椭圆及其标准方程

合集下载

椭圆的一般方程和标准公式

椭圆的一般方程和标准公式

椭圆的一般方程和标准公式
椭圆是一个常见的二维几何图形,其一般方程和标准公式如下:
1.椭圆的一般方程:
椭圆的一般方程表示为:
A(x - h)^2 + B(y - k)^2 = 1
其中,(h, k)表示椭圆的中心坐标,A和B是正实数,且A > B。

2.椭圆的标准公式:
椭圆的标准公式表示为:
(x - h)^2/a^2 + (y - k)^2/b^2 = 1
其中,(h, k)表示椭圆的中心坐标,a和b分别表示椭圆在x轴和y轴上的半长轴长度。

具体详细解释如下:
●中心坐标(h, k):椭圆的中心点在坐标平面上的位置,坐标为(h, k)。

●半长轴长度a:椭圆在x轴上的半长轴长度,表示椭圆沿着x轴正方向延伸
的距离。

●半短轴长度b:椭圆在y轴上的半短轴长度,表示椭圆沿着y轴正方向延伸
的距离。

椭圆的标准公式以中心点(h, k) 为中心,沿x轴和y轴方向分别以a和b为轴长度绘制。

当a和b相等时,椭圆退化为一个圆。

若a大于b,则椭圆在x轴方向上更为扁平,称为长轴椭圆;若b大于a,则椭圆在y轴方向上更为扁平,称为短轴椭圆。

注意事项:
●椭圆的方程中,A和B的值与a和b的关系为A = 1/a^2,B = 1/b^2。

●当椭圆的中心不在原点时,方程中的坐标需要进行平移,即(x - h) 和(y - k)。

●椭圆的方程也可以表示为离心率和焦点的形式,但这超出了一般方程和标准
公式的范围。

通过了解椭圆的一般方程和标准公式,您可以利用这些公式来描述和绘制椭圆的几何形状,并对椭圆的中心、半长轴和半短轴进行准确的计算和描绘。

椭圆及其标准方程

椭圆及其标准方程

程 (2)在椭圆两种标准方程中,总有a>b>0;
(3)焦点在分母较大的变量所对应的坐标轴上;
特 (4) a—椭圆上任意一点P到F1、F2距离和的一半;

c—半焦距.且有关系式 a2 b2 c2成立。
根据所学知识完成下表
定义

图形


平面内到两个定点F1,F2的距离的和等 于常数(大于F1F2)的点的轨迹
a2 c2 0
x2
y2
a2 a2 c2 1
设a2 c2 b2
则:x2 a2
y2 b2
1
所求


圆的方程

:x2 a2
y2 b2
1(a
b
0)
3.椭圆的标准方程:
y
y
F1
F1 O
F2
x
O
x
F2

x2
y2
a2 b2 1
y2 x2 a2 b2 1
(1)方程的左边是两项平方和的形式,等号的右边是1;
例题精析
【例1】填空:
判断椭圆标准方程的焦点在哪个轴上的 的方程为:x2 y2 1 ,则 a=___5__,b=___4____,2c5=___1_36___,焦点坐标 为:__(3_,_0)_、__(-_3_,0_)__焦距等于___6___;若CD为过
左焦点F1的弦,则∆F2CD的周长为___2__0___
C
|CF1|+|CF2|=2a
F1
F2
D
【变式训练】
1.下列各式哪些表示椭圆?若是,则判定其焦点在何轴? 并指明a2,b2,写出焦点坐标.
x2 y2 (1) 1
16 16

椭圆及其标准方程

椭圆及其标准方程

例: ( 1 ) 已知 F , F 是两定点, F F 6 ,动点 M 满足 1 2 1 2
线段 MF MF 6 ,则动点的轨迹为 ___ 1 2
(2 ) 已知 A ( -1 ,0 ), B ( 1 ,0 ), M 是一个动点 M 到 AB 两点的距离之和为 6 ,
椭圆 则 M 的轨迹为 ______
3 2 2
+
2 5 +2 2
+
3 2 2
+
2 5 -2 =2 2
10.即
������2 ������2 ∴ 所求椭圆的方程为 + =1. 10 6
反思根据已知条件,判定焦点的位置,设出椭圆的方程是解决此
题的关键.
“神五”飞船的运行轨道是以地心为一个焦点的椭圆,地 球半径为R公里,飞船的近地点距地球地面200公里,远 地点距地球地面350公里,则飞船的椭圆轨道的标准方程 为——
♦自然界处处存在着椭圆,我们如
何用自己的双手画出椭圆呢?
先 回 忆 如 何 画 圆
·
· F
1
·
F2
一、椭圆的定义
椭圆定义的文字表述:
• 平面内到两个定点F1,F2的距离的和等于定长 (2a)(大于|F1F2 |)的点的轨迹叫椭圆。
• 定点F1、F2叫做椭圆的焦点。 • 两焦点之间的距离叫做焦距(2c)。
������2 ������2 A 的轨迹方程是 + =1(y≠0). 25 16
【典型例题 2】 求适合下列条件的椭圆的标准方程: (1)两个焦点的坐标分别是(-4,0),(4,0),椭圆上任意一点 P 到两焦点的 距离的和等于 10; (2)两个焦点的坐标分别为(0,-2),(0,2),并且椭圆经过点 - ,

