人教版七年级数学上册1.2.4《绝对值(第二课时)有理数的大小比较》教学设计

合集下载

1新人教版初中数学七年级上册精品教案.2.4 第2课时 有理数大小的比较2

1新人教版初中数学七年级上册精品教案.2.4 第2课时 有理数大小的比较2

1.2.4 绝对值第2课时有理数大小的比较【教学目标】(一)知识技能1.使学生进一步巩固绝对值的概念,能说出有理数大小的比较法则2. 能熟练运用法则结合数轴比较有理数的大小,特别是应用绝对值概念比较两个负数的大小,能利用数轴对多个有理数进行有序排列。

3. 能正确运用符号“<”“>”“∵”“∴”写出表示推理过程中简单的因果关系(二)过程方法经历由实际问题总结归纳出应用绝对值概念比较有理数大小,特别是比较两个负数的大小的过程,渗透数形结合思想。

(三)情感态度通过学生自己动手操作,观察、思考,使学生亲身体验探索的乐趣,培养学生合作交流能力和观察、归纳、用数学语言表达数学规律的能力。

同时培养学生逻辑思维能力和推理论证能力。

教学重点运用法则借助数轴比较两个有理数的大小。

教学难点利用绝对值概念比较两个负分数的大小。

【复习引入】1.复习绝对值的几何意义和代数意义:一个数a的绝对值就是数轴上表示数a的点与原点的距离,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

2.(多媒体显示)某一天我们5个城市的最低气温分别是画一画:(1)把上述5个城市最低气温的数表示在数轴上,(2)观察这5个数在数轴上的位置,从中你发现了什么?3.温度的高低与相应的数在数轴上的位置有什么关系?(通过学生自己动手操作,观察、思考,发现原点左边的数都是负数,原点右边的数都是正数;同时也发现5在0右边,5比0大;10在5右边,10比5大,初步感受在数轴上原点右边的两个数,右边的数总比左边的数大。

教师趁机追问,原点左边的数也有这样的规律吗?)由小组讨论后,教师归纳得出结论:【教学过程】1.在数轴上表示的两个数,右边的数总比左边的数大。

正数都大于零,负数都小于零,正数大于负数。

例1:在数轴上表示数5,0,-4,-1,并比较它们的大小,将它们按从小到大的顺序用“<”号连接。

(师生共同完成)分析:本题意有几层含义?应分几步?要点总结:小组讨论归纳,本题解题时的一般步骤:①画数轴;②描点;③有序排列;④不等号连接。

人教版七年级数学上册:1.2.4《绝对值》教学设计2

人教版七年级数学上册:1.2.4《绝对值》教学设计2

人教版七年级数学上册:1.2.4《绝对值》教学设计2一. 教材分析《绝对值》是人教版七年级数学上册第一章第二节第四个小节的内容,主要让学生理解绝对值的概念,掌握绝对值的性质,并能运用绝对值解决一些简单的问题。

