matlab复变函数画图形
利用MATLAB进行复变函数的主要运算

利用MATLAB进行复变函数的主要运算摘要复变函数与积分变换理论性较强,又是解决实际问题的强有力的工具.该课程已深入到数学的各个分支,如微分方程、积分方程、概率论和数论等多个学科.然而该课程的很多内容比较抽象,学起来比较枯燥且难学.本文利用MATLAB讨论了复变函数与积分变换中的复数运算、泰勒级数的展开、留数、有理函数展开、Fourier变换、Laplace变换和复变函数图形绘制等几个问题.这样不仅提高和完善复变函数与积分变换方法的实用性,同时可以培养学习者运用MATLAB语言编程的能力,对学习者以后的专业课及工作中使用数学软件进行数据处理有很大帮助.关键词:MATLAB; 复变函数; 积分变换1.复数的生成:Z= a + b*I;z = r*exp(i*theta);2.复数的运算:Real(z)imag(z);3.共轭复数复数的共轭可由函数conj 实现。
调用形式conj(x) 返回复数x 的共轭复数4.复数的模和辐角复数的模和辐角的求解由功能函数abs和angle实现。
调用形式abs(x)复数x 的模angle(x)复数x的辐角5.复数的乘除法复数的乘除法运算由“/”和“ ”实现。
6.复数的平方根复数的平方根运算由函数sqrt实现。
调用形式sqrt(x)返回复数x的平方根值。
7.复数的幂运算复数的幂运算的形式为x^ n结果返回复数x的n次幂。
8.复数的指数和对数运算复数的指数和对数运算分别由函数exp和log实现。
调用形式exp(x)返回复数x的以e为底的指数值log( x) 返回复数x的以e为底的对数值。
9.复数方程求根复数方程求根或实方程的复数根求解也由函数solve实现。
10.留数在MATLAB中可用如下方法:假设以知奇点a和m重数,则用下面的MATLAB 语句可求出相应的留数Limit(f*(x-a),x,a) %返回x=a的一级极点的留数Limit(diff(f*(x-a)^m,x,m-1)/prod(1:m-1),z,a %返回x=a的m级极点的留数11. taylor 泰勒级数展开taylor( f )返回f 函数的五次幂多项式近似。
matlab 复变函数

matlab 复变函数一、介绍MATLAB是一个非常强大的数学软件,可以处理各种复杂的数学问题,包括复变函数。
复变函数是一种在复平面上定义的函数,它可以用来描述许多物理和工程现象。
因此,MATLAB提供了许多功能强大的工具来处理和分析复变函数。
二、基本概念1. 复平面复平面是由实部和虚部组成的平面。
在MATLAB中,可以使用complex(x,y)函数创建一个复数。
其中x表示实部,y表示虚部。
2. 复变函数复变函数是一个将一个或多个复数映射到另一个复数的函数。
在MATLAB中,可以使用z = f(w)来表示一个复变函数。
3. 解析性解析性是指一个函数在其定义域内存在导数。
如果一个函数在某个点处存在导数,则称该点为解析点。
4. 共轭共轭是指将一个复数的虚部取负后得到的结果。
在MATLAB中,可以使用conj(z)来计算一个复数的共轭。
5. 模长模长是指一个复数到原点距离。
在MATLAB中,可以使用abs(z)来计算一个复数的模长。
三、常用操作1. 绘制图形绘制图形是处理和分析复变函数时必不可少的操作之一。
在MATLAB 中,可以使用plot函数来绘制复变函数的图形。
2. 计算导数计算导数是分析复变函数的重要操作之一。
在MATLAB中,可以使用diff函数来计算复变函数的导数。
3. 计算积分计算积分也是处理和分析复变函数时必不可少的操作之一。
在MATLAB中,可以使用integral函数来计算复变函数的积分。
4. 计算共轭计算共轭是处理和分析复变函数时经常需要进行的操作之一。
在MATLAB中,可以使用conj(z)来计算一个复数的共轭。
5. 计算模长计算模长也是处理和分析复变函数时必不可少的操作之一。
在MATLAB中,可以使用abs(z)来计算一个复数的模长。
四、常用工具箱1. Symbolic Math ToolboxSymbolic Math Toolbox是一个用于求解符号数学问题的工具箱。
它提供了许多功能强大的工具来处理和分析符号表达式。
【毕业论文】MATLAB在复变函数课程中的实现

摘 要《复变函数》是电子、信号、通讯、控制系统等学科必备的基础课,又是数学分析的后继课,它的理论和方法深刻渗透到代数学、解析数论、微分方程、计算数学等数学的各个分支,有着十分重要的意义。
同时,MATLAB是我专业的重要课程之一,作为数值计算型的数学类科技应用软件,它具有数据分析、可视化及应用程序设计等功能,以成为数学分析、复变函数等课程的基本应用工具。
本论文用MATLAB软件对《复变函数》中的留数、有理分式展开、Taylor级数展开等问题进行求解。
作为复变函数课程中的主要学习部分,三者在复变函数中有着重要的地位。