《椭圆及其标准方程》课件

《椭圆及其标准方程》课件

感谢观看
THANKS
《椭圆及其标准方 程》ppt课件
目 录
• 椭圆的定义 • 椭圆的方程 • 椭圆的性质 • 椭圆的图像 • 椭圆的实际应用
01
椭圆的定义
椭圆的几何定义
01
椭圆是由平面内两个定点F1、F2 的距离之和等于常数(常数大于 F1、F2之间的距离)的点的轨迹 形成的图形。
02
两个定点F1、F2称为椭圆的焦点 ,焦点的距离c满足关系式: c²=a²-b²,其中a为椭圆长轴半径 ,b为短轴半径。
椭圆的范围
总结词
椭圆的范围是指椭圆被坐标轴所限制的范围。
详细描述
这意味着椭圆永远不会出现在坐标轴之外。在x轴上,椭圆的范围是从-a到a;在y轴上,椭圆的范围是从-b到b。 其中a和b是椭圆的长轴和短轴的半径。
椭圆的顶点
总结词
椭圆的顶点是指椭圆与坐标轴的交点 。
详细描述
椭圆的顶点是椭圆与x轴和y轴的交点 。这些点是椭圆的边界点,并且它们 位于椭圆的长轴和短轴上。具体来说 ,椭圆的顶点是(-a,0),(a,0),(0,-b) 和(0,b)。
小和形状。
平移变换
将椭圆在坐标系中移动,可以实现 椭圆的平移变换。平移变换不会改 变椭圆的大小和形状,只会改变椭 圆的位置。
旋转变换
通过旋转椭圆,可以实现椭圆的旋 转变换。旋转变换会改变椭圆的方 向,但不会改变椭圆的大小和形状 。
椭圆的图像应用
天文学
在天文观测中,行星和卫星的轨道通常可以用椭圆来近似 描述。通过研究椭圆的性质,可以更好地理解天体的运动 规律。
焦点位置
离心率
定义为c/a,其中c是焦点到椭圆中心 的距离,a是椭圆长轴的半径。离心率 越接近0,椭圆越接近圆;离心率越 大,椭圆越扁。

椭圆及其标准方程

椭圆及其标准方程

2
2
F1 (-c,0) O
F2(c,0) x
2 2 可得 | PF1 || PF2 | a, | OF1 || OF2 | c, | PO | a c
令b | PO | a 2 c 2
x2 y2 那么①式 2 1 (a>b>0) 2 a b
思考5:你能有其他的建系方法求得椭圆的标准方 程吗?猜想此时的方程是什么?并证明你的结论。
本 专 题 栏 目 开 关
x2 y2 解析 ∵方程 - 2 =1 表示焦点在 y 轴上的椭圆, m m -2 y2 x2 将方程改写为 2+ =1, 2-m m 2-m2>m, ∴有 m>0,
解得 0<m<1.
题型四 椭圆的定义及标准方程的应用 焦点三角形的有关问题 探究点三 x2 y2 例 3 已知椭圆的方程为 + = 1,椭圆上 4 3
本 专 题 栏 目 开 关
3 从而有(4-|PF1|) =|PF1| +4.解得|PF1|= . 2 1 1 3 3 所以 △PF1F2 的面积 S = 2 · |PF1 |· |F1F2 |= 2 ³ 2 ³2 = 2 ,即 3 △PF1F2 的面积是 . 2

C
F1 D
F2
∆F2CD的周长为 20

题型二
用待定系数法求椭圆的标准方程
【例1】 求适合下列条件的椭圆的标准方程: (1)两个焦点的坐标分别是(-4,0)、(4,0),椭圆上一点P
到两焦点距离的和是10;
(2)焦点在y轴上,且经过两个点(0,2)和(1,0); 6 2 2 (3)经过点( , 3)和点( ,1). 3 3
MF1 MF2 2a 2c
M
F1

