北师版八年级数学下册第一章三角形的证明易错题进阶辅导讲义

合集下载

北师大版八年级下册数学[《三角形的证明》全章复习与巩固--知识点整理及重点题型梳理](提高)

北师大版八年级下册数学[《三角形的证明》全章复习与巩固--知识点整理及重点题型梳理](提高)

北师大版八年级下册数学重难点突破知识点梳理及重点题型巩固练习《三角形的证明》全章复习与巩固(提高)【学习目标】1.经历回顾与思考的过程,深刻理解和掌握定理的探索和证明.2.结合具体实例感悟证明的思路和方法,能运用综合、分析的方法解决有关问题.3.能正确运用尺规作图的基本方法作已知线段的垂直平分线和角的平分线,以及绘制特殊三角形.【知识网络】【要点梳理】要点一、等腰三角形1.三角形全等的性质及判定全等三角形的对应边相等,对应角也相等.判定:SSS、SAS、ASA、AAS、HL.2.等腰三角形的判定、性质及推论性质:等腰三角形的两个底角相等(等边对等角)判定:有两个角相等的三角形是等腰三角形(等角对等边)推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)3.等边三角形的性质及判定定理性质定理:等边三角形的三个角都相等,并且每个角都等于60°;等边三角形的三条边都满足“三线合一”的性质;等边三角形是轴对称图形,有3条对称轴.判定定理:有一个角是60°的等腰三角形是等边三角形;三个角都相等的三角形是等边三角形.4.含30°的直角三角形的边的性质定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.要点诠释:等边三角形是中考中常考的知识点,并且有关它的计算也很常见,因此对于等边三角形的特殊数据要熟记于心,不如边长为a 的等边三角形他的高是2a ,面积是24;含有30°的直角三角形揭示了三角形中边与角的关系,打破了以往那种只有角或边的关系,同时也为我们学习三角函数奠定了基础.要点二、直角三角形1.勾股定理及其逆定理定理:直角三角形的两条直角边的平方和等于斜边的平方.逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.2.命题与逆命题命题包括题设和结论两部分;逆命题是将原命题的题设和结论交换位置得到的;正确的逆命题就是逆定理.3.直角三角形全等的判定定理定理:斜边和一条直角边对应相等的两个直角三角形全等(HL )要点诠释:①勾股定理的逆定理在语言叙述的时候一定要注意,不能说成“两条边的平方和等于斜边的平方”,应该说成“三角形两边的平方和等于第三边的平方”.②直角三角形的全等判定方法,还有SSS,SAS,ASA,AAS,一共有5种判定方法. 要点三、线段的垂直平分线1.线段垂直平分线的性质及判定性质:线段垂直平分线上的点到这条线段两个端点的距离相等.判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.2.三角形三边的垂直平分线的性质三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.3.如何用尺规作图法作线段的垂直平分线分别以线段的两个端点A 、B 为圆心,以大于12AB 的长为半径作弧,两弧交于点M 、N ;作直线MN ,则直线MN 就是线段AB 的垂直平分线.要点诠释:①注意区分线段的垂直平分线性质定理和判定定理,注意二者的应用范围;②利用线段的垂直平分线定理可解决两条线段的和距离最短问题.要点四、角平分线1.角平分线的性质及判定定理性质:角平分线上的点到这个角的两边的距离相等;判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上.2.三角形三条角平分线的性质定理性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等.3.如何用尺规作图法作出角平分线要点诠释:①注意区分角平分线性质定理和判定定理,注意二者的应用范围;②几何语言的表述,这也是证明线段相等的一种重要的方法.遇到角平分线时,要构造全等三角形.【典型例题】类型一、能证明它们么1. 如图,△ACD 和△BCE 都是等腰直角三角形,∠ACD=∠BCE=90°,AE 交CD 于点F ,BD 分别交CE 、AE 于点G 、H .试猜测线段AE 和BD 的数量和位置关系,并说明理由.【思路点拨】由条件可知CD=AC ,BC=CE ,且可求得∠ACE=∠DCB ,所以△ACE ≌△DCB ,即AE=BD ,∠CAE=∠CDB ;又因为对顶角∠AFC=∠DFH ,所以∠DHF=∠ACD=90°,即AE ⊥BD .【答案与解析】猜测AE=BD ,AE ⊥BD ;理由如下:∵∠ACD=∠BCE=90°,∴∠ACD+∠DCE=∠BCE+∠DCE ,即∠ACE=∠DCB ,又∵△ACD 和△BCE 都是等腰直角三角形,∴AC=CD ,CE=CB ,∵在△ACE 与△DCB 中,,AC DC ACE DCB EC BC =⎧⎪∠=∠⎨⎪=⎩∴△ACE ≌△DCB (SAS ),∴AE=BD , ∠CAE=∠CDB ;∵∠AFC=∠DFH ,∠FAC+∠AFC=90°,∴∠DHF=∠ACD=90°,∴AE ⊥BD .故线段AE 和BD 的数量相等,位置是垂直关系.【总结升华】主要考查全等三角形的判定,涉及到等腰直角三角形的性质及对顶角的性质等知识点.举一反三:【变式】将两个全等的直角三角形ABC 和DBE 按图1方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.(1)求证:AF+EF=DE;(2)若将图1中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其它条件不变,请在图2中画出变换后的图形,并直接写出你在(1)中猜想的结论是否仍然成立;(3)若将图1中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其它条件不变,如图3.你认为(1)中猜想的结论还成立吗?若成立,写出证明过程;若不成立,请写出AF、EF与DE之间的关系,并说明理由.【答案】(1)证明:连接BF(如下图1),∵△ABC≌△DBE(已知),∴BC=BE,AC=DE.∵∠ACB=∠DEB=90°,∴∠BCF=∠BEF=90°.∵BF=BF,∴Rt△BFC≌Rt△BFE.∴CF=EF.又∵AF+CF=AC,∴AF+EF=DE.(2)解:画出正确图形如图2.(1)中的结论AF+EF=DE仍然成立;(3)证明:连接BF ,∵△ABC ≌△DBE ,∴BC=BE ,∵∠ACB=∠DEB =90°,∴△BCF 和△BEF 是直角三角形,在Rt △BCF 和Rt △BEF 中,,BC BE BF BF=⎧⎨=⎩ ∴△BCF ≌△BEF ,∴CF=EF ;∵△ABC ≌△DBE ,∴AC=DE ,∴AF=AC+FC=DE+EF .类型二、直角三角形2. 