通过计算机实现对复变函数主要计算问题的实践,体现利用MATLAB软件求解复杂数学理论问题的规范性、简洁性、灵活性。
同时,寓理论教学、实验演示于一体,使一些抽象的知识或运算能用可视化的图形表示,达到传统理论教学无法实现的效果,并利用软件对自己的设计方案进行分析,进而加深对复变函数理论知识的理解。
通过复变函数的系统性和严谨性,为我们进一步系统地学习复变函数知识打下良好的基础。
关键词:留数,Taylor级数,洛朗级数,MATLABAbstract"Complex Function" not only is the foundational course of electronic, signal, communication, control systems and other disciplines, but also the follow-on course of Mathematical analysis. "Complex Function", whose theory and methods have infiltrated into the various branches of algebra, analytic number theory, differential equations, mathematical calculations, is of great significance. At the same time, MATLAB is one of the most important courses of information and computing science. As the mathematic technology application software of numerical calculation, it has the functions of data analysis, visualization and application program design, and has become a basic application tool of mathematical analysis course and complex function course. This thesis discussed residues, Taylor Series, Fourier transform and linear differential equation of complex function with the MATLAB. As the main part in the course of complex function, the three parts play the significant role in complex function. So that students can solve the main calculation problems of complex function with the computer after they have the understanding of theoretical, which shows MATLAB software’s normative, simplicity, flexibility when solving complex mathematical academic problems. At the same time, it makes some abstract knowledge or calculations can be represented by visual graphics, and curves with the combination of academic teaching and practice demonstration, and hit the target that the traditional theory of teaching can not achieve. Besides, it analyses the designed project with software, then we can learn more about the understanding of complex function theoretical knowledge. According to the systematic and rigorous complex function, we will have a better foundation of studying Complex Function.Key words: residues, Taylor series, Laurent series, MATLAB目 录第一章前言 (1)1.1 复变函数的发展及其应用 (1)1.2 MATLAB软件的发展及其应用 (2)1.3 本论文研究的主要内容和意义 (2)1.4 本论文应解决的主要问题 (3)第二章复变函数基本知识 (5)2.1 有理函数部分分式展开 (5)2.2 泰勒级数和洛朗级数 (5)2.3 留数及留数的应用 (7)2.4 MATLAB画复变函数图形指令 (9)第三章计算与程序实现 (11)3.1 有理函数部分分式展开和留数计算 (11)3.2 泰勒级数展开与洛朗级数展开 (19)3.3 留数的应用 (19)第四章结论与展望 (26)4.1 结论 (26)4.2 对进一步研究的展望 (26)参考文献 (27)致 谢 (28)附 录 (29)第一章 前 言1.1 复变函数的发展及其应用复变函数论产生于十八世纪。