椭圆及其标准方程

椭圆及其标准方程

第一节 椭圆1.椭圆的定义(1) 第一定义:|)|2(2||||2121F F a a PF PF >=+ (21,F F 为焦点,c F F 2||21=为焦距) 注:①当2a =|F 1F 2|时,P 点的轨迹是 .②当2a <|F 1F 2|时,P 点的轨迹不存在.(2)第二定义:)10(,||<<=e e dPF注:第二定义中焦点与准线应对应2.椭圆的标准方程(中心在原点,对称轴为坐标原点)(1) 焦点在x 轴上,中心在原点的椭圆标准方程是:12222=+by ax ,其中( > >0,且=2a )(2) 焦点在y 轴上,中心在原点的椭圆标准方程是12222=+bx a y ,其中a ,b 满足: .说明:(1)焦点在22,y x 分母大的对应的坐标轴上; (2)222c b a +=及c b a ,,的几何意义 (3)标准方程的统一形式:),0,0(122n m n m nymx≠>>=+适用于焦点位置未知的情形(4)参数方程:⎩⎨⎧==θθsin cos b y a x 3.椭圆的几何性质(对12222=+by ax ,a > b >0进行讨论)(1) 范围: ≤ x ≤ , ≤ y ≤(2) 对称性:对称轴方程为 ;对称中心为 .(3) 顶点坐标: ,焦点坐标: ,长半轴长: ,短半轴长: ;(4)离心率:=e ( 与 的比),∈e ,e 越接近1,椭圆越 ;e 越接近0,椭圆越接近于 .(5) 椭圆的准线方程为 .【课前预习】1.若方程11322=-+-k ykx为焦点在y 轴上的椭圆,则k 的取值范围是_______________2.已知椭圆的长轴长是8,离心率是43,则此椭圆的标准方程是_____________3.若椭圆1222=+myx的离心率为21,则实数=m ______4.已知21,F F 为椭圆1422=+yx的左、右焦点,弦AB 过1F ,则AB F 2∆的周长为______85.已知椭圆121622yx+=1的左、右焦点分别为F 1、F 2,M 是椭圆上一点,N 是MF 1的中点,若6||2=MF ,则|ON|的长等于 .1 【例题讲解】例1:根据下列条件求椭圆方程(1)已知椭圆以坐标轴为对称轴,且长轴是短轴的3倍,并且过点P (3,0),求椭圆的方程; (2)中心在原点的椭圆,一条准线方程为5=y ,且它的离心率55=e ;(3)已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为534和532,过P 作长轴的垂线恰好过椭圆的一个焦点;(4)中心在原点,以坐标轴为对称轴的椭圆,经过两点)2,3(),1,6(21--P P 小结:求椭圆的方法 例2:(1)椭圆1162522=+yx上一点P 到它的左焦点1F 的距离为6,则点P 到椭圆右准线的距离为_________(2)已知21,F F 是椭圆148:22=+yxC 的焦点,在C 上满足21PF PF ⊥的点P 的个数为________2小结:(3)椭圆的对称轴在坐标轴上,短轴的一个端点与两个焦点构成一个正三角形,焦点到椭圆上的点的最短距离是3,这个椭圆的方程是_________________1129,19122222=+=+yxyx(4)已知椭圆192522=+yx的焦点21,F F ,P 是椭圆上一点,9021=∠PF F ,则=∆21PF F S _______变式1: 6021=∠PF F ,则=∆21PF F S _______变式2:θ=∠21PF F ,则=∆21PF F S _______变式3:已知椭圆12222=+bya x的焦点21,F F ,椭圆上存在一点P ,使6021=∠PF F ,则离心率e 的取值范围是____________ 例3:关于离心率的运算(1)设椭圆的两个焦点分别为21,F F ,过2F 作椭圆长轴的垂线交椭圆于点B A ,,若1ABF ∆为正三角形,则椭圆的离心率为_________ (2)在平面直角坐标系中,椭圆12222=+by ax (a >b >0)的焦距为2,以O 为圆心,a 为半径作圆,过点⎪⎪⎭⎫⎝⎛0,2c a 作圆的两切线互相垂直,则离心率e= .(3)在ABC ∆中,187cos ,-==B BC AB ,若以B A ,为焦点的椭圆经过点C ,则该椭圆的离心率e=(4) 以椭圆12222=+by ax 的右焦点F 为圆心,a 为半径的圆与椭圆的右准线交于不同的两点,则e 的取值范围是_______________1215<<-e小结: 例4:(最值问题) (1)设P 是椭圆1162522=+yx上任意一点,F A ,分别为椭圆的左顶点和右焦点,则AFPA PF PA ⋅+⋅41的最小值为________-9变式:P 为椭圆13422=+yx上任一点,A 为右顶点,B 为下顶点则AB PA ⋅最大值为________(2)椭圆1162522=+yx内有两点)0,3(),2,2(B A P 为椭圆上一动点则||35||PB PA +的最小值为____319变式:若)0,3(-C 则||||PC PA +最大值为__________510+例5:设椭圆()22221,0x y a b ab+=>>的左右焦点分别为12,F F,离心率2e =,点2F 到右准线为l 的距离为1)求,a b 的值;(2)设,M N 是l 上的两个动点,120F M F N ⋅=,证明:当M N 取最小值时,12220F F F M F N ++=。

椭圆的定义及其标准方程

椭圆的定义及其标准方程

标准方程 及图形
条件 范围
2a>2c,a2=b2+c2,a>0,b>0,c>0
|x|≤a;|y|≤b
|x|≤b;|y|≤a
曲线关于 对称性
x轴

y 轴、原点 对称
曲线关于

x轴、y轴、原点

顶点 焦点
长轴顶点( ±a,0 ) 短 轴顶点(0,±b )
( ±c,0 )
长轴顶点( 0,±a)短轴顶点 ( ±b,0 )
13.1 椭圆的定义及其标准方程
一、椭圆的定义
平面内到两个定点F1,F2的距离之 等和于常数 ( 大于|F1F2)|的点的集合叫作椭圆,这两个定点F1,F2 叫作椭圆的 焦点,两焦点F1,F2间的距离叫做椭圆的 焦距 .
二、椭圆的标准方程及其几何
意义
条件
2a>2c,a2=b2+c2,a>0,b>0,c>0
()
A.椭圆
B.线段
C.椭圆或线段或不存在 D.不存在
解析:当a<6时,轨迹不存在;
当a=6时,轨迹为线段;
当a>6时,轨迹为椭圆. 答案:C
3.已知椭圆
上一点P到椭圆一个焦点的距离
为3,则P到另一个焦点的距离为 ( )
A.2
B.3
C.5
D.7
解析:

答案:D
4.椭圆
的焦点坐标为________.
【解】 设所求的椭圆方程为 =1(a>b>0),
由已知条件得解得 故所求方程为
a=4,c=2,b2=12,
练习1.已知椭圆的中心在原点,以坐标轴为对称轴,且经
过两点 P1( 6,1), P2( 3, ,2求) 椭圆的方程.
解:设椭圆的方程为mx2+ny2=1(m>0,n>0且m≠n).