下列说法正确的说法个数是( )①两个锐角对应相等的两个直角三角形全等,②斜边及一锐角对应相等的两个直角三角形全等,③两条直角边对应相等的两个直角三角形全等,④一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等.A.1B.2C.3D.4【思路点拨】根据全等三角形的判定方法及“HL”定理,判断即可;【答案】C.【解析】A 、三个角相等,只能判定相似;故本选项错误;B 、斜边及一锐角对应相等的两个直角三角形,符合两三角形的判定定理“AAS”;故本选项正确;C 、两条直角边对应相等的两个直角三角形,符合两三角形的判定定理“SAS”;故本选项正确;D、一条直角边和另一条直角边上的中线对应相等的两个直角三角形,首先根据“HL”定理,可判断两个小直角三角形全等,可得另条直角边相等,然后,根据“SAS”,可判断两个直角三角形全等;故本选项正确;所以,正确的说法个数是3个.故选C.【总结升华】直角三角形全等的判定,一般三角形全等的判定方法都适合它,同时,直角三角形有它的特殊性,作为“HL”公理就是直角三角形独有的判定方法,使用时应该抓住“直角”这个隐含的已知条件.3.(2016•南开区一模)问题背景:在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上;(2)若△ABC三边的长分别为、、2(m>0,n>0,且m ≠n),运用构图法可求出这三角形的面积为.【思路点拨】(1)是直角边长为1,2的直角三角形的斜边;是直角边长为1,3的直角三角形的斜边;是直角边长为2,3的直角三角形的斜边,把它整理为一个矩形的面积减去三个直角三角形的面积;(2)结合(1)易得此三角形的三边分别是直角边长为m,4n的直角三角形的斜边;直角边长为3m,2n的直角三角形的斜边;直角边长为2m,2n的直角三角形的斜边.同样把它整理为一个矩形的面积减去三个直角三角形的面积可得.【答案与解析】解:(1)S△ABC=3×3﹣×1×2﹣×2×3﹣×1×3=;(2)构造△ABC如图所示,S△ABC=3m×4n﹣×m×4n﹣×3m×2n﹣×2m×2n=5mn.故答案为:(1)3;(2)5mn.【总结升华】此题主要考查了勾股定理应用,利用了数形结合的思想,通过构造直角三角形,利用勾股定理求解是解题关键,关键是结合网格用矩形及容易求得面积的直角三角形表示出所求三角形的面积进行解答.类型三、线段垂直平分线4. 如图,在锐角△ABC中,AD、CE分别是BC、AB边上的高,AD、CE相交于F,BF的中点为P,AC的中点为Q,连接PQ、DE.(1)求证:直线PQ是线段DE的垂直平分线;(2)如果△ABC是钝角三角形,∠BAC>90°,那么上述结论是否成立?请按钝角三角形改写原题,画出相应的图形,并给予必要的说明.【思路点拨】(1)只需证明点P、Q都在线段DE的垂直平分线上即可.即证P、Q分别到D、E的距离相等.故连接PD、PE、QD、QE,根据直角三角形斜边上的中线等于斜边的一半可证;(2)根据题意,画出图形;结合图形,改写原题.【答案与解析】(1)证明:连接PD、PE、QD、QE.∵CE⊥AB,P是BF的中点,∴△BEF是直角三角形,且PE是Rt△BEF斜边的中线,∴PE=12 BF.又∵AD⊥BC,∴△BDF是直角三角形,且PD是Rt△BDF斜边的中线,∴PD=12BF=PE,∴点P在线段DE的垂直平分线上.同理可证,QD、QE分别是Rt△ADC和Rt△AEC斜边上的中线,∴QD=12AC=QE,∴点Q也在线段DE的垂直平分线上.∴直线PQ垂直平分线段DE.(2)当△ABC为钝角三角形时,(1)中的结论仍成立.如图,△ABC是钝角三角形,∠BAC>90°.原题改写为:如图,在钝角△ABC中,AD、CE分别是BC、AB边上的高,DA与CE的延长线交于点F,BF的中点为P,AC的中点为Q,连接PQ、DE.求证:直线PQ垂直且平分线段DE.证明:连接PD,PE,QD,QE,则PD、PE分别是Rt△BDF和Rt△BEF的中线,∴PD=12BF,PE=12BF,∴PD=PE,点P在线段DE的垂直平分线上.同理可证QD=QE,∴点Q在线段DE的垂直平分线上.∴直线PQ垂直平分线段DE.【总结升华】考查了线段垂直平分线的判定和性质、直角三角形斜边上的中线等于斜边的一半等知识点,图形较复杂,有一定综合性,但难度不是很大.举一反三:【变式】在△ABC中,AB=AC,AB的垂直平分线交AB于N,交BC的延长线于M,∠A=40度.(1)求∠M的度数;(2)若将∠A的度数改为80°,其余条件不变,再求∠M的大小;(3)你发现了怎样的规律?试证明;(4)将(1)中的∠A改为钝角,(3)中的规律仍成立吗?若不成立,应怎样修改.【答案】(1)∵∠B=12(180°-∠A)=70°∴∠M=20°(2)同理得∠M=40°(3)规律是:∠M的大小为∠A大小的一半,证明:设∠A=α,则有∠B=12(180°-α)∠M=90°-12(180°-α)=12α.(4)不成立.此时上述规律为:等腰三角形一腰的垂直平分线与底边相交所成的锐角等于顶角的一半.类型四、角平分线5. 如图,△ABC中,∠A=60°,∠ACB的平分线CD和∠ABC的平分线BE交于点G.求证:GE=GD.【思路点拨】连接AG,过点G作GM⊥AB于M,GN⊥AC于N,GF⊥BC于F.由角平分线的性质及逆定理可得GN=GM=GF,AG是∠CAB的平分线;在四边形AMGN中,易得∠NGM=180°-60°=120°;在△BCG中,根据三角形内角和定理,可得∠CGB=120°,即∠EGD=120°,∴∠EGN=∠DGM,证明Rt△EGN≌Rt△DGM(AAS)即可得证GE=GM.【答案与解析】解:连接AG,过点G作GM⊥AB于M,GN⊥AC于N,GF⊥BC于F.∵∠A=60°,∴∠ACB+∠ABC=120°,∵CD,BE是角平分线,∴∠BCG+∠CBG=120°÷2=60°,∴∠CGB=∠EGD=120°,∵G是∠ACB平分线上一点,∴GN=GF,同理,GF=GM,∴GN=GM,∴AG是∠CAB的平分线,∴∠GAM=∠GAN=30°,∴∠NGM=∠NGA+∠AGM=60°+60°=120°,∴∠EGD=∠NGM=120°,∴∠EGN=∠DGM,又∵GN=GM,∴Rt△EGN≌Rt△DGM(AAS),∴GE=GD.【总结升华】此题综合考查角平分线的定义、三角形的内角和及全等三角形的判定和性质等知识点,难度较大,作辅助线很关键.举一反三:【变式】(2015春•澧县期末)如图:在△ABC中,∠C=90°AD是∠BAC的平分线,DE⊥AB 于E,F在AC上,BD=DF;证明:(1)CF=EB.(2)AB=AF+2EB.【答案】证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC,∵在Rt△DCF和Rt△DEB中,∴Rt△CDF≌Rt△EBD(HL).∴CF=EB;(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴CD=DE.在△ADC与△ADE中,∵精品文档用心整理∴△ADC≌△ADE(HL),∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.资料来源于网络仅供免费交流使用。

