单源最短路径问题-Dijkstra
dijkstra算法步骤例题

dijkstra算法步骤例题Dijkstra算法是解决单源最短路径问题的常用算法。
其思路是通过累计最短路径来逐渐扩展到所有节点。
Dijkstra算法的基本流程如下:1. 创建一个空堆和一个空seen集合。
堆中包含每个节点到起始节点的距离值和节点本身。
2. 将起始节点插入堆中,并将其距离值设为0。
3. 当堆不为空时,取出堆中距离值最小的节点。
如果此节点在seen中,跳过。
否则,将其标记为seen,并计算其邻居节点到起始节点的距离值。
如果邻居节点的距离值未被计算过或新距离值比已计算的距离值小,更新其距离值。
最后,将其加入堆中以备下一次取最小距离值使用。
4. 重复上述步骤3,直至堆为空或者所有节点距离值都被计算。
下面通过一个例子来详细解释Dijkstra算法的具体实现过程:假设我们有如下图所示的一个简单的有向加权图,其中每个节点代表一个城市,每条有向边代表两个城市之间的道路,其权重表示两座城市之间的距离。
设起点为A,我们使用Dijkstra算法来求出从A到图中其余各个节点的最短距离和路径。
具体步骤如下:1. 创建空的distance字典保存每个节点到起点A的距离,创建空的parents字典保存最短路径上的每个节点的前一个节点,创建空的visited集合保存已经访问过的节点,创建初始堆,将A压入堆中,距离设置为0。
```distance = {A: 0}parents = {A: None}visited = set()heap = [(0, A)]```2. 当堆不为空时,取出堆中最小距离值对应的节点,并加入visited中。
```while heap:(curr_dist, curr_node) = heapq.heappop(heap)if curr_node in visited:continuevisited.add(curr_node)```3. 对于当前节点的每个邻居,计算其到起点的距离值并更新distance和parents。
dijkstra例题详解

dijkstra例题详解Dijkstra算法是一种求解单源最短路径问题的贪心算法,它是由荷兰计算机科学家Edsger W. Dijkstra在1956年提出的。
Dijkstra算法可以解决有向有权图中单个源节点到其他所有节点的最短路径问题。
下面我们就来看一下Dijkstra算法的具体流程和实例。
一、Dijkstra算法的基本思想Dijkstra算法是一种基于贪心算法的思想,它采用了一种逐步逼近的方式来得到最短路径。
Dijkstra算法主要基于两个概念:1.已知最短路径节点集合S2.未知最短路径节点集合Q初始时,已知最短路径节点集合S为空,未知最短路径节点集合Q包含所有节点。
第一步,从未知最短路径节点集合Q中选取一个节点v,使得该节点到源节点的距离最短,并把这个节点加入到已知最短路径节点集合S中。
第二步,根据新加入的节点v,更新其他节点到源节点的距离。
如果节点w到源节点的距离通过v缩短了,那么就更新节点w的距离。
重复以上两个步骤,直到集合S包含所有节点。
二、Dijkstra算法的实现步骤具体实现Dijkstra算法的步骤如下:1.首先,初始化一个距离数组dis,保存源节点到每个节点的最短距离,初始化为INF(无穷大)。
2.初始化一个标记数组vis,保存每个节点是否已经走过,初始化为false。
3.设置源节点的距离为0,并将其放入优先队列中。
4.重复以下步骤,直到队列为空:从队列中取出距离源节点最近的节点u,将其标记为vis[u]=true。
遍历节点u的所有邻节点v,若vis[v]=false,则计算源节点到v的距离,并更新dis[v]。
将节点v放入优先队列中。
5.最终,dis数组中保存的就是源节点到每个节点的最短距离。
三、Dijkstra算法的例题详解现在我们来看一个Dijkstra算法的例题。
假设有一个无向有权图,图中有5个节点,给定起点s,节点之间的边和边权如下图所示。
给定起点s,求源节点s到每个节点的最短路径。
单源最短路径dijkstra算法c语言

单源最短路径dijkstra算法c语言单源最短路径问题是图论中的经典问题之一,指的是在图中给定一个起始节点,求出该节点到其余所有节点之间的最短路径的算法。
其中,Dijkstra 算法是一种常用且高效的解决方案,可以在有向图或无向图中找到起始节点到其余所有节点的最短路径。
本文将逐步介绍Dijkstra算法的思想、原理以及C语言实现。