3.1.1椭圆及其标准方程

3.1.1椭圆及其标准方程

△ F1PF2 称为焦点三角形,解关于椭圆中的焦点三角形问题时 要充分利用椭圆的定义、三角形中的正弦定理、余弦定理、勾 股定理等知识.对于求焦点三角形的面积,若已知∠F1PF2, 1 可利用 S=2|PF1|· |PF2|sin∠F1PF2 求面积,这时可把|PF1|· |PF2| 看成一个整体,运用公式 |PF1|2+|PF2|2=4a2-2|PF1||PF2|及余 弦定理求出|PF1|· |PF2|,而无需单独求出|PF1|和|PF2|,这样可以 减少运算量.
x2 y2 y2 x2 ∴椭圆的标准方程为 当焦点在 x 轴上时,设椭圆的标准方程为 x2 y2 + =1(a>b>0). a2 b2
2 2 - 2 3 2 + 2 =1, b a 依题意有 2 - 2 3 1 + 2=1, 2 b a 2 a =15, 解得 2 b =5.
即|PF2|=4-|PF1|. 6 将②代入①解得|PF1|=5,

1 1 6 3 3 3 ∴S△ PF1F2=2|PF1|· |F1F2|· sin 120° =2× 2× 2 = 5 . 5× 3 因此所求△ PF1F2 的面积是5 3.
[一点通]
椭圆上一点 P 与椭圆的两焦点 F1、F2 构成的
[一点通] 求椭圆标准方程的一般步骤为:
[例 2]
如图所示, 已知椭圆的方程
x2 y2 为 4 + 3 =1,若点 P 在椭圆上,F1,F2 为椭圆的两个焦点,且∠PF1F2=120° , 求△ PF1F2 的面积. [思路点拨] 因为∠PF1F2=120°,|F1F2|=2c,所以要
求S△PF1F2,只要求|PF1|即可.可由椭圆的定义|PF1|+|PF2| =2a,并结合余弦定理求解.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2 椭 圆2.2.1 椭圆及其标准方程1.了解椭圆的实际背景,理解从具体情境中抽象出椭圆的过程.2.掌握椭圆的定义与标准方程.3.通过对椭圆及其标准方程的学习,了解用坐标法研究曲线的基本步骤., [学生用书P24])1.椭圆的定义(1)定义:平面内与两个定点F 1,F 2的距离之和等于常数(大于|F 1F 2|)的点的轨迹. (2)焦点:两个定点F 1,F 2.(3)焦距:两焦点间的距离|F 1F 2|.(4)几何表示:|MF 1|+|MF 2|=2a (常数)且2a >|F 1F 2|.1.判断(正确的打“√”,错误的打“×”)(1)到平面内两个定点的距离之和等于定长的点的轨迹叫做椭圆.( ) (2)椭圆标准方程只与椭圆的形状、大小有关,与位置无关.( )(3)椭圆的两种标准形式中,虽然焦点位置不同,但都具备a 2=b 2+c 2.( ) 答案:(1)× (2)× (3)√2.设P 是椭圆x 225+y 216=1上的点,若F 1,F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于( )A .4B .5C .8D .10 答案:D3.已知两焦点坐标分别为(2,0)和(-2,0),且经过点(5,0)的椭圆的标准方程为( ) A .x 216+y 225=1B .x 225+y 216=1C .x 225+y 221=1D .x 29+y 225=1答案:C4.椭圆x 225+y 2169=1的焦点坐标是________.答案:(0,±12)5.下列命题是真命题的是________(将所有真命题的序号都填上).①已知定点F 1(-1,0),F 2(1,0),则满足|PF 1|+|PF 2|=2的点P 的轨迹为椭圆; ②已知定点F 1(-2,0),F 2(2,0),则满足|PF 1|+|PF 2|=4的点P 的轨迹为线段; ③到定点F 1(-3,0),F 2(3,0)距离相等的点的轨迹为椭圆;④若点P 到定点F 1(-4,0),F 2(4,0)的距离的和等于点M (5,3)到定点F 1(-4,0),F 2(4,0)的距离的和,则点P 的轨迹为椭圆.解析:①因为2<2,所以点P 的轨迹不存在;②因为|F 1F 2|=4,所以点P 的轨迹是线段F 1F 2;③到定点F 1(-3,0),F 2(3,0)距离相等的点的轨迹是线段F 1F 2的垂直平分线(y 轴);④因为点M (5,3)到定点F 1(-4,0),F 2(4,0)的距离的和为410>8,所以点P 的轨迹为椭圆.故填②④.答案:②④求椭圆的标准方程[学生用书P25](1)已知椭圆的两个焦点坐标分别是(-2,0),(2,0),并且经过点⎝⎛⎭⎫52,-32,求它的标准方程;(2)若椭圆经过两点(2,0)和(0,1),求椭圆的标准方程.【解】 (1)法一:因为椭圆的焦点在x 轴上,所以设它的标准方程为x 2a 2+y 2b 2=1(a >b >0).由椭圆的定义知 2a =⎝⎛⎭⎫52+22+⎝⎛⎭⎫-322+ ⎝⎛⎭⎫52-22+⎝⎛⎭⎫-322=210, 所以a =10.又因为c =2,所以b 2=a 2-c 2=10-4=6. 