八年级数学下册 1 三角形的证明易错课堂(一)课件 (新版)北师大版

八年级数学下册 1 三角形的证明易错课堂(一)课件 (新版)北师大版
则等腰三角形的腰长为 6或10 .
2.已知等腰三角形的周长为50 cm,一条边长是12 cm,
则另两条边长为 19cm和19cm

例2 等腰三角形的一个内角是80°,则它的顶角的度数是( )B A.80° B.80°或20° C.80°或50° D.20° 错解:A或D 错因分析:等腰三角形中求角度时,要看给出的角是等腰三角形的顶角 还是底角,若不确定,应分两种情况讨论. 正解:B
错解:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∴AD垂直平 分EF.
错因分析:运用线段垂直平分线的判定定理时,只证出一点在线段的垂 直平分线上而得出结论,需要两个点来确定一条直线.
正解:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DFபைடு நூலகம்∴点D在线 段EF的垂直平分线上,又∵DE=DF,AD=AD,
第1章 三角形的证明
易错课堂(一)
例1 若等腰三角形的两条边长分别为7 cm和14 cm, 则它的周长为__3_5_ cm. 错解:28或35 错因分析:等腰三角形中,腰和底不明确时需分类讨论,要看这条边是等 腰三角形的腰还是底,然后看它们是否满足三边关系,不满足的要舍去. 正解:35
1.在△ABC中,AB=AC,BC=8,BD是腰AC上的中线,把△ABC分 为两个三角形,已知它们的周长差为2,
6.在 Rt△ABC 中,∠BAC=90°,AB=AC=2,以 AC 为一边,在△ABC 外部作等腰直角三角形 ACD,则线段 BD 的长度为 4 或 10或 2 5 .
例4 已知△ABC中,AB=15,AC=13,BC边上的高AD=12,则线段 BC的长为 14或4 .
错解:14 错因分析:三角形形状不明确,若涉及到高的问题,应分钝角三角形和 锐角三角形两种情况求解. 正解:14或4

1.2直角三角形——直角三角形的边角性质+练习课件+2023-—2024学年北师大版数学八年级下册

1.2直角三角形——直角三角形的边角性质+练习课件+2023-—2024学年北师大版数学八年级下册

【点拨】
∵1 宣=12矩,1 欘=112宣,1 矩=90°,∠A=1 矩,
∠B=1


∴∠A
= 90°,

B

1
1 2
1 ×2
×90°=
67.5°,
∴∠C=90°-∠B=90°-67.5=22.5°.
3 (母题:教材P34复习题T5)若三角形三个内角的比为 1 ∶2 ∶3,则这个三角形是__直__角____三角形.
(2)若AE是△ABC的角平分线,AE,CD相交于点F,求证: ∠CFE=∠CEF. 【证明】∵AE是△ABC的角平分线,∴∠DAF=∠CAE. ∵∠FDA=90°,∠ACE=90°, ∴∠DAF+∠AFD=90°,∠CAE+∠CEA=90°. ∴∠AFD=∠CEA. ∵∠AFD=∠CFE, ∴∠CFE=∠CEA,即∠CFE=∠CEF.
解:如图②,延长 MN 至点 C′,使 NC′=NC,连接 AC′, 则 AC′的长即为蚂蚁爬行的最短路程. 在 Rt△AMC′中,AM=3×2=6(cm), MC′=20+2=22(cm). 由勾股定理,得 AC′2=AM2+MC′2=62+222=520, 则 AC′=2 130 cm. 答:蚂蚁需要爬行的最短路程是 2 130 cm.
∵∠C=90°,∴∠4+∠5=90°. ∴∠3+∠5=90°,即∠FBG=90°. 又∵DF⊥EG,DE=DG,∴FG=EF. 在Rt△FBG中,BG2+BF2=FG2,∴AE2+BF2=EF2.
【点方法】
欲证AE2+BF2=EF2,应联想到勾股定理,把AE, BF和EF转. 化. 为同一个直角三角形的三边.
【点拨】
∵直角三角形的三边a,b,c满足c>a>b,∴该直角三 角形的斜边为c,∴c2=a2+b2,∴c2-a2-b2=0,∴S1= c2-a2-b2+b(a+b-c)=ab+b2-bc. ∵S2=b(a+b-c)= ab+b2-bc,∴S1=S2,故选C.