一、Dijkstra算法的思想和原理Dijkstra算法的思想基于贪心算法,通过逐步扩展当前已知路径长度最短的节点来逐步构建最短路径。
算法维护一个集合S,初始时集合S只包含起始节点。
然后,选择起始节点到集合S之外的节点的路径中长度最小的节点加入到集合S中,并更新其他节点的路径长度。
具体来说,算法分为以下几个步骤:1. 初始化:设置起始节点的路径长度为0,其他节点的路径长度为无穷大。
2. 选择最小节点:从集合S之外的节点中选择当前路径长度最短的节点加入到集合S中。
3. 更新路径长度:对于新加入的节点,更新与其相邻节点的路径长度(即加入新节点后的路径长度可能更小)。
4. 重复步骤2和3,直到集合S包含所有节点。
二、Dijkstra算法的C语言实现下面我们将逐步讲解如何用C语言实现Dijkstra算法。
1. 数据结构准备首先,我们需要准备一些数据结构来表示图。
我们可以使用邻接矩阵或邻接表来表示图。
这里,我们选择使用邻接矩阵的方式来表示权重。
我们需要定义一个二维数组来表示图的边权重,以及一个一维数组来表示起始节点到各个节点的路径长度。
c#define MAX_NODES 100int graph[MAX_NODES][MAX_NODES];int dist[MAX_NODES];2. 初始化在使用Dijkstra算法之前,我们需要对数据进行初始化,包括路径长度、边权重等信息。
cvoid initialize(int start_node, int num_nodes) {for (int i = 0; i < num_nodes; i++) {dist[i] = INT_MAX; 将所有节点的路径长度初始化为无穷大}dist[start_node] = 0; 起始节点到自身的路径长度为0初始化边权重for (int i = 0; i < num_nodes; i++) {for (int j = 0; j < num_nodes; j++) {if (i == j) {graph[i][j] = 0; 自身到自身的边权重为0} else {graph[i][j] = INT_MAX; 其他边权重初始化为无穷大}}}}3. 主要算法接下来是Dijkstra算法的主要逻辑。
dijkstra算法流程

dijkstra算法流程
Dijkstra算法是一种解决单源最短路径问题的贪心算法。
它最早由荷兰计算机科学家Edsger W.Dijkstra于1959年提出,是图论中非
常基础的算法。
它被广泛应用于交通运输、计算机网络等领域,它可
以算出从起点到其他所有节点的最短路径。
下面我们来看一下Dijkstra算法的具体流程:
1.首先,我们要明确起点,并把起点标记为到起点最短路径为0,其他顶点至起点的最短路径为正无穷。
2.然后从起点开始,依次访问与它相邻的顶点,计算这些顶点与
起点的距离,并把它们的距离作为这些顶点的到起点的距离参数。
3.接下来,从这些顶点中找到距离起点最短的顶点,并且把这个
顶点标记为已确定最短路径。
4.然后,更新与这个点相邻的所有未确定最短路径的顶点的最短
路径。
如果新路径比其原路径更短,则更新路径;若没有更短,则保
留原路径。
5.重复第三步和第四步,直到找到起点到终点的最短路径。
6.最后,我们就能得到最短路径和各个顶点的距离。
通过以上的算法流程,我们可以计算出起点到其他所有顶点的最
短路径。
需要注意的是,Dijkstra算法只适用于边权为非负的有向图
或无向图。
在实际应用中,Dijkstra算法更多的是基于图的模型进行
路由选择和网络通信优化。
总结起来,Dijkstra算法是一种基于节点遍历、操作路径的贪心算法,它是求解最短路径问题中的一种重要算法。
虽然Dijkstra算法
只适用于边权为非负的有向图或无向图,但是它的计算效率相对较高,并且非常容易理解和实现。
dijkstra算法 城市最短路径问题

dijkstra算法城市最短路径问题Dijkstra算法是一种经典的图算法,用于求解带有非负权重的图的单源最短路径问题。
在城市的交通规划中,Dijkstra算法也被广泛应用,可以帮助我们找到最短的路线来节省时间和成本。
一、最短路径问题的定义最短路径问题,指的是在一个带权重的有向图中,找到从起点到终点的一条路径,它的权重之和最小。
在城市的交通规划中,起点和终点可以分别是两个街区或者两个交通枢纽。
二、Dijkstra算法Dijkstra算法是基于贪心策略的一种算法,用于解决带非负权重的最短路径问题。