因此,所求椭圆的标准方程为x 210+y 26=1.法二:设标准方程为x 2a 2+y 2b 2=1(a >b >0).依题意得⎩⎪⎨⎪⎧254a 2+94b 2=1,a 2-b 2=4,解得⎩⎪⎨⎪⎧a 2=10,b 2=6.所以所求椭圆的标准方程为x 210+y 26=1.(2)法一:当椭圆的焦点在x 轴上时,设所求椭圆的方程为x 2a 2+y 2b 2=1(a >b >0).因为椭圆经过两点(2,0),(0,1),所以⎩⎨⎧4a 2+0b 2=1,0a 2+1b 2=1,则⎩⎪⎨⎪⎧a =2,b =1.所以所求椭圆的标准方程为x 24+y 2=1;当椭圆的焦点在y 轴上时,设所求椭圆的方程为y 2a 2+x 2b 2=1(a >b >0)因为椭圆经过两点(2,0),(0,1), 所以⎩⎨⎧0a 2+4b 2=1,1a 2+0b 2=1,则⎩⎪⎨⎪⎧a =1,b =2,与a >b 矛盾,故舍去.综上可知,所求椭圆的标准方程为x 24+y 2=1.法二:设椭圆方程为mx 2+ny 2=1(m >0,n >0,m ≠n ). 因为椭圆过(2,0)和(0,1)两点,所以⎩⎪⎨⎪⎧4m =1,n =1,所以⎩⎪⎨⎪⎧m =14,n =1.综上可知,所求椭圆的标准方程为x 24+y 2=1.求椭圆标准方程的方法(1)定义法:根据椭圆定义,确定a 2,b 2的值,结合焦点位置写出椭圆方程. (2)待定系数法:先判断焦点位置,设出标准方程形式,最后由条件确定待定系数即可.即“先定位,后定量”.当所求椭圆的焦点位置不能确定时,应按焦点在x 轴上和焦点在y 轴上进行分类讨论,但要注意a >b >0这一条件.(3)当已知椭圆经过两点,求椭圆的标准方程时,把椭圆的方程设成mx 2+ny 2=1(m >0,n >0,m ≠n )的形式有两个优点:①列出的方程组中分母不含字母;②不用讨论焦点所在的位置,从而简化求解过程.求适合下列条件的标准方程:(1)两个焦点坐标分别是(-3,0),(3,0),椭圆经过点(5,0);(2)两个焦点坐标分别是(0,5),(0,-5),椭圆上一点P 到两焦点的距离之和为26. 解:(1)因为椭圆的焦点在x 轴上,所以设它的标准方程为x 2a 2+y 2b2=1(a >b >0).因为2a =(5+3)2+02+(5-3)2+02=10,2c =6,所以a =5,c =3,所以b 2=a 2-c 2=52-3=16.所以所求椭圆的标准方程为x 225+y 216=1.(2)因为椭圆的焦点在y 轴上,所以设它的标准方程为y 2a 2+x 2b 2=1(a >b >0).因为2a =26,2c =10,所以a =13,c =5.所以b 2=a 2-c 2=144.所以所求椭圆标准方程为y 2169+x 2144=1.椭圆定义的应用[学生用书P25]已知P 为椭圆x 212+y 23=1上一点,F 1,F 2是椭圆的焦点,∠F 1PF 2=60°,求△F 1PF 2的面积.【解】 在△PF 1F 2中,|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|cos 60°, 即36=|PF 1|2+|PF 2|2-|PF 1|·|PF 2|.①由椭圆的定义得|PF 1|+|PF 2|=43, 即48=|PF 1|2+|PF 2|2+2|PF 1|·|PF 2|.② 由①②得|PF 1|·|PF 2|=4. 所以S △F 1PF 2=12|PF 1|·|PF 2|·sin 60°= 3.1.[变条件]若将本例中“∠F 1PF 2=60°”变为“∠F 1PF 2=90°”,求△F 1PF 2的面积. 解:由椭圆x 212+y 23=1知|PF 1|+|PF 2|=43,|F 1F 2|=6,因为∠F 1PF 2=90°,所以|PF 1|2+|PF 2|2=|F 1F 2|2=36, 所以|PF 1|·|PF 2|=6, 所以S △F 1PF 2=12|PF 1|·|PF 2|=3.2.[变条件]若将本例中“∠F 1PF 2=60°”变为“∠PF 1F 2=90°”,求△F 1PF 2的面积. 解:由已知得a =23,b =3,所以c =a 2-b 2=12-3=3.从而|F 1F 2|=2c =6. 在△PF 1F 2中,由勾股定理可得 |PF 2|2=|PF 1|2+|F 1F 2|2, 即|PF 2|2=|PF 1|2+36,又由椭圆定义知|PF 1|+|PF 2|=2×23=43, 所以|PF 2|=43-|PF 1|.从而有(43-|PF 1|)2=|PF 1|2+36.解得|PF 1|=32.所以△PF 1F 2的面积S =12·|PF 1|·|F 1F 2|=12×32×6=332,即△PF 1F 2的面积是332.椭圆定义的应用技巧(1)椭圆的定义具有双向作用,即若|MF 1|+|MF 2|=2a (2a >|F 1F 2|),则点M 的轨迹是椭圆;反之,椭圆上任意一点M 到两焦点的距离之和必为2a .