(北师版)八年级数学下册 第一章 三角形的证明 辅导讲义

(北师版)八年级数学下册 第一章 三角形的证明 辅导讲义

第一阶梯三角形证明基础巩固训练一.角平分线的性质(共1小题)1.如图,已知∠A=90°,BD平分∠ABC,AD=1cm,BC=6cm,则△BDC的面积为()A.1cm2B.6cm2C.3cm2D.12cm2二.线段垂直平分线的性质(共5小题)2.△ABC中AC>BC,边AB的垂直平分线与AC交于点D,已知AC=5,BC=4,则△BCD的周长是()A.9B.8C.7D.63.到平面上三点A、B、C距离相等的点有()A.只有一个B.有两个C.有三个或三个以上D.有一个或没有4.△ABC中,∠C=90°,AB的垂直平分线交AB于E,交BC于点D,若CD:BD=1:2,BC=6cm,则点D到点A的距离为()A.1.5cm B.3cm C.2cm D.4cm5.如图所示,AB=AD,∠ABC=∠ADC=90°,则①AC平分∠BAD;②CA平分∠BCD;③AC垂直平分BD;④BD平分∠ABC,其中正确的结论有()A.①②B.①②③C.①②③④D.②③6.如果一个三角形一边上的中线和这边上的高重合,那么这个三角形是三角形.三.等腰三角形的性质(共9小题)7.等腰三角形周长是32cm,一边长为10cm,则其他两边的长分别为()A.10cm,12cm B.11cm,11cm C.11cm,11cm或10cm,12cm D.不能确定8.等腰三角形周长为36cm,两边长之比为4:1,则底边长为()A.16cm B.4cm C.20cm D.16cm或4cm9.一个等腰而非等边的三角形,它的所有的内角平分线、中线和高的条数为()A.9B.6C.7D.310.等腰三角形的周长为22cm,其中一边的长是8cm,则其余两边长分别为.11.顶角为60°的等腰三角形,两个底角的平分线相交所成的角是°.12.AB边上的中线CD将△ABC分成两个等腰三角形,则∠ACB=度.13.如果等腰三角形一腰上的高与腰的夹角为30°,则该三角形的顶角的度数为.14.如图,△ABC中,AB=AC,O是△ABC内一点,且∠OBC=∠OCB,求证:AO⊥BC.15.如图,在△ABC中,AB=AC,CD为AB边上的高,求证:∠BCD=∠A.四.等腰三角形的判定与性质(共1小题)16.△ABC中,AB=AC,∠ABC=36°,D,E是BC上的点,∠BAD=∠DAE=∠EAC,则图中等腰三角形有个.五.等边三角形的性质(共2小题)17.如图,等边△ABC中,E,D在AB,AC上,且EB=AD,BD与EC交于点F,则∠DFC=度,18.如图所示,△ABC、△ADE与△EFG都是等边三角形,D和G分别为AC和AE的中点,若AB=4时,则图形ABCDEFG外围的周长是.六.等边三角形的判定(共2小题)19.三角形中有两条中线分别平分它的两个内角,则这个三角形是()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形20.已知a,b,c是△ABC的三边,且a2+b2+c2=ab+ac+bc,则△ABC是()A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形第二阶梯三角形证明能力提升训练一.直角三角形全等的判定(共1小题)1.如图所示,已知在△ABC中,∠C=90°,AD=AC,DE⊥AB交BC于点E,若∠B=28°,则∠AEC =()A.28°B.59°C.60°D.62°二.角平分线的性质(共1小题)2.如图,已知∠A=90°,BD平分∠ABC,AD=1cm,BC=6cm,则△BDC的面积为()A.1cm2B.6cm2C.3cm2D.12cm2三.线段垂直平分线的性质(共3小题)3.已知△ABC中,AD⊥BC于点D,且BD=CD,若AB=3,则AC=.4.M、N、A、B是同一平面上的四个点,如果MA=MB,NA=NB,则点、在线段的垂直平分线上.5.△ABC中,AB比AC大2cm,BC的垂直平分线交AB于D,若△ACD的周长是14cm,则AB=,AC=.四.等腰三角形的性质(共6小题)6.等腰三角形周长为36cm,两边长之比为4:1,则底边长为()A.16cm B.4cm C.20cm D.16cm或4cm7.一个等腰而非等边的三角形,它的所有的内角平分线、中线和高的条数为()A.9B.6C.7D.38.已知:等腰三角形的周长为50厘米,若底边长为x厘米,则x的取值范围是.9.如图:△ABC中,∠B=∠C,E是AC上一点,ED⊥BC,DF⊥AB,垂足分别为D、F,若∠AED=140°,则∠C=度,∠A=度,∠BDF=度.10.分别以等腰三角形的腰与底边向三角形外作正三角形,其周长为24和36,求等腰三角形的周长.11.在△ABC中,AB=AC,它的两条边分别为3cm,4cm,那么它的周长为多少.五.等腰三角形的判定与性质(共5小题)12.如图,在△ABC中,已知∠ABC和∠ACB的平分线相交于点F.过点F作DF∥BC,交AB于点D,交AC于点E.若BD=4,DE=9,则线段CE的长为()A.3B.4C.5D.613.如图,在△ABC中,AB=AC=10,点D为BC上一点,过点D分别作DF∥AC交AB于点F,DE∥AB交AC于点E.求四边形AFDE的周长.14.在△ABC中,AB≠AC,∠ABC、∠ACB的平分线交于O点,过O点作EF∥BC交AB、AC于E、F.(1)如图1,写出图中所有的等腰三角形.猜想:EF与BE、CF之间有怎样的关系,并说明理由.(2)如图2,△ABC中∠ABC的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC交AB 于E,交AC于F.图中还有等腰三角形吗?如果有,分别指出它们.写出EF与BE、CF关系,并说明理由.15.如图,AD是△ABC的角平分线,过点D作直线DF∥BA,交△ABC的外角平分线AF于点F,DF与AC交于点E.求证:DE=EF.16.如图,已知△ABC是等边三角形,D为边AC的中点,AE⊥EC,BD=EC,请判断△ADE是不是等边三角形,并说明理由.六.等边三角形的性质(共3小题)17.如图,等边三角形ABC的边长为2,则它的高为.18.△ABC是等腰三角形,AB=AC,分别以两腰为边向外作等边△ADB和等边△ACE,若∠DAE=∠DBC,则∠BAC的度数为.19.如图,已知等边△ABC边长为1,D是△ABC外一点且∠BDC=120°,BD=CD,∠MDN=60°.求证:△AMN的周长等于2.七.等边三角形的判定(共1小题)20.三角形中有两条中线分别平分它的两个内角,则这个三角形是()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形第三阶梯三角形的证明综合训练(一)一、填空题1.如图,修建抽水站时,沿着倾斜角为30°的斜坡铺设管道,若量得水管AB的长度为80米,那么点B 离水平面的高度BC的长为米.2.如果一个三角形的一条角平分线恰好是对边上的高,那么这个三角形是三角形.3.如图,已知AC=DB,要使△ABC≌△DCB,只需增加的一个条件是或.4.命题“全等三角形的对应角相等”的逆命题是,这个逆命题是(填“真”或“假”).5.如图,一个顶角为40°的等腰三角形纸片,剪去顶角后,得到一个四边形,则∠1+∠2=度.6.在△ABC中,已知AB=AC,AD是中线,∠B=70°,BC=15cm,则∠BAC=,∠DAC=,BD=cm.7.已知,如图,O是△ABC的∠ABC、∠ACB的角平分线的交点,OD∥AB交BC于D,OE∥AC交BC 于E,若BC=10 cm,则△ODE的周长cm.第7题图第8题图8.如图,在Rt△ABC中,∠B=90°,∠A=40°,AC的垂直平分线MN与AB交于点D,则∠BCD的度数是度.9.如图,△ABC中,∠C=90°,AD平分∠BAC,交BC于D,若DC=7,则点D到AB的距离DE=.10.如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD的长为.二、选择题11.等腰三角形底边上的高与底边的比是1:2,则它的顶角等于()A.60°B.90°C.120°D.150°12.下列两个三角形中,一定全等的是()A.