浅谈MATLAB在复变函数教学中的几点应用

浅谈MATLAB在复变函数教学中的几点应用【摘要】MATLAB在复变函数教学中扮演着重要的角色。
本文首先介绍了MATLAB在教学中的重要性和复变函数教学的特点,然后详细探讨了MATLAB在复变函数图像绘制、数值计算、符号计算、实例分析和数据分析中的应用。
通过这些具体案例,可以看出MATLAB在复变函数教学中的多方面作用。
文章总结了MATLAB在复变函数教学中的重要性,并指出MATLAB的应用提升了教学效果。
未来,MATLAB在复变函数教学中的应用还有待进一步探索和提升,可以为学生提供更加直观、灵活和高效的学习体验。
MATLAB的应用有望在复变函数教学中取得更大的突破和发展。
【关键词】MATLAB, 复变函数, 教学, 图像绘制, 数值计算, 符号计算, 实例分析, 数据分析, 教学效果, 未来发展。
1. 引言1.1 MATLAB在教学中的重要性MATLAB在复变函数教学中不仅可以提高学生的学习效率,还能够拓展他们的数学思维和计算能力。
将MATLAB作为教学工具引入复变函数课程中,对于学生的学习和发展具有重要意义。
1.2 复变函数教学的特点复变函数是数学分析中的一个重要分支,包括解析函数、共轭函数、共轭解析函数等概念。
复变函数教学在数学及工程类专业中占据着重要的地位,因为它涉及到很多实际问题的解决办法,如电路分析、信号处理、图像处理等。
复变函数的特点主要表现在以下几个方面:1. 抽象性高:与实数函数不同,复变函数的定义域和值域都是复数集合,这使得复变函数的概念和性质更加抽象和深奥。
学生往往难以直观理解复变函数的含义和应用。
2. 几何意义强:复变函数可以看作平面上的点在复平面上的映射,而复平面是由实数轴和虚数轴组成的,因此复变函数的图像常常与平面几何有关,如曲线、区域、奇点等概念在复变函数中具有重要意义。
3. 计算方法多样:复变函数的计算方法包括解析计算、数值计算、符号计算等多种方式,学生需要掌握多种计算方法,并能灵活运用于实际问题中。
用MATLAB实践教案作图

实验二复变函数MATLAB的图形演示matlab表现复变函数(四维)的方法是用三维空间坐标再加上颜色,类似于地球仪用颜色表示海洋与高山。
单值函数:单叶多值函数:多叶matlab使用下列函数进行复变函数的做图:cplxgrid:构建一个极坐标的复数数据网格z=cplxgrid(m); %产生(m+1)*(2*m+1)的极坐标下的复数数据网格。
最大半径为1的圆面cplxmap:对复变函数做图cplxmap(z,f(z),[optional bound]) %画复变函数的图形,可选项用以选择函数的做图范围cplxmap做图时,以xy平面表示自变量所在的复平面,以z轴表示复变函数的实部,颜色表示复变函数的虚部cplxroot:画复数的n次函数曲面cplxroot(n) %画复数n次根的函数曲面,复数为最大半径为1的圆面cplxroot(n,m) %画复数n次根的函数曲面,复数为最大半径为1的圆面,为(m+1)*(2m+1)的方阵colorbar 显示彩色条colorbar('vert') \ colorbar('horiz')例1.z 的图像 指令:>> z=cplxgrid(30); >> cplxmap(z,z); >> colorbar('vert'); >> title('z')复函数z 的图像如图1所示图1.复变函数z 图形演示分析:从图形上可看到,自变量z 的取值在水平面的单位元内。
x 轴是实轴,y 轴是虚轴。
画函数z 时,是以坐标系的z 轴表示函数的实部,其大小变化范围为1~1+-,形成一个倾斜的圆平面,上面的每一个横条都有相同的实部值。
因为平面上的颜色表示虚部,从颜色对应的数值看出变化范围也是1~1+-,所以在倾斜的原平面上从左到右形成了条状的颜色带,正好对应复变函数的虚部是1~1+-,即与平面上y 轴正负相对应。
matlab绘制Nyquist图与Bode图

MATLAB绘制开环传递函数的Nyquist图与Bode图电气101 1008140313 邱书恒(主导)一、问题重述1.1.已知开环传递函数,画Nyquist图G0(s)=10(0.5s+1)(1+s) ()1.2.已知开环传递函数,画波特图并计算相位裕度G0(s)=2083(s+3)s(s2+20s+625)二、求解过程2.1.画Nyquist图频率特性G(jω)是频率ω的复变函数,可以在复平面上用一个矢量来表示某一频率ω下的量G(jω)。