它采用了一种贪心的思想:每次从起点集合中选出当前距离起点最近的一个点,把其移到已知的最短路径集合中。
并以该点为中心,更新它的相邻节点的到起点的距离。
每次更新距离时,选择距离起点最近的距离。
三、Dijkstra算法实现1. 创建一个到起点的距离数组和一个布尔类型的访问数组。
2. 将起点的到起点的距离设置为0,其他的节点设置为无穷大。
3. 从距离数组中选择没有访问过且到起点距离最近的点,将它标记为“已访问”。
4. 对于它的所有邻居,如果出现路径缩短的情况,就更新它们的距离。
5. 重复步骤3和4,直到所有节点都被标记为“已访问”。
6. 最后,根据到起点的距离数组,以及每个节点的前驱节点数组,可以得到从起点到终点的最短路径。
四、Dijkstra算法的时间复杂度Dijkstra算法的时间复杂度可以通过堆优化提高,但最坏情况下时间复杂度仍达到O(ElogV)。
其中,E是边的数量,V是顶点的数量。
因此,Dijkstra算法在不考虑空间复杂度的情况下,是一种高效且实用的解决城市最短路径问题的算法。
五、结论Dijkstra算法是一个广泛应用于城市交通规划领域的算法,可以帮助我们找到最优的路线来节省时间和成本。
它基于贪心策略,每次从起点集合中选择距离起点最近的点,并对其邻居节点进行松弛操作。
Dijkstra算法的时间复杂度虽然较高,但堆优化可以提高算法性能。
dijkstra最短路径 应用案例

Dijkstra算法是一种用于解决图的单源最短路径问题的算法,由荷兰计算机科学家埃德斯格·迪克斯特拉提出。
该算法被广泛应用于网络路由算法、城市交通规划、通信网络等领域。
本文将从几个具体的案例出发,介绍Dijkstra最短路径算法的应用。
一、网络路由算法在现代计算机网络中,Dijkstra算法被应用于路由器之间的数据传输。
路由器之间通过Dijkstra算法计算出最短路径,以确保数据包能以最短的路径传输,从而提高网络的传输效率和稳定性。
假设有一个由多个路由器组成的网络,每个路由器之间存在多条连接线路,而每条线路都有一个权重值,代表数据传输的成本。
当一个路由器需要发送数据时,Dijkstra算法可以帮助它找到到达目的地最短且成本最小的路径。
这样,网络中的数据传输就能以最高效的方式进行,从而提升了整个网络的性能。
二、城市交通规划Dijkstra算法也被广泛应用于城市交通规划领域。
在城市交通规划中,人们通常需要找到最短路径以及最快到达目的地的方法,而Dijkstra算法正是能够满足这一需求的算法之一。
假设某城市有多条道路,每条道路都有不同的行驶时间。
当一个人需要从城市的某个地点出发到达另一个地点时,可以利用Dijkstra算法计算出最短行驶时间的路径。
这样,城市交通规划部门就可以根据这些信息对城市的交通流量进行合理分配和调度,提高城市交通的效率。
三、通信网络另一个Dijkstra算法的应用案例是在通信网络中。
通信网络通常是由多个节点和连接这些节点的线路组成的。
而节点之间的通信是通过传送数据包来实现的。
在这种情况下,Dijkstra算法可以帮助确定数据包传输的最短路径,以提高通信网络的效率和稳定性。
在一个由多个节点组成的通信网络中,当一个节点需要向另一个节点发送数据时,Dijkstra算法可以帮助确定最短路径,从而确保数据包能够以最短的路径传输到目的地。
这样一来,通信网络就能够更加稳定地进行数据传输,提高了通信网络的效率。
dijkstra最短路径算法详解

dijkstra最短路径算法详解
Dijkstra最短路径算法是一种常用的图算法,用于求解带权图中的单源最短路径问题,即从一个固定的源节点到图中的其他节点的最
短路径。
以下是详细的算法步骤:
1. 初始化
一开始,将源节点的距离设为0,其余节点的距离设置为正无穷,在未访问的节点集合中把源节点压入堆中。
2. 确定最短路径
从堆中取出未访问节点集合中距离源节点最近的节点v,标记其
为已访问。
之后,对于v的邻居节点w,计算从源节点到v再到w的距离,如果经过v的路径比已经计算得到的路径短,则更新路径。
更新
后的距离先暂时放入堆中,如果后边有更短的路径,则更新。
3. 重复第2步
重复第2步,直到取出的节点为终点节点,或者堆为空。
4. 算法结束
算法结束后,各节点的距离就是从源节点到它们的最短距离。
Dijkstra算法的复杂度是O(NlogN),其中N是节点个数。
其优
势在于只需要算一次即可得到所有最短路径,但是要求所有边的权值