有一个角是40°,腰相等的两个等腰三角形B.两个等边三角形C.有一个角是100°,底相等的两个等腰三角形D.有一条边相等,有一个内角相等的两个等腰三角形13.到△ABC的三条边距离相等的点是△ABC的()A.三条中线交点B.三条角平分线交点C.三条高的交点D.三条边的垂直平分线交点14.△ABC中,∠A:∠B:∠C=1:2:3,CD⊥AB于点D,若BC=a,则AD等于()A.B.C.D.15.如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为()A.30°B.36°C.45°D.70°三、解答题16.如图,AD⊥CD,AB=10,BC=20,∠A=∠C=30°.求:(1)∠ABC的度数;(2)AD、CD的长.17.已知:如图,△ABC中,AB=AC,∠A=120度.(1)用直尺和圆规作AB的垂直平分线,分别交BC、AB于点M、N(保留作图痕迹,不写作法).(2)猜想CM与BM之间有何数量关系,并证明你的猜想.四、证明题18.已知:如图,CE⊥AB,BF⊥AC,CE与BF相交于D,且BD=CD.求证:D在∠BAC的平分线上.19.已知:如图,在等边三角形ABC的AC边上取中点D,BC的延长线上取一点E,使CE=CD.求证:BD=DE.五、阅读下面的题目及分析过程,并按要求进行证明.20.阅读下面的题目及分析过程,并按要求进行证明.已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD.分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等.因此,要证AB =CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.现给出如下三种添加辅助线的方法,请任意选择其中一种,对原题进行证明.第四阶梯三角形的证明综合训练(二)一、填空题:1.三角形三个角的度数之比为1:2:3,它的最大边长等于16cm,则最小边长是cm.2.已知等腰三角形的一个角是36°,则另两个角分别是.3.Rt△ABC中,锐角∠ABC和∠CAB的平分线交于点O,则∠BOA=.4.如图,在△ABC中,∠B=115°,AC边的垂直平分线DE与AB边交于点D,且∠ACD:∠BCD=5:3,则∠ACB的度数为度.第4题图第5题图5.如图,已知∠ABD=∠C=90°,AD=12,AC=BD,∠BAD=30°,则BC=.6.如图,将矩形纸片ABCD沿BD对折,使点C落在E处,BE与AD相交于点O,写出一组相等线段、相等角(不包括矩形的对边、对角).7.如图,将等腰直角三角形ABC绕点A逆时针旋转15°后得到△AB′C′,若AC=1,则图中阴影部分的面积为.8.命题“全等三角形的对应角相等”的逆命题是,这个逆命题是(填“真”或“假”).9.如图,在Rt△ABC中,∠B=90°,∠A=40°,AC的垂直平分线MN与AB交于点D,则∠BCD的度数是度.10.如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD的长为.二、选择题:11.在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B =∠C中,能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个12.到△ABC的三条边距离相等的点是△ABC的()A.三条中线交点B.三条角平分线交点C.三条高的交点D.三条边的垂直平分线交点13.如图,在等边三角形ABC中,BD⊥BC,过A作AD⊥BD于D,已知△ABC周长为M,则AD=()A.B.C.D.14.在△ABC中,∠A:∠B:∠C=1:2:3,CD⊥AB于D,AB=a,则DB等于()A.B.C.D.15.已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A.24cm2B.36cm2C.48cm2D.60cm216.如图,在△ABC中,AB=AC,AB的垂直平分线交BC的延长线于E,交AC于F,∠A=50°,AB+BC =16cm,则△BCF的周长和∠EFC分别为()A.16cm,40°B.8cm,50°C.16cm,50°D.8cm,40°17.如图所示,已知△ABC中,AB=AC,∠BAC=90°,直角△EPF的顶点P是BC中点,两边PE、PF 分别交AB、AC于点E,F,给出以下四个结论:①AE=CF;②△EPF是等腰直角三角形;③S四边形AEPF=S△ABC;④EF=AP.当∠EPF在△ABC内绕顶点P旋转时(点E不与A,B重合),上述结论中始终正确的有()A.①④B.①②C.①②③D.①②③④18.如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为()A.30°B.36°C.45°D.70°三、解证题:19.如图,在△ABC中,AB=AC,BC=12,∠BAC=120°,AB的垂直平分线交BC边于点E,AC的垂直平分线交BC边于点N.(1)求△AEN的周长.(2)求∠EAN的度数.(3)判断△AEN的形状.20.已知:如图,D是等腰△ABC底边BC上一点,它到两腰AB、AC的距离分别为DE、DF,当D点在什么位置时,DE=DF?并加以证明.21.如图,在△ABD和△ACE中,有下列四个等式:①AB=AC;②AD=AE;③∠1=∠2;④BD=CE.以其中三个条件为题设,填入已知栏中,一个论断为结论,填入下面求证栏中,使之组成一个真命题,并写出证明过程.已知:.求证:.证明:22.如图,已知P点是∠AOB平分线上一点,PC⊥OA,PD⊥OB,垂足为C、D.(1)求证:∠PCD=∠PDC;(2)求证:OP是线段CD的垂直平分线.23.已知:如图,△ABC中,AB=AC,∠A=120度.(1)用直尺和圆规作AB的垂直平分线,分别交BC、AB于点M、N(保留作图痕迹,不写作法).(2)猜想CM与BM之间有何数量关系,并证明你的猜想.24.如图所示,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AB=BC,E是AB的中点,CE⊥BD.(1)求证:BE=AD;(2)求证:AC是线段ED的垂直平分线;(3)△DBC是等腰三角形吗?并说明理由.参考答案第一阶梯三角形证明基础巩固训练一.角平分线的性质(共1小题)1.C;二.线段垂直平分线的性质(共5小题)2.A;3.D;4.D;5.B;6.等腰;三.等腰三角形的性质(共9小题)7.C;8.B;9.C;10.7cm、7cm或8cm、6cm;11.60或120;12.90;13.120°或60°;四.等腰三角形的判定与性质(共1小题)16.6;五.等边三角形的性质(共2小题)17.60;18.15;六.等边三角形的判定(共2小题)19.C;20.C;第二阶梯三角形证明能力提升训练一.直角三角形全等的判定(共1小题)1.B;二.角平分线的性质(共1小题)2.C;三.线段垂直平分线的性质(共3小题)3.3;4.M;N;AB;5.8cm;6cm;四.等腰三角形的性质(共6小题)6.B;7.C;8.0<x<25;9.50;80;40;五.等腰三角形的判定与性质(共5小题)12.C;六.等边三角形的性质(共3小题)17.;18.20°;七.等边三角形的判定(共1小题)20.C;第三阶梯三角形的证明综合训练(一)一、填空题1.40;2.等腰;3.∠ABC=∠DCB;AC=DB;4.对应角相等的三角形是全等三角形;假;5.220;6.40°;20°;7.5;7.10;8.10;9.7;10.2;二、选择题11.B;12.C;13.B;14.C;15.B;第四阶梯三角形的证明综合训练(二)一、填空题:1.8;2.72°,72°或36°,108°;3.135°;4.40;5.6;6.DE=DC,∠OBD=∠ODB等.;7.;8.对应角相等的三角形是全等三角形;假;9.10;10.2;二、选择题:11.D;12.B;13.B;14.A;15.A;16.A;17.C;18.B;三、解证题:21.在△ABD和△ACE中,AB=AC,AD=AE,BD=CE;∠1=∠2;。