该矢量的幅值为G(ω)=|G(jω)|,它的相角为φ(ω)=∠[G(jω)]。
当ω从0→∞变化时,矢量轨迹就表示频率特性。
按上述办法,吧频率特性在复平面上用极坐标表示的几何图形,即为Nyquist图。
2.2.画Bode图频率特性的对数坐标图,就是Bode图。
三、Matlab命令解析3.1.nyquist命令nyquist命令可以求得连续系统的奈奎斯特曲线,命令语法如下:nyquist(sys)nyquist(sys,w)nyquist(sys1,sys2,…,sysN)nyquist(sys1,sys2,…sysN,w)[re,im,w,sdre,sdim]=nyquist(sys)Nyquist(sys)创建一个动态系统Nyquist图,该模型可以是连续的或离散,和单变量或多输入多输出。
当带有输出变量时,可得到相应的一组数据,不带输出变量时,则绘出奈奎斯特曲线。
也可用制定向量w指定所要绘制的曲线范围。
3.2. bode命令Bode命令可以求得连续系统的伯德图,命令语法如下:bode(sys)bode(sys1,…,sysN)bode(sys1,PlotStyle1,…,sysN,PlotStyleNbode(…,w)[mag,phase]=bode(sys,w)[mag,phase,wout]=bode(sys)[mag,phase,wout,sdmag,sdphase]=bode(sys)Bode(sys)创建一个动态系统的频率响应bode图。
matlab复变函数画图形

matlab复变函数画图形第四篇计算机仿真第二十一章计算机仿真在复变函数中的应用基于MATLAB语言的广泛应用,我们介绍的计算机仿真方法主要立足于对MATLAB 语言的仿真介绍,而其它的数学工具软件,MATHEMATIC,MATHCAD,MAPLE,的仿真方法是类似的,本章将重点介绍使用MATLAB进行复数、复变函数的各类基本运算以及定理的验证,并介绍仿真计算留数、积分的方法,以及复变函数中Taylor级数展开,Laplace 变换和Fourier变换,21.1 复数运算和复变函数的图形21.1.1 复数的基本运算1复数的生成复数可由语句z=a+b*i 生成,也可简写成z=a+bi;另一种生成复数的语句是z=r*exp(i*theta),其中theta是复数辐角的弧度值, r 是复数的模( 2复矩阵的生成创建复矩阵有两种方法((1)一般方法例 21.1.1创建复矩阵的一般方法(【解】仿真程序为A=[3+5*I -2+3i i 5-i 9*exp(i*6) 23*exp(33i)]%运行后答案为A =3.0000+5.0000i -2.0000+3.0000i 0+1.0000i5.0000-1.0000i 8.6415-2.5147i -0.3054+22.9980i,说明: %后为注释语句,不需输入)(2)可将实、虚矩阵分开创建,再写成和的形式例 21.1.2 将实、虚部合并构成复矩阵【解】仿真程序为re=rand(3,2);im=rand(3,2);com=re+i*im%运行后答案为 com = 0.9501+0.4565i 0.4860+0.4447i0.2311+0.0185i 0.8913+0.6154i0.6068+0.8214i 0.7621+0.7919i 21.1.2 复数的运算1 复数的实部和虚部复数的实部和虚部的提取可由函数real和 imag 实现(调用形式如下:real(z) 返回复数 z 的实部;imag(z) 返回复数 z 的虚部.2 共轭复数复数的共轭可由函数conj实现(调用形式为:conj(z) 返回复数 z 的共轭复数.3 复数的模与辐角复数的模与辐角的求取由函数 abs 和angle实现(调用形式为:abs(z) 返回复数 z 的模;angle(z) 返回复数 z 的辐角.例 21.1.1求下列复数的实部与虚部、共轭复数、模与辐角(113i(34i)(25i),,,82132i,i4ii,,i1i,2i(1); (2); (3); (4)(【解】 a=[1/(3+2i) 1/i-3i/(1-i) (3+4i)*(2-5i)/2i i^8-4*i^21+i]%a =0.2308 - 0.1538i 1.5000 - 2.5000i -3.5000 -13.0000i 1.0000 -3.0000ireal(a)%ans = 0.2308 1.5000 -3.5000 1.0000(注明:凡ans 及其后面的内容均不需输入,它是前面语句的答案,本句ans 是real(a)的答案)imag(a)%ans = -0.1538 -2.5000 -13.0000 -3.0000conj(a)%ans =0.2308 + 0.1538i 1.5000 + 2.5000i -3.5000 +13.0000i 1.0000 + 3.0000iabs(a)%ans = 0.2774 2.9155 13.4629 3.1623angle(a)%ans =-0.5880 -1.0304 -1.8338 -1.2490 4 复数的乘除法复数的乘除法运算由“*”和“/”实现(5 复数的平方根复数的平方根运算由函数 sqrt 实现(调用形式如下:sqrt(z) 返回复数 z 的平方根值6 复数的幂运算复数的幂运算的形式是 z^n,结果返回复数 z 的 n 次幂( 7 复数的指数和对数运算复数的指数和对数运算分别由函数 exp 和log实现(调用形式如下:exp(z) 返回复数 z 的以 e 为底的指数值;log(z) 返回复数 z 的以 e 为底的对数值. 例21.1.2 求下列式的值(πi2ln(,10)e(1); (2)(【解】log(-10)%ans= 2.3026 + 3.1416iexp(pi/2* i)%ans =0.0000+ 1.0000i 21.1.3 复变函数的图形1.整幂函数的图形2z 例 21.1.6 绘出幂函数的图形.【解】 z=cplxgrid(30);cplxmap(z,z.^2);colorbar('vert');title('z^2')%(如图21.1所示)2z图21.1 复变函数的图形2. 根式函数的图形12z 例 21.1.7 绘出幂函数的图形【解】 z=cplxgrid(30);cplxroot(2);colorbar('vert');title('z^{1/2}' ) %(如图21.2).12z 图21.2 复变函数的图形3. 复变函数中对数函数的图形Lnz例 21.1.3 绘出对数函数的图形.【解】z=cplxgrid(20);w=log(z);for k=0:3w=w+i*2*pi;surf(real(z),imag(z),imag(w),real(w));hold ontitle('Lnz')endLnz 图21.3 对数函数 view(-75,30) %(如图21.3)例 21.1.4 计算机仿真编程实践:nzkn (1,2,,),,,,n,2z,,10k若对应为的根,其中且取整数.试用计算机仿真编程验证下列数学恒等式n1,0,,nk,1()zz,,kmm,1mk(),成立.【解】仿真程序n=round(1000*random('beta',1,1))+1% n=input('please enter n=')su=1;sum=0;for s=1:nN(s)=exp(i*2*s*pi/n);endfor k=1:nfor s=1:nif s~=ksu=1/(N(k)-N(s))*su;endendsum=sum+su;su=1;endsum%仿真验证结果为:n =735 sum =2.2335e-016 -5.1707e-016i其中n的值为随机产生的整数,可见其和的实部和虚部均接近于零。
Matlab中函数图形的三种绘制方法

Matlab中函数图形的三种绘制方法及局部和全局解
绘制函数的图形2
x
fπ区间[-1,2]
=x
)
10
sin(+
1 利用plot绘制
x=linspace(-1,2,1000);
y=x.*sin(10*pi*x)+2;
plot(x,y)
/ 函数的显式表达式,先设置自变量向量,然后根据表达式计算出函数向量/
2 利用fplot绘制
f='x.*sin(10*pi*x)+2';或f='x*sin(10*pi*x)+2';
fplot(f,[-1,2],1e-4)
/fplot函数可以自适应地对函数进行采样,能更好地反映函数的变化规律/
3 利用ezplot绘制
f='x*sin(10*pi*x)+2';
ezplot(f,[-1,2])
/隐函数绘图:如果函数用隐函数形式给出,可以利用ezplot函数绘制隐函数图形/
1和2 3的区别是2 3可以直接按照函数的原形直接写出,而1中变量相乘或除时都以点乘和点除的形式写出来的
尝试用fminbnd fminunc fminsearch及遗传算法求解上述函数在区间[-1,2]中的最小值,看看它们四个有什么不同?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
