家人身体健康、万事如意、阖家欢乐!祝福您及家人身体健康、万事如意、阖家欢乐!祝福您及家人身体健康、万事如意、阖家欢乐!
A.x2﹣x+1=0
B. x2+x+1=0
C. (x﹣1)(x+2)=0
D. (x﹣1)2+1=0
考点:根的判别式. 菁优网版权所有
专题:计算题. 分析:分别计算 A、B 中的判别式的值;根据判别式的意义进行判断;利用因式分解法对 C
进行判断;根据非负数的性质对 D 进行判断. 解答:
解:A、△=(﹣1)2﹣4×1×1=﹣3<0,方程没有实数根,所以 A 选项错误;
有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实 数根.
8.(2014•苏州)二次函数 y=ax2+bx﹣1(a≠0)的图象经过点(1,1),则代数式 1﹣a﹣b 的值为( )
A. ﹣3
B. ﹣1
C. 2
D. 5
考点:二次函数图象上点的坐标特征. 菁优网版权所有
分析:把点(1,1)代入函数解析式求出 a+b,然后代入代数式进行计算即可得解. 解答:
出其中某个区域的几何图形的面积 m,然后根据概率的定义计算出落在这个几何区域
的事件的概率= .
6.(2014•苏州)如图,在△ABC 中,点 D 在 BC 上,AB=AD=DC,∠B=80°,则∠C 的度 数为( )
A.30°
B. 40°
C. 45°
D. 60°
考点:等腰三角形的性质
分析:先根据等腰三角形的性质求出∠ADB 的度数,再由平角的定义得出∠ADC 的度数,
A.4km
B.2 km
C.2 km
D.( +1)km
考点:解直角三角形的应用-方向角问题. 菁优网版权所有
分析:过点 A 作 AD⊥OB 于 D.先解 Rt△AOD,得出 AD= OA=2,再由△ABD 是等腰直
角三角形,得出 BD=AD=2,则 AB= AD=2 . 解答:解:如图,过点 A 作 AD⊥OB 于 D.
16.(2014•苏州)某地准备对一段长 120m 的河道进行清淤疏通.若甲工程队先用 4 天单独 完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要 9 天;若甲工程队 先单独工作 8 天,则余下的任务由乙工程队单独完成需要 3 天.设甲工程队平均每天疏通河 道 xm,乙工程队平均每天疏通河道 ym,则(x+y)的值为 20 . 考点:二元一次方程组的应用.