北师大版八年级下册数学《线段的垂直平分线》三角形的证明说课教学课件复习

北师大版八年级下册数学《线段的垂直平分线》三角形的证明说课教学课件复习
三角形三条边的垂直平分线的性质:三角形三条边的垂直平分线 相交于一点,并且这一点到三个顶点的距离相等.
实践探究,交流新知
已知等腰三角形的底边和该边上的高,求作等腰三角形
(1)已知三角形的一条边及这条边上的高,你能作出三角形吗?如果能,能作 几个?所作出的三角形都全等吗? (2)已知等腰三角形的底边,你能用尺规作出等腰三角形吗?如果能,能作几 个?所作出的三角形都全等吗? (3)已知等腰三角形的底边及底边上的高,你能用尺规作出等腰三角形吗?如 果能,能作几个?
. 39°
3.如图,在△ABC中,∠BAC是钝角. (1)画出边BC上的中线AD; (2)画出边BC上的高AH.
第1题
第2题
第3题
课堂小结,整体感知
1.课堂小结:请同学们回顾本节课所学的内容,有哪些收获? (1)三角形三条边的垂直平分线的性质 (2)尺规作线段的垂直平分线、等腰三角形
2.布置作业:
开放训练,体现应用
例1 (教材第22页例1)已知:如图,在△ABC中,AB=AC,O是△ABC内一点, 且OB=OC.求证:直线AO垂直平分线段BC.(解法不唯一)
证明:∵AB=AC, ∴点A为线段BC垂直平分线上的一点 ∵OB=OC, ∴点O为线段BC垂直平分线上的一点 ∴直线AO是线段BC的垂直平分线
课堂检测,巩固新知
解:(1)∵∠BAC=50°,AD平分∠BAC ∴∠EAD=1∠BAC=25°
2
∵DE⊥AB ∴∠AED=90° ∴∠EDA=90°-25°=65° (2)证明:∵DE⊥AB ∴∠AED=90°=∠ACB 又∵AD平分∠BAC ∴∠DAE=∠DAC 又∵AD=AD ∴△AED≌△ACD(AAS) ∴AE=AC ∵AD平分∠BAC ∴AD⊥CE,AD平分线段EC 即直线AD是线段CE的垂直平分线

北师大版八年级数学下册同步精品第一章 三角形的证明(单元小结)(课件)