matlab复变函数画图形第四篇计算机仿真第二十一章计算机仿真在复变函数中的应用基于MATLAB语言的广泛应用,我们介绍的计算机仿真方法主要立足于对MATLAB 语言的仿真介绍,而其它的数学工具软件,MATHEMATIC,MATHCAD,MAPLE,的仿真方法是类似的,本章将重点介绍使用MATLAB进行复数、复变函数的各类基本运算以及定理的验证,并介绍仿真计算留数、积分的方法,以及复变函数中Taylor级数展开,Laplace 变换和Fourier变换,21.1 复数运算和复变函数的图形21.1.1 复数的基本运算1复数的生成复数可由语句z=a+b*i 生成,也可简写成z=a+bi;另一种生成复数的语句是z=r*exp(i*theta),其中theta是复数辐角的弧度值, r 是复数的模( 2复矩阵的生成创建复矩阵有两种方法((1)一般方法例 21.1.1创建复矩阵的一般方法(【解】仿真程序为A=[3+5*I -2+3i i 5-i 9*exp(i*6) 23*exp(33i)]%运行后答案为A =3.0000+5.0000i -2.0000+3.0000i 0+1.0000i5.0000-1.0000i 8.6415-2.5147i -0.3054+22.9980i,说明: %后为注释语句,不需输入)(2)可将实、虚矩阵分开创建,再写成和的形式例 21.1.2 将实、虚部合并构成复矩阵【解】仿真程序为re=rand(3,2);im=rand(3,2);com=re+i*im%运行后答案为 com = 0.9501+0.4565i 0.4860+0.4447i0.2311+0.0185i 0.8913+0.6154i0.6068+0.8214i 0.7621+0.7919i 21.1.2 复数的运算1 复数的实部和虚部复数的实部和虚部的提取可由函数real和 imag 实现(调用形式如下:real(z) 返回复数 z 的实部;imag(z) 返回复数 z 的虚部.2 共轭复数复数的共轭可由函数conj实现(调用形式为:conj(z) 返回复数 z 的共轭复数.3 复数的模与辐角复数的模与辐角的求取由函数 abs 和angle实现(调用形式为:abs(z) 返回复数 z 的模;angle(z) 返回复数 z 的辐角.例 21.1.1求下列复数的实部与虚部、共轭复数、模与辐角(113i(34i)(25i),,,82132i,i4ii,,i1i,2i(1); (2); (3); (4)(【解】 a=[1/(3+2i) 1/i-3i/(1-i) (3+4i)*(2-5i)/2i i^8-4*i^21+i]%a =0.2308 - 0.1538i 1.5000 - 2.5000i -3.5000 -13.0000i 1.0000 -3.0000ireal(a)%ans = 0.2308 1.5000 -3.5000 1.0000(注明:凡ans 及其后面的内容均不需输入,它是前面语句的答案,本句ans 是real(a)的答案)imag(a)%ans = -0.1538 -2.5000 -13.0000 -3.0000conj(a)%ans =0.2308 + 0.1538i 1.5000 + 2.5000i -3.5000 +13.0000i 1.0000 + 3.0000iabs(a)%ans = 0.2774 2.9155 13.4629 3.1623angle(a)ans =-0.5880 -1.0304 -1.8338 -1.2490 %4 复数的乘除法复数的乘除法运算由“*”和“/”实现(5 复数的平方根复数的平方根运算由函数 sqrt 实现(调用形式如下:sqrt(z) 返回复数 z 的平方根值6 复数的幂运算复数的幂运算的形式是 z^n,结果返回复数 z 的 n 次幂( 7 复数的指数和对数运算复数的指数和对数运算分别由函数 exp 和log实现(调用形式如下:exp(z) 返回复数 z 的以 e 为底的指数值;log(z) 返回复数 z 的以 e 为底的对数值. 例21.1.2 求下列式的值(πi2ln(,10)e(1); (2)(【解】log(-10)%ans= 2.3026 + 3.1416iexp(pi/2* i)%ans =0.0000+ 1.0000i 21.1.3 复变函数的图形1.整幂函数的图形 2z 例 21.1.6 绘出幂函数的图形. 【解】 z=cplxgrid(30);cplxmap(z,z.^2);colorbar('vert');title('z^2')%(如图21.1所示)2z图21.1 复变函数的图形2. 根式函数的图形12z 例 21.1.7 绘出幂函数的图形【解】 z=cplxgrid(30);cplxroot(2);colorbar('vert');title('z^{1/2}' ) %(如图21.2).12 z图21.2 复变函数的图形3. 复变函数中对数函数的图形Lnz例 21.1.3 绘出对数函数的图形.【解】z=cplxgrid(20);w=log(z);for k=0:3w=w+i*2*pi;surf(real(z),imag(z),imag(w),real(w));hold ontitle('Lnz')endLnz图21.3 对数函数 view(-75,30) %(如图21.3)例 21.1.4 计算机仿真编程实践:nzkn (1,2,,),,,,n,2kz,,10若对应为的根,其中且取整数.试用计算机仿真编程验证下列数学恒等式n1,0,,nk,1()zz,km,m,1mk(),成立.【解】仿真程序n=round(1000*random('beta',1,1))+1% n=input('please enter n=')su=1;sum=0;for s=1:nN(s)=exp(i*2*s*pi/n);endfor k=1:nfor s=1:nif s~=ksu=1/(N(k)-N(s))*su;endendsum=sum+su;su=1;endsum%仿真验证结果为:n =735 sum =2.2335e-016 -5.1707e-016i其中n的值为随机产生的整数,可见其和的实部和虚部均接近于零。
