2019-2020六年级数学华罗庚金杯少年邀请赛试卷初赛试卷(小学组)【精品】
【精品】2019-2020六年级数学华罗庚金杯少年邀请赛试卷初赛试卷(小学组)

六年级数学华罗庚金杯少年邀请赛试卷初赛试卷(小学组)姓名_________ 得分:______一、选择题。
(毎小题10分。
以下毎题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在毎题的圆括号内。
)1.科技小组演示自制的机器人。
若机器人从点A向南行走1.2米,再向东行走1米,接着又向南行走1.8米,再向东行走2米,最后又向南行走1米到达B点。
则B点与A点的距离是()米。
(A)3 (B)4 (C)5 (D)72.将等边三角形纸片按图1所示的步骤折迭3次(图1中的虚线是三边中点的连线),然后沿两边中点的连线剪去一角(图2)。
图1 图2将剩下的纸片展开、铺平,得到的图形是()。
(A)(B)(C)(D)3.将一个长和宽分别是1833厘米和423厘米的长方形分割成若干个正方形,则正方形最少是()个。
(A )8 (B )7 (C )5 (D )64.已知图3是一个轴对称图形。
若将图中某些黑色的图形去掉,得到一些新的图形,则其中轴对称的新图形共有( )个。
图3(A )9 (B )8 (C )7 (D )65.若a =1515…15×333…3,则整数a 的所有数位上的数字和等于( )。
(A )18063 (B )18072 (C )18079 (D )180546.若,=,=,=2010200920082007c 2009200820072006b 2008200720062005a ⨯⨯⨯⨯⨯⨯则有( )。
(A )a>b>c (B )a>c>b (C )a<c<b (D )a<b<c二、填空题。
(每小题10分,满分40分。
第10题每空5分)7.如图4所示,甲车从A ,乙车从B 同时相向而行。
两车第一次相遇后,甲车继续行驶4小时到达B ,而乙车只行驶了1小时就到达A 。
甲、乙两车的速度比为 。
图48.华杯赛网址是 。
将其中的字母组成如下算式:w —w —w —+h —u —a —+b —e —i —+s —a —i —+c —n —=2008。
第十一届全国华罗庚金杯少年数学邀请赛初赛试卷

第十一届全国“华罗庚金杯”少年数学邀请赛初赛试卷(小学组)答案一、选择题(每小题6分,满分36分)二、A组填空题(每小题8分,满分32分)三、B组填空题(每小题两个空,每个空4分,每小题8分,满分32分)一、选择题1.D2.C 2008006=2×7×11×13×17×593.A 2006年12月31日是星期日,2007年元旦是星期一4.D 第二只蚂蚁爬4K与第一只蚂蚁在B点相遇。
再爬8K即在DA边上与第一只蚂蚁第二次相遇。
5.B S阴=S△PDE +S△PDC =S△PDE+ S△PDB= S△BDE=(ED×EF)/2=S四边形ADEF/2=6.36/2=3.186.B 2×3×3×2×1+3×2×3×2×1=72,贝贝在两端和不在两端。
二、A组填空题7. 35 2+6+9×3=35 进位一次各位数字之和减少98. 23 有三角形的50-28=22人,有三角板的女生22-14=8人,有直尺的女生31-8=23人。
9. 226.08 AB=6,π×(6/2)^2×8=226.0810. 4三、B组填空题11. 500,2700 (300+200)÷(6-5)=500,6×500-300=270012. 101,4①5个一位奇数占5位,45个两位奇数占90位,两个三位奇数占6位,5+90+6=101位;②一位奇数的各位数字之和被9除余7,两位奇数的各位数字之和被9整除,两个三位奇数被9除的余数是6,数a被9除的余数是4。
13. 27,37①先取红色的1点至13点各一张,再取黑色的1点至13点各1张,再取任意1张,即13+13+1=27(张);②先取不能被3整除的(13-4)X4=36(张),再任取1张能被3整除的即可14. 95,155①边长是1,2,3,4,5,6的正方形有6X6+5X5+4X4+3X3+2X2+1X1=(6×7×13)/6=91(个),对角线长是2的正方形有4个,共95个。
第十四届华罗庚杯(六年级)测试题