(2)椭圆上一点P 与椭圆的两个焦点F 1,F 2构成的△PF 1F 2称为焦点三角形.解关于椭圆的焦点三角形的问题,通常要利用椭圆的定义,再结合正弦定理、余弦定理等知识求解.已知AB 是过椭圆49x 2+y 2=1的左焦点F 1的弦,且|AF 2|+|BF 2|=4,其中F 2为椭圆的右焦点,则|AB |=________.解析:由椭圆定义知|AF 1|+|AF 2|=2a , |BF 1|+|BF 2|=2a ,所以|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =6. 所以|AF 1|+|BF 1|=6-4=2,即|AB |=2. 答案:2求与椭圆有关的轨迹方程[学生用书P26]如图所示,已知动圆P 过定点A (-3,0),并且在定圆B :(x -3)2+y 2=64的内部与其内切,求动圆圆心P 的轨迹方程.【解】 设动圆P 和定圆B 内切于点M ,动圆圆心P 到两定点A (-3,0)和B (3,0)的距离之和恰好等于定圆半径,即|P A |+|PB |=|PM |+|PB |=|BM |=8>|AB |,所以动圆圆心P 的轨迹是以A ,B 为左,右焦点的椭圆,其中c =3,a =4,b 2=a 2-c 2=42-32=7,其轨迹方程为x 216+y 27=1.利用椭圆定义求动点轨迹方程的三个步骤已知B ,C 是两个定点,|BC |=8,且△ABC 的周长等于18,求这个三角形的顶点A 的轨迹方程.解:以过B ,C 两点的直线为x 轴,线段BC 的垂直平分线为y 轴,建立直角坐标系xOy ,如图所示.由|BC |=8,可知点B (-4,0),C (4,0).由|AB |+|AC |+|BC |=18,|BC |=8,得|AB |+|AC |=10.因此,点A 的轨迹是以B ,C 为焦点的椭圆,这个椭圆上的点与两焦点的距离之和2a =10,c =4,但点A 不在x 轴上.由a =5,c =4,得b 2=a 2-c 2=25-16=9.所以点A 的轨迹方程为x 225+y 29=1(y ≠0).1.对椭圆定义的三点说明(1)椭圆是在平面内定义的,所以“平面内”这一条件不能忽视. (2)定义中到两定点的距离之和是常数,而不能是变量.(3)常数(2a )必须大于两定点间的距离,否则轨迹不是椭圆,这是判断一曲线是否为椭圆的限制条件.2.对椭圆标准方程的两点认识(1)标准方程的几何特征:椭圆的中心在坐标原点,焦点在x 轴或y 轴上.(2)标准方程的代数特征:方程右边为1,左边是关于x a 与yb 的平方和,并且分母为不相等的正值.注意:焦点所在坐标轴不同,其标准方程的形式也不同. 3.解决与椭圆有关的轨迹问题的两种方法 (1)定义法用定义法求椭圆方程的思路是:先观察、分析已知条件,看所求动点轨迹是否符合椭圆的定义.若符合椭圆的定义,则用待定系数法求解即可.(2)相关点法(代入法)有些问题中的动点轨迹是由另一动点按照某种规律运动而形成的,只要把所求动点的坐标“转移”到另一个动点在运动中所遵循的条件中去,即可解决问题,这种方法称为相关点法.注意:求轨迹方程时注意求得的方程中的自变量的取值范围.1.“平面内一动点到两定点的距离之和为一定值”是“这个动点的轨迹为椭圆”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件解析:选A.若动点的轨迹为椭圆,则根据椭圆的定义,得平面内一动点到两定点的距离之和为一定值.平面内一动点到两定点的距离之和为一定值时,动点轨迹的情况有三种.所以“平面内一动点到两定点的距离之和为一定值”是“这个动点的轨迹为椭圆”的必要不充分条件.2.已知椭圆x 225+y 216=1上一点P 到椭圆的一个焦点的距离为3,则点P 到另一个焦点的距离为( )A .2B .3C .5D .7 解析:选D.由椭圆方程知a =5,根据椭圆定义有|PF 1|+|PF 2|=2a =10.若|PF 1|=3,则|PF 2|=7.3.已知椭圆x 225+y 2m 2=1(m >0)的左焦点为F 1(-4,0),则m =( )A .2B .3C .4D .9解析:选B.由4=25-m 2(m >0),解得m =3.4.若方程x 2m +y 22m -1=1表示椭圆,则m 满足的条件是______.解析:由方程x 2m +y 22m -1=1表示椭圆,知⎩⎪⎨⎪⎧m >0,2m -1>0,m ≠2m -1,解得m >12且m ≠1.答案:⎩⎨⎧⎭⎬⎫m ⎪⎪m >12且m ≠1 5.求与椭圆x 225+y 29=1有相同焦点,且过点(3,15)的椭圆的标准方程.解:因为所求椭圆与椭圆x 225+y 29=1的焦点相同,所以其焦点在x 轴上,且c 2=25-9=16.设所求椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0).因为c 2=16,且c 2=a 2-b 2,故a 2-b 2=16.①又点P (3,15)在所求椭圆上,所以32a 2+(15)2b 2=1,即9a 2+15b2=1.