必须非负,否则会导致算法不准确。
总之,Dijkstra算法是一种简单有效的最短路径算法,其实现也比较直观。
在处理如飞机和火车等交通路径规划问题中有较好的应用。
求解单源最短路径问题的算法

求解单源最短路径问题的算法
求解单源最短路径问题的算法有多种,下面列举了几种常见的算法:
1. Dijkstra算法:通过维护一个距离数组,不断更新起始点到其他节点的最短路径长度。
核心思想是每次选择距离起始点最近的节点,并逐步更新距离数组。
该算法适用于无负权边的情况。
2. Bellman-Ford算法:通过迭代更新距离数组,每次都扫描所有的边,更新路径长度。
该算法适用于存在负权边的情况。
3. Floyd-Warshall算法:通过一个二维矩阵来存储任意两个节点之间的最短路径长度,通过尝试经过不同的中间节点来更新路径长度。
该算法适用于有向图或无向图,且适用于任意权重的情况。
4. A*算法:在Dijkstra算法的基础上引入启发函数,通过启发函数估计从起始点到目标节点的距离,并按照估计值进行优先级队列的排序。
该算法适用于图中存在目标节点的情况。
以上算法适用于不同的情况,具体选择哪个算法要根据问题的特点来决定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
{for(int j=0;j<VEX;j++)
cout<<graph[i][j]<<"\t";
cout<<endl;
}
//输出D、P表头
cout<<" ";
for(i=0;i<VEX;i++)
cout<<"D["<<i<<"] ";
cout<<" ";
for(i=0;i<VEX;i++)
if(D[j]!=-1&&D[j]<D[min]&&B[j]==1) min=j;
cout<<"min="<<min<<" ";
//将具有最短特殊路长度的结点min添加到红点集中
R[min]=1; B[min]=0;
//对数组D作必要的修改
for(j=1;j<VEX;j++)
if(graph[min][j]!=-1&&min!=j) //结点min到j间有路
int len = 0;
while( p != startPoint )
{
theway[len] = p;
p = prev[p];
len++;
}
theway[len] = startPoint;
len++;
for( int i = 0 , j = len - 1 ; i < len ; i++ , j-- )
printf( "从%d到%d的最短路径长%.f\n" , g.GetStartPoint() , dest , dist );
printf( "所经结点为:\n" );
for( int i = 0 ; i < pathlen ; i++ )
printf( "%3d" , path[i] );
printf( "\n----------------------------------------\n" );
}
//从起点出发
dist[startPoint] = 0;
s[startPoint] = true;
for( int i = 0 ; i < size ; i++ )
{
double temp;
int u = startPoint;
bool flag = false;
for( int j = 0 ; j < size ; j++ )
{
printf( "%5.f" , graph[i][j] );
}
printf( "\n" );
}
}
//
double CGraph::GetBestWay( int dest , int path[] , int &pathLen )
{
int p = dest;
int theway[maxPoint];
bool Dijkstra();
void Display();
int GetStartPoint();
double GetBestWay( int dest , int path[] , int &pathLen );
private:
bool solved;//标志当前图是否已经求解
double graph[maxPoint][maxPoint];//当前图布局
for( int j = 0 ; j < size ; j++ )
{
dist[j] = graph[startPoint][j];
s[j] = false;