另一篇:matlab表现复变函数(四维)的方法是用三维空间坐标再加上颜色,类似于地球仪用颜色表示海洋与高山。
单值函数:单叶多值函数:多叶matlab使用下列函数进行复变函数的做图:cplxgrid:构建一个极坐标的复数数据网格z=cplxgrid(m); %产生(m+1)*(2*m+1)的极坐标下的复数数据网格。
最大半径为1的圆面 cplxmap:对复变函数做图cplxmap(z,f(z),[optional bound]) %画复变函数的图形,可选项用以选择函数的做图范围 cplxmap做图时,以xy平面表示自变量所在的复平面,以z轴表示复变函数的实部,颜色表示复变函数的虚部cplxroot:画复数的n次函数曲面cplxroot(n) %画复数n次根的函数曲面,复数为最大半径为1的圆面cplxroot(n,m) %画复数n次根的函数曲面,复数为最大半径为1的圆面,为(m+1)*(2m+1)的方阵例1:画复数z^3的图形z=3*cplxgrid(30);cplxmap(z,z.^3);colorbar其结果如图可见,自变量z的取值在水平面的半径小于3的园内。
cplxmap做图时,以xy平面表示自变量所在的复平面,以z轴表示复变函数的实部,颜色表示复变函数的虚部由于函数为单页的,所以函数是单值的例2:画复数(z-0.5)^0.5的图形仿照cplxroot函数的程序,编程如下m=20;n=2;r=(0:m)'/m;theta=pi*(-m:m)/m; z=r*exp(i*theta)-0.5;w1=z.^(1/n);subplot(2,2,1),surf(real(z),imag(z),real(w1),imag(w1)); colorbar w2=w1.*exp(i*2*pi/n);subplot(2,2,2),surf(real(z),imag(z),real(w2),imag(w2)); colorbar subplot(2,1,2)surf(real(z),imag(z),real(w1),imag(w1)); hold onsurf(real(z),imag(z),real(w2),imag(w2)); colorbar如果仅使用 w1=z.^(1/n);,则所得结果为图(2,2,1)可见,对于多值函数,MATLAB仅仅是对其主值进行计算。
例3:复变函数1/(1-z)的级数展开复变函数1/(1-z)是级数展开中常用的一个函数。
当abs(z)<1时,它的泰勒展开式为1/(1-z)=求和(k=0,+无穷)z^k当abs(z)>1时,它的罗朗展开式为1/(1-z)=求和(k=-无穷,-1)z^k泰勒展开与罗朗展开的区别在复变函数里面,一些函数无法被展开为泰勒级数,因为那里存在一些奇点。
但是如果变量x是负指数幂的话,我们仍然可以将其展开为一个级数,这就是洛朗级数.从形式上看,泰勒级数是只含正幂项和常数项.洛朗级数不仅包含了正数次数的项,也包含了负数次数的项。
有时无法把函数表示为泰勒级数,但可以表示为洛朗级数。
可以认为泰勒级数是洛朗级数的一种特殊形式m=30;r=2*(0:m)'/m;theta=pi*(-m:m)/m; z=r*exp(i*theta)-0.5; z(find(z==1))=nan; z1=z;z1(abs(z1)>=1)=nan; w1=1;u1=1;for k=1:100u1=u1.*z1;w1=u1+w1;endsubplot(2,2,1)cplxmap(z1,w1)colorbarz2=z;z2(abs(z2)<=1)=nan; w2=1./z2;u2=1./z2; for k=1:100u2=u2./z2;w2=u2+w2;endsubplot(2,2,2)cplxmap(z2,-w2)colorbarsubplot(2,2,3)cplxmap(z,1./(1-z))colorbartemp1=caxis;subplot(2,2,4)cplxmap(z1,w1)hold oncplxmap(z2,-w2)caxis(temp1)axis([min(min(real(z))),max(max(real(z))),min(min(imag(z))),max(max( imag(z))),min(min(real(1./(1-z)))),max(max(real(1./(1-z))))]) colorbar图(2,2,1)为泰勒展开,图(2,2,2)为罗朗展开图(2,2,3)为matlab计算结果,图(2,2,4)为泰勒展开和罗朗展开的综合结果。