第十四届华罗庚金杯数学竞赛(六年级决赛)题目学校:姓名:1、一个小数的小数点分别向右,左边移动一位所得两数之差为2.2,则这个小数用分数表示为( ) 。
2、某种皮衣标价为1650元,若以8折降价出售仍可盈利10%(相对于进价)那么若以标价1650元出售,可盈利( ) 元。
3、求多位数111......11(2000个)222......22(2000个)333......33(2000个)被多位数333 (33)(2000个)除所得商的各个数上的数字的和为( ) 。
4、计算(1/(1×2)+2/(1×2×3)+3/(1×2×3×4)+......+9/(1×2×3× (10)的值为( ) 。
5、一只船顺流而行的航速为30千米/小时,已知顺水航行3小时和逆水航行5小时的航程相等,则此船顺水漂流1小时的航程为()千米。
6、某电视机厂计划15天生产1500台,结果生产5天后,由于引进新的生产线生产效率提高25%,则这个电视机厂会提前()天完成计划。
7、从1,2,3,4,5,6,7,8,9中任意选出三个数,使它们的和为偶数,则共有()种不同的选法。
8、某书的页码是连续的自然数1,2,3,4,…9,10…当将这些页码相加时,某人把其中一个页码错加了两次,结果和为2001,则这书共有()页。
9、现有21朵鲜花分给5人,若每个人分得的鲜花数各不相同,则分得鲜花最多的人至少分得()朵鲜花。
10、三名工人师傅张强、李辉和王充分别加工200个零件。
他们同时开始工作,当李辉加工200个零件的任务全部完成时,张强才加工了160个,王充还有48个没有加工。
当张强加工200个零件的任务全部完成时,王充还有_____个零件没有加工。
11、有一块表在10月29日零点比标准时间慢4分半,一直到11月5日上午7时,这块表比标准时间快了3分钟,那么这块表正好指向正确的时间是在11月日时。
第九届华罗庚金杯少年数学邀请赛总决赛小学组第一试试题

第九届华罗庚金杯少年数学邀请赛总决赛小学组第一试试题
1.计算:
2. 004*2.008=
(结果用最简分数表示)
(结果用最简分数表示)
2.水池装有一个排水管和若干个每小时注水量相同的注水管,注水管注水时,排水管同时排水。
若用12个注水管注水,8小时可注满水池;若用9个注水管注水,24小时可注满水池。
现在用8个注水管注水,那么需要多少小时可注满水池?
3.在操场上做游戏,上午8:00从A地出发,均匀地行走,每走5分钟就折转90°。
问:
(1)上午9:20能否恰好回到原处?
(2)上午9:10能否恰好回到原处?
如果能,请说明理由,并设计一条路线;如果不能,请说明理由
4.1到100所有自然数中与100互质各数之和是多少?
5.老王和老张各有5角和8角的邮票若干张,没有其它-面值的邮票,但是他们邮票的总张数一样多。
老王的5角邮票的张数和8角邮票的张数一样多,老张5角邮票的金额等于85角邮票的金额,用他们的邮票共同支付110元的邮资足够有余,但不够支付160元的邮资,问他们各有8角的邮票多少张?
6.在下面一列数中,第二个数开始,每个数都比它前面相邻的数大7:
8,15,22,29,36,43,……
它们前n-1个数相乘的积的末尾0的个数比前n个数相乘的积的末尾0的个数少3个,求n的最小值。
第十四届华罗庚金杯少年数学邀请赛初赛试题及答案

第十四届华罗庚金杯少年数学邀请赛初赛试卷(小学组)1、下面的表情中,没有对称轴的个数为( )A 3B 4C 5D 62、开学前6天,小明还没做寒假数学作业,而小强已完成了60道题,开学时,两人都完成了数学作业。
在这6天中,小明做的题目是小强的3倍,他平均每天做( )道题。
A 6B 9C 12D 153.按照中国篮球职业联赛组委会的规定,各队队员的号码可以选择的范围是0~55号,但选择两位数的号码时,每位数字均不能超过5.那么,可供每支球队选择的号码共( )个。
A 34B 35C 40D 565、 下面有四个算式:5214514733).4(211682145323145).3(85625.0).2(337.0331.06.0).1(=⨯==++=+==+∙∙∙∙其中正确的算式是: ( )A ①和②B ②和③C ② 和③D ① 和④6、A 、B 、C 、D 、E 五个小朋友做游戏,每轮游戏都按照下面的箭头方向把原来手里的玩具传给另外一个小朋友:A →C,B → E,C → A,D → B,E → D.开始时A 、B 拿着福娃,C 、D 、E 拿着福牛,传递完5轮时,拿着福娃的小朋友是( )A C 与DB A 与DC C 与ED A 与B7、下面的算式中,同一个汉字代表同一个数字,不同的汉字代表不同的数字,则“大熊猫” 代表的三位数是________.团团×圆圆=大熊猫8、从4个整数中任意选出3个,求出它们的平均值,然后再求出这个平均值 和余下一个数的和,这样可以得到4个数:4,6, 则原来给定的4个整数的和为_______324315和9、如下图所示,AB是半圆的直径,O还是圆心, 弧AC、CD、DB都相等,M是弧CD 的中点,H是弦CD的中点。
若N是OB上一点,半圆的面积等于12平方厘米你,则图中的阴影部分的面积是_____平方厘米。
10、在大于2009的自然数中,被57除后,商与余数相等的数共有______个答案:1. C2. D3. C4. C5. B6. A7.22×44=9688.109. 210.22。
第23届华杯赛【六年级】初赛试题