北师大版八年级数学下册同步精品第一章 三角形的证明(单元小结)(课件)
理2来证明.
知识专题
二.与直角三角形有关的结论
1.直角三角形的性质定理 性质1:直角三角形两直角边的平方和等于斜边的平方 (勾股定理). 性质2:直角三角形的两个锐角互余. 性质3:在直角三角形中,如果一个锐角等于30°,那么 它所对的直角边等于斜边的一半;
知识专题
2.直角三角形的判定定理 (1)有一个角是90°的三角形叫做直角三角形; (2)有两个角互余的三角形是直角三角形. (3)如果三角形两边的平方和等于第三边的平方, 那么这个三角形是直角三角形.
①AB上任一点与AC上任一点到D的距离相等;
②AD上任一点到AB,AC的距离相等;
③∠BDE=∠CDF;④∠1=∠2.
正确的有( C ) A.1个 B.2个
C.3个
D.4个
考点专练
考点2 等腰三角形的判定
例2.将一副直角三角板如图摆放,等腰直角三角板ABC的 斜边BC与含30°角的直角三角板DBE的直角边BD长度相 同,且斜边BC与BE在同一直线上,AC与BD交于点O,连 接CD. 求证:△CDO是等腰三角形.
∴∠FGD=180°-70°=110°.
∵GE平分∠FGD, ∴∠EGD= 12∠FGD=55°. ∵AB∥CD, ∴∠EHB=∠EGD=55°.
A
F
C
G
E B
H
D
考点专练
A
D
E
B
C
考点专练
考点5 直角三角形
例5. 如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,
CD上,GE交AB于点H,GE平分∠FGD.若∠EFG=90°,
∠EFH=20°,求∠EHB的度数.
A
F
E
B H

北师版八年级数学下册第一章三角形的证明易错题进阶辅导讲义2

北师版八年级数学下册第一章三角形的证明易错题进阶辅导讲义2

【专题一】三角形的边例1.等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边为()A.7cm B.7cm或5cm C.5cm D.3cm【同步训练】2.(2014秋•黄梅县期末)等腰三角形的一边长为3,另一边长为7,则它的周长为()A.10 B.13 C.17 D.13或173.若等腰三角形的周长为10,一边长为4,则此等腰三角形的腰长为()A.2 B.3 C.4 D.3或44.如果一个等腰三角形的两边长分别为2cm和5cm,那么它的周长是()A.9cm B.12cm C.9cm或12cm D.以上答案都不对5.(2011春•深圳校级期末)等腰三角形的两边长分别是4和9,则周长是()A.17 B.21 C.22 D.17或226.已知等腰三角形的两条边长分别是7和3,则此三角形的周长为.7.若等腰三角形的一边是7,另一边是4,则此等腰三角形的周长是.8.(2015秋•萧山区期末)等腰三角形的两边长分别为2和4,则其周长为.(2014秋•宜兴市期末)若+(y﹣1)2=0,则x,y为边长的等腰三角形的周长为.9.10.等腰三角形的周长为13cm,其中一边长为5cm,则该等腰三角形的腰边长为cm.11.(2014春•吉州区期末)两边分别长4cm和10cm的等腰三角形的周长是cm.12.等腰三角形有两条边的长分别为2和6,那么这个三角形的周长是.13.(2012春•晋江市期末)已知等腰三角形的周长为16cm,其中一边长为4cm,则该等腰三角形的腰长是cm.14.(2011秋•邗江区期末)等腰三角形ABC的周长是8cm,AB=3cm,则BC= cm.15.(2012秋•拱墅区期末)等腰三角形一腰上的中线把这个三角形的周长分成1:2两部分,已知这个等腰三角形周长为36cm,则这个等腰三角形的底边为()cm.A.4 B.10 C.20 D.4或20【专题二】三角形的角例16.等腰三角形的一个内角等于40°,则另外两个内角的度数分别为()A.40°、100°B.70°、70°C.70°、100° D.40°、100°或70°、70°【同步训练】17.(2013春•银川期末)等腰三角形中一个角是40°,则另外两个角的度数分别是()A.70°,70°B.40°,100° C.40°,40°D.70°,70°或40°,100°18.一个等腰三角形的一个外角等于110°,则这个三角形的底角为()A.55° B.70° C.55°或40°D.70°或55°19.等腰三角形一个底角为36°,则此等腰三角形顶角为度.【专题三】三角形的边角关系例20.等腰三角形一腰上的高是腰长的一半,则这个三角形的顶角的度数是()A.30° B.60° C.150°D.30°或150°【同步训练】21.(2013秋•平房区期末)如图,在△ABC中,AB=AC,BD=BC,AD=DE=EB,则∠A是()A.30° B.45° C.60° D.20°22.等腰三角形一腰上的高与另一腰的夹角为45°,则等腰三角形的底角为()A.67° B.67.5°C.22.5°D.67.5°或22.5°23.△ABC中,AB=AC,∠BAC=90°,AD∥BC,BD=BC,∠DBC= .24.已知直角三角形的两条边的长分别为8和15,则斜边上的中线长为.25.如图,在△ABC中,∠C=2∠B,D是BC上的一点,且AD⊥AB,点E是BD的中点,连接AE,若AE=6.5,AD=5,则AC= ;△ABE的周长是.26.(2012秋•日照期末)如图,在△ABC中,∠C=25°,AD⊥BC,垂足为D,且AB+BD=CD,则∠BAC的度数是度.27.(2011春•马龙县期末)如图所示,已知∠O=35°,CD为OA的垂直平分线,则∠ACB的度数为.28.(2014秋•东胜区期末)已知:如图,△ABC中,AD⊥BC,AB=AE,点E在AC的垂直平分线上.(1)请问:AB、BD、DC有何数量关系?并说明理由.(2)如果∠B=60°,证明:CD=3BD.【专题四】全等三角形的应用例29.(2012秋•民勤县校级期末)如图,PD⊥AB,PE⊥AC,垂足分别为D、E,且PA平分∠BAC,则△APD与△APE全等的理由是()A.SAS B.AAS C.SSS D.ASA【同步训练】30.(2011秋•石河子校级期末)如图,△ABC中,AB=AC,AD平分∠BAC,DE⊥AB于E,DF ⊥AC于F,则下列五个结论:①AD上任意一点到AB、AC两边的距离相等;②AD上任意一点到B、C两点的距离相等;③AD⊥BC,且BD=CD;④∠BDE=∠CDF;⑤AE=AF.其中,正确的有()A.2个B.3个C.4个D.5个31.(2014秋•荣昌区期末)如图,等腰三角形ABC中AB=AC,∠A=20°,线段AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE= .32.(2012秋•武冈市校级期末)如图,在Rt△ABC中,AM平分∠BAC,CM=20cm,那么点M 到直线AB的距离是.33.(2011秋•东台市校级期末)如图所示,将两个全等的有一个角为30°的直角三角形拼在一起,其中两条较长直角边在同一条直线上,则图中等腰三角形有个.34.(2014秋•江汉区期末)等腰△ABC中,AB=AC,△ABD、△ACE都是等边三角形,直线BD、CE交于点O,直线AO、BC交于点F.(1)如图1,当点D在AB左侧,点E在AC右侧时,∠AFC= (不用证明)(2)如图2,当点D在AB右侧,点E在AC左侧时,求证:∠AFC=90°(3)如图3,当点D在AB左侧,点E在AC左侧时,求∠AFC的度数.35.(2013秋•盐都区期末)如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:(1)∠ECD=∠EDC;(2)OC=OD;(3)OE是线段CD的垂直平分线.36.(2011秋•临颍县期末)如图,DE是△ABC边AB的垂直平分线,分别交AB、BC于D、E.AE 平分∠BAC.设∠B=x(单位:度),∠C=y(单位:度).(1)求y随x变化的函数关系式,并写出自变量x的取值范围;(2)请讨论当△ABC为等腰三角形时,∠B为多少度?37.(2011秋•横峰县期末)如图所示,△ABC为直角三角形,∠ACB=90°,BF平分∠ABC,CD⊥AB于D,CD交BF于点G,GE∥CA,求证:CE与FG互相垂直平分.38.(2011秋•萧山区期末)在△ABC中,D,E分别是AC,AB上的点,BD与CE交于O,给出下列四个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.(1)请你从上述四个条件中选出两个能证明△ABC是等腰三角形的条件(选出所有满足要求的情况,用序号表示)(2)选择其中一种进行证明.【专题五】灵活运用知识题目39.(2013秋•定西期末)等腰但不等边的三角形的角平分线、高线、中线的总条数是()A.3 B.5 C.7 D.940.(2012秋•济南期末)有公路l1异侧、l2同侧的两个村庄A,B,如图.高速公路管理处要建一处服务区,按照设计要求,服务区到两个村庄A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,符合条件的服务区C有()处.A.4 B.3 C.2 D.1。