② 由①②得a 2=36,b 2=20,所以所求椭圆的标准方程为x 236+y 220=1., [学生用书P105(单独成册)])[A 基础达标]1.平面内,若点M 到定点F 1(0,-1),F 2(0,1)的距离之和为2,则点M 的轨迹为( ) A .椭圆 B .直线F 1F 2 C .线段F 1F 2 D .直线F 1F 2的垂直平分线解析:选C.由|MF 1|+|MF 2|=2=|F 1F 2|知,点M 的轨迹不是椭圆,而是线段F 1F 2.2.方程x 2k -4+y 210-k =1表示焦点在x 轴上的椭圆,则实数k 的取值范围是( )A .(4,+∞)B .(4,7)C .(7,10)D .(4,10)解析:选C.由题意可知⎩⎪⎨⎪⎧k -4>0,10-k >0,k -4>10-k ,所以7<k <10.3.(2017·郑州高二检测)椭圆x 225+y 29=1上一点M 到焦点F 1的距离为2,N 是MF 1的中点,则|ON |等于( )A .2B .4C .6D .32解析:选B.设椭圆的另一个焦点为F 2,因为椭圆x 225+y 29=1上一点M 到焦点F 1的距离为2,即|MF 1|=2,又|MF 1|+|MF 2|=2a =10,所以|MF 2|=8.因为N 是MF 1的中点,O 是F 1F 2的中点,所以|ON |=12|MF 2|=4.4.已知P 为椭圆C 上一点,F 1,F 2为椭圆的焦点,且|F 1F 2|=23,若|PF 1|与|PF 2|的等差中项为|F 1F 2|,则椭圆C 的标准方程为( )A .x 212+y 29=1B .x 212+y 29=1或x 29+y 212=1C .x 29+y 212=1D .x 248+y 245=1或x 245+y 248=1解析:选B.由已知2c =|F 1F 2|=23,所以c = 3. 因为2a =|PF 1|+|PF 2|=2|F 1F 2|=43, 所以a =23,所以b 2=a 2-c 2=9.故椭圆C 的标准方程是x 212+y 29=1或x 29+y 212=1.5.已知椭圆C :x 22+y 2=1的焦点F (1,0),直线l :x =2,点A ∈l ,线段AF 交C 于点B ,若F A →=3FB →,则|AF →|=( )A . 3B .2C . 2D .3解析:选C.如图所示,设l 与x 轴交于点A 1,过B 点作x 轴的垂线BB 1,交x 轴于点B 1,设|AF →|=t ,则|FB →|=t 3,得:|AA 1→|=t 2-1,|BB 1→|=t 2-13,|FB 1→|=13,故B ⎝ ⎛⎭⎪⎫43,t 2-13, 代入椭圆方程得:⎝⎛⎭⎫4322+t 2-19=1,得:t = 2.6.已知椭圆的焦点在y 轴上,其上任意一点到两焦点的距离和为8,焦距为215,则此椭圆的标准方程为________.解析:由已知2a =8,2c =215, 所以a =4,c =15,所以b 2=a 2-c 2=16-15=1. 又椭圆的焦点在y 轴上, 所以椭圆的标准方程为y 216+x 2=1.答案:y 216+x 2=17.椭圆x 29+y 22=1的焦点为F 1,F 2,点P 在椭圆上.若|PF 1|=4,则|PF 2|=________,∠F 1PF 2的大小为________.解析:由|PF 1|+|PF 2|=6,且|PF 1|=4,知|PF 2|=2. 在△PF 1F 2中,cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=-12.所以∠F 1PF 2=120°.答案:2 120°8.已知椭圆的焦点F 1,F 2在x 轴上,且a =2c ,过F 1的直线l 交椭圆于A ,B 两点,且△ABF 2的周长为16,那么椭圆的标准方程为________.解析:根据椭圆的焦点在x 轴上,可设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),根据△ABF 2的周长为16得4a =16,则a =4,因为a =2c ,所以c =22,则b 2=a 2-c 2=16-8=8.故椭圆的标准方程为x 216+y 28=1.答案:x 216+y 28=19.已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N内切,圆心P 的轨迹为曲线C .求C 的方程.解:由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3.设圆P 的圆心为P (x ,y ),半径为R .因为圆P 与圆M 外切并且与圆N 内切,所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4.由椭圆的定义可知,曲线C 是以M ,N 为左,右焦点的椭圆(点x =-2除外),其方程为x 24+y 23=1(x ≠-2). 10.求满足下列条件的椭圆的标准方程:(1)焦点在y 轴上,且经过两个点(0,2)和(1,0); (2)经过两点(2,-2),⎝⎛⎭⎫-1,142. 