第二十三届华罗庚金杯数学邀请赛初赛试卷(六年级)一、选择题1. 两袋面粉同样重,第一袋用去31,第二袋用去31千克,剩下的面粉( ). A.第一袋重 B.第二袋重 C.两袋同样重 D.无法确定那袋重2. 如图,一个33⨯的正方形网格,如果小正方形的边长是1,那么阴影部分的面积是( ).A.5B.4C.3D.23. 在66⨯的方格表中,摆放 的长方形,每个长方形恰好盖住2个方格,如果任意两个长方形之间没有公共边(可以用公共顶点),那么棋盘中摆放的长方形的方格内所有数之和最大是( ).A.266B.304C.342D.3804. 在右图的三角形ABC 中,ED EB =,FD FC =,︒=∠72EDF ,则=∠+∠AFD AED ( ).A.︒200B.︒216C.︒224D.︒2405. 从201—这20个整数中任意取11个数,其中必有两个数的和等于( ).A.19B.20C.21D.226. 小王将一些同样大小的正三角形纸片摆放在桌上,第一次放1张纸片;第二次在这个小正三角形纸片四周再放3张纸片;第三次在第二次摆好的图形四周再摆放纸片;……摆放要求是:每次摆放的每张纸片必须和上一次摆放的纸片至少有1条边重合,且纸片之间除边之外,无重合(见下图).第20次摆放后,该图形共用了正三角形纸片( )张.第一次摆放 第二次摆放 第三次摆放 第四次摆放A.571B.572C.573D.574二、填空题20187. 雷雷买了一本新书,非常喜欢,第一天读了这本书的51还多12页,第二天读了剩余的41还多15页,第三天读了剩余的31还多18页,这时还剩42页未读,那么这本书的页数是______.8. 某五位号码牌由英文字母和数字组成,前四位有且只有两位为应为字母(字母O I 、不可用),最后一位必须为数字,小李喜欢18这个数字,希望自己的号码牌中存在相邻两位为1和8,且1在8的前面,那么小李的号码牌由有______种不同的选择方式.(英文共有26个字母)9. 在一个自然数的所有因数中,能被3整除的因数比奇因数多5个,那么这个自然数最小是_____.10. 一只蚂蚁从正方体某个面的中心出发,每次都走到相邻面的中心,每个中心恰好经过一次,最终回到出发点,所有经过的中心排出的序列共有______种.(两条序列不同指沿着行走方向经过的中心点顺序不一样)。
六年级数学华罗庚金杯少年邀请赛试卷

六年级数学试卷初赛试卷(小学组)姓名_________ 得分:______一、选择题。
(毎小题10分。
以下毎题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在毎题的圆括号内。
)1.科技小组演示自制的机器人。
若机器人从点A向南行走1.2米,再向东行走1米,接着又向南行走1.8米,再向东行走2米,最后又向南行走1米到达B点。
则B点与A点的距离是()米。
(A)3 (B)4 (C)5 (D)72.将等边三角形纸片按图1所示的步骤折迭3次(图1中的虚线是三边中点的连线),然后沿两边中点的连线剪去一角(图2)。
图1 图2将剩下的纸片展开、铺平,得到的图形是()。
(A)(B)(C)(D)3.将一个长和宽分别是1833厘米和423厘米的长方形分割成若干个正方形,则正方形最少是()个。
(A)8 (B)7 (C)5 (D)64.已知图3是一个轴对称图形。
若将图中某些黑色的图形去掉,得到一些新的图形,则其中轴对称的新图形共有()个。
图3(A )9 (B )8 (C )7 (D )65.若a =1515…15×333…3,则整数a 的所有数位上的数字和等于( )。
(A )18063 (B )18072 (C )18079 (D )18054 6.若,=,=,=2010200920082007c 2009200820072006b 2008200720062005a ⨯⨯⨯⨯⨯⨯则有( )。
(A )a>b>c (B )a>c>b (C )a<c<b (D )a<b<c 二、填空题。
(每小题10分,满分40分。
第10题每空5分)7.如图4所示,甲车从A ,乙车从B 同时相向而行。
两车第一次相遇后,甲车继续行驶4小时到达B ,而乙车只行驶了1小时就到达A 。
甲、乙两车的速度比为 。
图48.华杯赛网址是 。
将其中的字母组成如下算式: w —w —w —+h —u —a —+b —e —i —+s —a —i —+c —n —=2008。
华杯赛小高近5年真题(附详解)20C