北师版八年级数学下册第一章三角形的证明易错题进阶辅导讲义

北师版八年级数学下册第一章三角形的证明易错题进阶辅导讲义

【第一阶梯】【专题一】等腰三角形的内角题目1.(2017秋•农安县期末)等腰三角形的一个角是50°,则它的底角是()A.50° B.50°或65°C.80° D.65°2.(2015秋•平南县期末)等腰三角形的一个角为50°,则它的底角为()A.50° B.65° C.50°或65°D.80°3.(2014秋•昆山市校级期末)已知等腰三角形的一个外角等于100°,则它的顶角是()A.80° B.20° C.80°或20°D.不能确定4.(2015秋•连城县期末)等腰三角形的一个角为40°,则它的顶角为.【专题二】等腰三角形的边的题目5.(2017秋•太仓市期末)如果等腰三角形两边长是5cm和2cm,那么它的周长是()A.7cm B.9cm C.9cm或12cm D.12cm6.(2017秋•顺义区期末)若等腰三角形的两边长分别为4和9,则它的周长为()A.22 B.17 C.13 D.17或227.(2017春•洛宁县期末)等腰三角形两边长分别为5和7,则它的周长是()A.19 B.11 C.17 D.17或198.(2016秋•余干县期末)如果等腰三角形两边长是9cm和4cm,那么它的周长是()A.17cm B.22cm C.17或22cm D.无法确定9.(2017春•道里区期末)如果等腰三角形两边长是8cm和4cm,那么它的周长是()A.20cm B.16cm C.20cm或16cm D.12cm10.(2016秋•如东县期末)已知等腰三角形的一边长为3,另一边长为2,则它的周长等于()A.8 B.7 C.8或5 D.8或711.(2014秋•监利县期末)等腰三角形的周长是18cm,其中一边长为4cm,其它两边长分别为()A.4cm,10cm B.7cm,7cm C.4cm,10cm或7cm,7cm D.无法确定12.(2014秋•肥东县期末)等腰三角形一边长是8,另一边长是5,则周长是()A.21 B.18 C.16 D.18或2113.(2017秋•利川市期末)一个等腰三角形的边长分别是4cm和7cm,则它的周长是.14.(2017春•淅川县期末)一个三角形有两条边相等,周长为18cm,三角形的一边长为4cm,则其他两边长分别为cm,cm.15.(2016春•普陀区期末)已知等腰三角形的两条边长分别是3cm、7cm,那么这个等腰三角形的周长是cm.【专题三】垂直平分线题目16.(2017秋•凤庆县期末)如图所示,已知AB=AC,∠A=40°,AB的垂直平分线MN交AC 于点D,则∠DBC的度数()A.40° B.70° C.30° D.50°17.(2017秋•建昌县期末)已知:如图,在△ABC中,边AB的垂直平分线分别交BC、AB 于点G、D,若△AGC的周长为31cm,AB=20cm,则△ABC的周长为()A.31cm B.41cm C.51cm D.61cm18.(2017秋•兴仁县期末)如图,在△ABC中,DE是AC的垂直平分线,AE=5cm,△ABD的周长为17cm,求△ABC的周长.【专题四】角平分线题目19.(2017秋•徐州期末)点P在∠AOB的平分线上,点P到OA边的距离等于5,点Q是OB 边上的任意一点,则下列选项正确的是()A.PQ≤5 B.PQ<5 C.PQ≥5 D.PQ>520.(2016春•威宁县期末)在Rt△ABC中,如图所示,∠C=90°,∠CAB=60°,AD平分∠CAB,点D到AB的距离DE=3.8cm,则BC等于()A.3.8cm B.7.6cm C.11.4cm D.11.2cm21.(2017春•楚雄州期末)如图,在△ABC中,∠C=90°,DB平分∠ABC,且与AC相交于点D,若DC=6,则点D到斜边AB的距离是.【专题五】全等三角形相关题目22.(2016秋•马鞍山期末)下列说法中,正确的个数是()①斜边和一直角边对应相等的两个直角三角形全等;②有两边和它们的对应夹角相等的两个直角三角形全等;③一锐角和斜边对应相等的两个直角三角形全等;④两个锐角对应相等的两个直角三角形全等.A.1个B.2个C.3个D.4个23.(2015秋•沙河市期末)如图,AB=AC,BE⊥AC于E,CF⊥AB于F,BE,CF交于D,则以下结论:①△ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上.正确的是()A.①B.②C.①② D.①②③24.如图,在△ABC中,∠ACB=90°,CD是高,∠A=30°,若BD=a,则AB的长为.25.如图,在Rt△ABC中,∠CAB=90°,∠B=30°,AD⊥CB于D,CD=2,则CB= .26.(2017秋•南岗区期末)如图1,已知∠ABC=90°,△ABC是等腰三角形,点D为斜边AC 的中点,连接DB,过点A作∠BAC的平分线,分别与DB,BC相交于点E,F.(1)求证:BE=BF;(2)如图2,连接CE,在不添加任何辅助线的条件下,直接写出图中所有的等腰三角形.27.(2016秋•沂南县期末)如图,AD为△ABC的角平分线,DE⊥AB于点 E,DF⊥AC于点F,连接EF交AD于点O.(1)求证:AD垂直平分EF;(2)若∠BAC=60°,写出DO与AD之间的数量关系,不需证明.【第二阶梯】【专题一】边、角的转化28.(2017秋•沂源县期末)如图,在△ABC中,AB=AC,点D,E分别在边BC和AC上,若AD=AE,则下列结论错误的是()A.∠ADB=∠ACB+∠CAD B.∠ADE=∠AED C.∠B=∠C D.∠BAD=∠BDA29.如图,△ABC中,∠A=70°,点O是AB、AC垂直平分线的交点,则∠BCO的度数是()A.40° B.30° C.20° D.10°30.如图,已知△ABC中,AB=AC,AD=AE,∠BAE=30°,则∠DEC等于()A.7.5°B.10° C.15° D.18°31.(2017秋•鞍山期末)如图,在△ADC中,AD=BD=BC,若∠C=25°,则∠ADB= 度.32.(2017秋•邹城市期末)如图,点D是等腰△ABC底边的中点,点E是AD延长线上的任一点,连接BE,CE,则下列结论:①BE=AC;②AE平分∠BEC;③AE=AB;④∠ABE=∠ACE,其中正确的有(填写序号).33.(2016秋•鄞州区期末)等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为.34.(2016秋•东城区期末)如图,∠AOB=60°,点P在∠AOB的平分线上,PC⊥OA于点C,点D在边OB上,且OD=DP=4,则线段OC的长度为.35.(2015秋•岳池县期末)等腰三角形腰上的高等于腰长的一半,则这个等腰三角形的顶角为度.【专题二】与面积相关题目36.(2017秋•平度市期末)如图,在等腰△ABC中,AB=AC,BC边上的高AD=6cm,腰AB上的高CE=8cm,则BC= cm37.(2017秋•安达市期末)如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,DE=2,AC=3,则△ADC的面积是.【专题三】综合性较强的题目38.(2016秋•闵行区期末)下列命题中,其逆否命题是真命题的命题个数有()(1)线段垂直平分线上的任意一点到这条线段两个端点的距离相等;(2)对顶角相等;(3)在三角形中,相等的角所对的边也相等;(4)到角的两边距离相等的点在这个角的平分线上.A.1个B.2个C.3个D.4个39.(2017秋•广丰区期末)(1)如图1,OB是Rt△ABC斜边上的中线,延长BO到D,使OD=OB,连结DA.利用图1证明:中线OB等于斜边AC的一半.(2)上面(1)中的结论是一个很重要的定理,利用此定理证明下题:如图2,点E是Rt △ABC的直角边AC上的点,ED⊥AB于D,F是线段BE的中点,连结FC、FD、CD,则有∠FCD=∠FDC.40.(2017秋•海曙区期末)如图,△ABC中,∠A=67.5°,BC=4,BE⊥CA于E,CF⊥AB于F,D是BC的中点.以F为原点,FD所在直线为x轴构造平面直角坐标系,则点E的横坐标是()A.2﹣B.﹣1 C.2﹣D.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师版八年级数学下册第一章三角形的证明易
错题进阶辅导讲义
北师版八年级数学下册第一章三角形的证明易错题进阶辅导讲义1
【第一阶梯】
【专题一】等腰三角形的内角
题目
1.(2021秋?农安县期末)等腰三角形的一个角是50°,则它的底角是()
A.50° B.50°或65° C.80° D.65°
2.(2021秋?平南县期末)等腰三角形的一个角为50°,则它的底角为()
A.50° B.65° C.50°或65° D.80°
3.(2021秋?昆山市校级期末)已知等腰三角形的一个外角等于100°,则它的顶角是()
A.80° B.20° C.80°或20° D.不能确定
4.(2021秋?连城县期末)等腰三角形的一个角为40°,则它的顶角为.【专题二】等腰三角形的边的
题目
5.(2021秋?太仓市期末)如果等腰三角形两边长是5cm和2cm,那么它的周长是()
A.7cm B.9cm C.9cm或12cm D.12cm
6.(2021秋?顺义区期末)若等腰三角形的两边长分别为4和9,则它的周长为()
A.22 B.17 C.13 D.17或22
7.(2021春?洛宁县期末)等腰三角形两边长分别为5和7,则它的周长是()
A.19 B.11 C.17 D.17或19
8.(2021秋?余干县期末)如果等腰三角形两边长是9cm和4cm,那么它的周长是()
A.17cm B.22cm C.17或22cm
D.无法确定
9.(2021春?道里区期末)如果等腰三角形两边长是8cm和4cm,那么它的周长是()
A.20cm B.16cm C.20cm或16cm D.12cm
10.(2021秋?如东县期末)已知等腰三角形的一边长为3,另一边长为2,则它的周长等于()
A.8
B.7
C.8或5
D.8或7
11.(2021秋?监利县期末)等腰三角形的周长是18cm,其中一边长为4cm,其它两边长分别为()
A.4cm,10cm
B.7cm,7cm C.4cm,10cm或7cm,7cm D.无法确定
12.(2021秋?肥东县期末)等腰三角形一边长是8,另一边长是5,则周长是()
A.21 B.18 C.16 D.18或21
13.(2021秋?利川市期末)一个等腰三角形的边长分别是4cm和7cm,则它的周长是.
1
北师版八年级数学下册第一章三角形的证明易错题进阶辅导讲义1
14.(2021春?淅川县期末)一个三角形有两条边相等,周长为18cm,三角形的一边长为4cm,则其他两边长分别为 cm,cm.
15.(2021春?普陀区期末)已知等腰三角形的两条边长分别是3cm、7cm,那么这个等腰三角形的周长是 cm.【专题三】垂直平分线
题目
16.(2021秋?凤庆县期末)如图所示,已知AB=AC,
∠A=40°,AB的垂直平分线MN交AC于点D,则∠DBC的度数()
A.40° B.70° C.30° D.50°
17.(2021秋?建昌县期末)已知:如图,在△ABC中,边AB 的垂直平分线分别交BC、AB于点G、D,若△AGC的周长为31cm,AB=20cm,则△ABC的周长为()
A.31cm B.41cm C.51cm D.61cm
18.(2021秋?兴仁县期末)如图,在△ABC中,DE是AC的垂直平分线,AE=5cm,△ABD的周长为17cm,求△ABC的周长.【专题四】角平分线
题目
2
北师版八年级数学下册第一章三角形的证明易错题进阶辅导讲义1
19.(2021秋?徐州期末)点P在∠AOB的平分线上,点P到OA边的距离等于5,点Q是OB边上的任意一点,则下列选项正确的是()
A.PQ≤5
B.PQ<5
C.PQ≥5
D.PQ>5
20.(2021春?威宁县期末)在Rt△ABC中,如图所示,
∠C=90°,∠CAB=60°,AD平分∠CAB,点D到AB的距离
DE=3.8cm,则BC等于()
A.3.8cm
B.7.6cm
C.11.4cm D.11.2cm
21.(2021春?楚雄州期末)如图,在△ABC中,∠C=90°,DB平分∠ABC,且与AC相交于点D,若DC=6,则点D到斜边AB的距离是.
【专题五】全等三角形相关
题目
3
北师版八年级数学下册第一章三角形的证明易错题进阶辅导讲义1
22.(2021秋?马鞍山期末)下列说法中,正确的个数是()
①斜边和一直角边对应相等的两个直角三角形全等;②有两边和它们的对应夹角相等的两个直角三角形全等;③一锐角和斜边对应相等的两个直角三角形全等;④两个锐角对应相等的两个直角三角形全等. A.1个 B.2个 C.3个 D.4个
23.(2021秋?沙河市期末)如图,AB=AC,BE⊥AC于E,CF⊥AB于F,BE,CF交于D,则以下结论:①△ABE≌△ACF;
②△BDF≌△CDE;③点D在∠BAC的平分线上.正确的是()
A.① B.② C.①② D.①②③
24.如图,在△ABC中,∠ACB=90°,CD是高,∠A=30°,若BD=a,则AB的长为.
25.如图,在Rt△ABC中,∠CAB=90°,∠B=30°,AD⊥CB 于D,CD=2,则CB= .
26.(2021秋?南岗区期末)如图1,已知∠ABC=90°,
△ABC是等腰三角形,点D为斜边AC
4。

相关文档
最新文档