if( dist[j] < 0 ) //dist[i]<0,表示没有路径连接结点startPoint与结点j
prev[j] = 0;
else
prev[j] = startPoint;
}
CGraph::~CGraph(void)
{
}
//
bool CGraph::SetGraph( double g[maxPoint][maxPoint] , int startPoint , int size )
{
for( int i = 0 ; i < size ; i++ )
{
for( int j = 0 ; j < size ; j++ )
{
if( !s[j] )
{
//如果不是第一次比较,temp、u,都已经赋值,则
if( flag )
{
if( dist[j] > 0 && dist[j] < temp )
{
u = j;
temp = dist[j];
}
}
else
{
u = j;
temp = dist[j];
flag = true;
}
}
}
CGraph::CGraph(void)
{
for( int i = 0 ; i < maxPoint ; i++ )
{
for( int j = 0 ; j < maxPoint ; j++ )
graph[i][j] = -1;
}
startPoint = -1;
size = -1;
solved = false; //当前图还没有求解
{
dist[j] = newDist;
prev[j] = u;
}
}
}
}
solved = true;
return true;
}
//
void CGraph::Display()
{
printf( "当前地图的邻接矩阵\n" );
for( int i = 0 ; i < size ; i++ )
{
for( int j = 0 ; j < size ; j++ )
}
}
////////////////////////////////////////////////////////////
Dijkstra算法基本思想:设置顶点集合S并不断地作贪心选择来扩充这个集合。一个顶点属于集合S当且仅当从源到该顶点的最短路径长度已知。
(1)初始时,S中仅含有源节点。
(2)设u是G的某一个顶点,把从源到u且中间只经过S中顶点的路称为从源到u的特殊路径,用数组D[i]记录顶点i当前所对应的最短特殊路径长度。
graph[is->startPoint = startPoint;
this->size = size;
solved = false;
Dijkstra();
return true;
}
//
bool CGraph::Dijkstra()
{
bool s[maxPoint];
//初始时,红点集中仅有源结点0
R[0]=1; B[0]=0;
for(int i=1;i<VEX;i++)
B[i]=1;
//对数组D、P进行初始化
for(i=0;i<VEX;i++)
{D[i]=graph[0][i];
if(D[i]!=-1) P[i]=0;
else P[i]=-1;
}
//输出邻接矩阵
for(i=0;i<VEX;i++)
cout<<P[i]<<" ";
cout<<endl;
}
}
源程序2:
#include<iostream>
using namespace std;
////////////////////////////////////////////////////////////
if(D[j]>D[min]+graph[min][j]||D[j]==-1)
{D[j]=D[min]+graph[min][j]; //每次迭代求最小值,最后一次即为到源点的最短路径
P[j]=min;
}
//输出最短路径
for(i=0;i<VEX;i++)
cout<<D[i]<<" ";
cout<<" ";
using namespace std;
#define VEX 5//定义结点的个数
#define maxpoint 100
double graph[][maxpoint]={
{ 0 , 10 , -1 , 30 , 100 },
{ -1 , 0 , 50 , -1 , -1 } ,
{ -1 , -1 , 0 , -1 , 10 } ,
cout<<"P["<<i<<"] ";
cout<<endl;
for(int k=1;k<VEX;k++) //每次从蓝点集中取出具有最短特殊路长度的结点min