解:(1)因为椭圆的焦点在y 轴上,所以设椭圆的标准方程为y 2a 2+x 2b 2=1(a >b >0).因为椭圆经过点(0,2)和(1,0), 所以⎩⎨⎧4a 2+0b 2=1,0a 2+1b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1.所以所求椭圆的标准方程为y 24+x 2=1.(2)法一:若焦点在x 轴上,设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0).由已知条件得⎩⎨⎧4a 2+2b 2=1,1a 2+144b 2=1,解得⎩⎨⎧1a 2=18,1b 2=14.所以所求椭圆的标准方程为x 28+y 24=1.若焦点在y 轴上,设椭圆的标准方程为y 2a 2+x 2b2=1(a >b >0).由已知条件得⎩⎨⎧4b 2+2a 2=1,1b 2+144a 2=1,解得⎩⎨⎧1b 2=18,1a 2=14.即a 2=4,b 2=8,则a 2<b 2,与a >b >0矛盾,舍去. 综上可知,所求椭圆的标准方程为x 28+y 24=1.法二:设椭圆的一般方程为Ax 2+By 2=1(A >0,B >0,A ≠B ).分别将两点的坐标(2,-2),⎝⎛⎭⎫-1,142代入椭圆的一般方程,得⎩⎪⎨⎪⎧4A +2B =1,A +144B =1, 解得⎩⎨⎧A =18,B =14, 所以所求椭圆的标准方程为x 28+y 24=1. [B 能力提升] 11.(2017·唐山高二检测)已知椭圆x 23+y 24=1的两个焦点F 1,F 2,M 是椭圆上一点,且|MF 1|-|MF 2|=1,则△MF 1F 2是( )A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形解析:选B.由椭圆定义知|MF 1|+|MF 2|=2a =4,因为|MF 1|-|MF 2|=1,所以|MF 1|=52,|MF 2|=32. 又|F 1F 2|=2c =2,所以|MF 1|2=|MF 2|2+|F 1F 2|2,即∠MF 2F 1=90°,所以△MF 1F 2为直角三角形.12.已知椭圆C 1:mx 2+y 2=8与椭圆C 2:9x 2+25y 2=100的焦距相等,则m 的值为________. 解析:将椭圆C 1化成标准方程为x 28m+y 28=1, C 2化成标准方程为x 21009+y 24=1. 设椭圆C 2的焦距为2c ,则c 2=1009-4=649. 当椭圆C 1的焦点在x 轴上时,因为椭圆C 1与椭圆C 2的焦距相等. 所以8m -8=649,解得m =917. 当椭圆C 1的焦点在y 轴上时,因为椭圆C 1与椭圆C 2的焦距相等. 所以8-8m =649,解得m =9. 综上可知,m =9或m =917. 答案:9或91713. 如图所示,F 1,F 2分别为椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,点P 在椭圆上,若△POF 2为面积是3的正三角形,试求椭圆的标准方程.解:由△POF 2为面积是3的正三角形得,|PO |=|PF 2|=|OF 2|=2,所以c =2. 连接PF 1,在△POF 1中,|PO |=|OF 1|=2,∠POF 1=120°,所以|PF 1|=2 3.所以2a =|PF 1|+|PF 2|=2+23,所以a =1+3,所以b 2=a 2-c 2=4+23-4=2 3. 所以所求椭圆的标准方程为x 24+23+y 223=1. 14.(选做题)设F 1,F 2分别是椭圆x 24+y 2=1的左、右焦点,B 为椭圆上的点且坐标为(0,-1).(1)若P 是该椭圆上的一个动点,求|PF 1|·|PF 2|的最大值.(2)若C 为椭圆上异于B 的一点,且BF →1=λ CF →1,求λ的值.(3)设P 是该椭圆上的一个动点,求△PBF 1的周长的最大值.解:(1)因为椭圆的方程为x 24+y 2=1,所以a =2,b =1,c =3, 即|F 1F 2|=23,又因为|PF 1|+|PF 2|=2a =4,所以|PF 1|·|PF 2|≤⎝⎛⎭⎫|PF 1|+|PF 2|22=⎝⎛⎭⎫422=4,当且仅当|PF 1|=|PF 2|=2时取“=”,所以|PF 1|·|PF 2|的最大值为4.(2)设C (x 0,y 0),B (0,-1),F 1(-3,0),由BF →1=λ CF →1得x 0=3(1-λ)λ,y 0=-1λ. 又x 204+y 20=1,所以有λ2+6λ-7=0, 解得λ=-7或λ=1,C 异于B 点,故λ=1舍去.所以λ=-7.(3)因为|PF 1|+|PB |=4-|PF 2|+|PB |≤4+|BF 2|,所以△PBF 1的周长≤4+|BF 2|+|BF 1|=8,所以当P 点位于直线BF 2与椭圆的交点处时,△PBF 1周长最大,最大值为8.。

相关文档
最新文档