A.3
B.4
C.5
D.6
二、填空题(每小题 10 分,满分 40 分)
7. 在每个格子中填入 1~6 中的一个,使得每行、每列及每个 2 3 长方形内(粗线框围成),数字不重复;如果 小圆圈两边格子中所填数的和是合数,其他相邻两格所填数的和是质数,那么四位数 相约华杯 是__________.
3月1 4 相 约 华杯
90000
15975 平方厘米.
(2)连接圆弧交点与正方形底边顶点,如图: A
300
B 300 C 可见 BA BC 300 ,CA CB 300 ,即三角形 ABC 为等边三角形,内角皆为 60 度,故知下半部分阴
第二十届华罗庚金杯少年数学邀请赛初赛试题 C(小学高年级组)
10.
【答案】 125;1880
【解析】(1)“三人同时到达 D 地”的意义即为甲在两次减速后,以及乙在一次减速后的速度,与丙的速度是相 同的,故可设甲的速度是 100 份,则一次、两次减速后的速度分别应是 100 (1 40%) 60 份和
60 (1 40%) 36 份;说明丙的速度就是 36 份;进一步逆推出乙在减速之前的速度为 36 (1 25%) 48
“相”与 3 的和是质数,只能“相” 4 ,进而“约” 1;
再看右宫:“华”,“杯”,d 分别是 2、3、6,但其中只有 2 3 是质数,故此时可断定 d 6 ;进一步地,
“华”与 1 的和是质数,只能“华” 2 ,进而“杯” 3 .
ቤተ መጻሕፍቲ ባይዱ
4
第二十届华罗庚金杯少年数学邀请赛初赛试题 C(小学高年级组)
120
4 3
30+ 40 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级数学华罗庚金杯少年邀请赛试卷
初赛试卷(小学组)
姓名_________ 得分:______
一、选择题。
(毎小题10分。
以下毎题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在毎题的圆括号内。
)
1.科技小组演示自制的机器人。
若机器人从点A向南行走1.2米,再向东行走1米,接着又向南行走1.8米,再向东行走2米,最后又向南行走1米到达B点。
则B点与A点的距离是()米。
(A)3 (B)4 (C)5 (D)7
2.将等边三角形纸片按图1所示的步骤折迭3次(图1中的虚线是三边中点的连线),然后沿两边中点的连线剪去一角(图2)。
图1 图2
将剩下的纸片展开、铺平,得到的图形是()。
(A)(B)(C)(D)
3.将一个长和宽分别是1833厘米和423厘米的长方形分割成若干个正方形,则正方形最少是()个。
(A )8 (B )7 (C )5 (D )6
4.已知图3是一个轴对称图形。
若将图中某些黑色的图形去掉,得到一些新的图形,则其中轴对称的新图形共有( )个。
图3
(A )9 (B )8 (C )7 (D )6
5.若a =1515…15×333…3,则整数a 的所有数位上的数字和等于( )。
(A )18063 (B )18072 (C )18079 (D )18054
6.若,=,=,=2010
200920082007c 2009200820072006b 2008200720062005a ⨯⨯⨯⨯⨯⨯则有( )。
(A )a>b>c (B )a>c>b (C )a<c<b (D )a<b<c
二、填空题。
(每小题10分,满分40分。
第10题每空5分)
7.如图4所示,甲车从A ,乙车从B 同时相向而行。
两车第一次相遇后,甲车继续行驶4小时到达B ,而乙车只行驶了1小时就到达A 。
甲、乙两车的速度比为 。
图4
8.华杯赛网址是 。
将其中的字母组成如下算式:
w —w —w —+h —u —a —+b —e —i —+s —a —i —+c —n —
=2008。
如果每个字母分别代表0~9这十个数字中的一个,相同的字母代表相同的数字,不同的字母代表不同的数字,并且w=8,h=6,a=9,c=7,则三位数b—e—i—的最小值是。
9.如图5所示,矩形ABCD的面积为24平方厘米。
三角形ADM与三角形BCN的面积之和为7.8平方厘米,则四边形PMON的面积是平方厘米。
图5
10.将一堆糖果全部分给甲、乙、丙三个小朋友。
原计划甲、乙、丙三人所得糖果数的比为5:4:3。
实际上,甲、乙、丙三人所得糖果数的比为7:6:5,其中有一位小朋友比原计划多得了15块糖果。
那么这位小朋友是(填“甲”、“乙”或“丙”),他实际所得的糖果数为块。
第十三届全国“华罗庚金杯”少年数学邀请赛
初赛试卷(小学组)
答案:
一、选择题(每小题10分,满分60分)。