绝对值是数学中的一个重要概念,它在日常生活和工农业生产中有着广泛的应用。

二. 学情分析学生在学习《绝对值》之前,已经学习了有理数的概念,对正数、负数、零有所了解。

但是,他们对绝对值的概念和性质可能还比较陌生,需要通过实例和练习来逐步理解和掌握。

同时,学生可能对绝对值的应用场景有所疑惑,需要通过生活中的实例来帮助他们理解。

三. 教学目标1.理解绝对值的概念,掌握绝对值的性质。

2.能够运用绝对值解决一些简单的问题。

3.理解绝对值在日常生活和工农业生产中的应用。

四. 教学重难点1.绝对值的概念和性质。

2.绝对值的应用。

五. 教学方法采用讲授法、实例分析法、练习法、小组合作学习法等,结合多媒体教学手段,让学生在理解绝对值的概念和性质的基础上,能够运用绝对值解决实际问题。

六. 教学准备1.PPT课件。

2.练习题。

3.生活中的实例。

七. 教学过程1.导入(5分钟)通过一个生活中的实例,引出绝对值的概念。

例如,一个人在地图上从原点出发,走了10公里向东,又走了10公里向西,问他现在离原点有多远?引出绝对值的概念,即离原点的距离是10公里。

2.呈现(10分钟)通过PPT课件,呈现绝对值的性质,如:–绝对值是非负数。

–互为相反数的两个数的绝对值相等。

–绝对值大的数比绝对值小的数大。

同时,给出相应的例子,让学生理解和掌握这些性质。

3.操练(10分钟)让学生独立完成一些练习题,巩固对绝对值概念和性质的理解。

例如:–计算下列各数的绝对值:-5, 3, -2, 0, 4。

–如果两个数互为相反数,它们的绝对值是否相等?4.巩固(10分钟)让学生分组合作,找出生活中的其他实例,运用绝对值的概念和性质解决问题。

例如,计算两个人之间的距离,或者计算物体的位移等。

七年级数学上册《绝对值(2)》课案(教师用) 新人教版

七年级数学上册《绝对值(2)》课案(教师用) 新人教版

课案(教师用)1.2.4 绝对值(二)(新授课) 【理论支持】根据赫尔巴特的“诱发学习兴趣原理”学说,与旧有知识相关的新事物会引起我们的注意.而我们全然未知的事物是不会引起我们的注意的.但是,尽管熟知的事物会引起我们的注意,但其注意不会持久的.可以引起我们最大的兴趣的事物是知与未知的混合物.本节课联系小学及课本内容,把两个有理数的大小比较进行系统的概括,体验出两个有理数比较大小的方法.⑴利用数轴比较大小;⑵利用绝对值比较大小.本节课的教学目标是让学生掌握这两种方法.在教用数轴比较有理数大小的方法时,引入是采用温度的排序.根据常识,学生可以由低到高地排列这些温度,再让学生把这些数表示在数轴上,可以看到表示它们的各点是从左到右的顺序,由此引出利用数轴比较有理数大小的规定:“在数轴上,左边的数小于右边的数.”在这部分教学中,要让学生结合图形理解这些结论.在讲解利用绝对值比较大小时,采用把两个负数在数轴表示,利用在数轴上的数“左边的数小于右边的数”;得出“绝对值大的负数反而小”的结论.从而得出利用绝对值比较有理数大小的方法.这节课的重点是利用绝对值比较两个负数的大小.难点是利用绝对值比较两个异分母负数大小;这是本节课较难的部分,为了解决难点,特别要让学生清楚地了解进行比较时的过程:⑴先求出两个负数的绝对值.⑵比较两个绝对值的大小(要通分,化为同分母分数).⑶根据绝对值大的负数反而小的结论判断这两个负分数的大小. 【教学目标】 知识与技能:1.会利用数轴比较两个有理数的大小.2.会利用绝对值比较两个负数的大小. 数学思考:体验绝对值解决实际问题的过程,感受数学在生活中的应用价值. 解决问题:利用绝对值概念比较有理数的大小,培养学生的逻辑思维能力. 情感态度:敢于面对数学活动中的困难,有学好数学的自信心. 【教学重难点】重点:利用绝对值比较两个负数的大小.难点:利用绝对值比较两个异分母负分数的大小 【课时安排】 一课时【教学设计】课前延伸一、基础知识及答案比较下列各组数的大小:(1)83--与 ; (2) 4332--与; (3)4与-5 , (4) 0.9与1.1. 【答案】(1)38-<-;(2) 2334-<-;(3)4>-5; (4) 0.9<1.1. 【设计说明】本题是为了分散利用绝对值比较两个负分数的大小这一难点埋下了伏笔,在这个题目中用最简单的“∵,∴”的形式训练学生简单的推理能力.二、预习思考题及答案比较下列各组数的大小:(1)-10与0; (2) -9与-1;(3)5477--与; (4)7384--与. 【答案】(1)-10<0; (2)-9<-1;(3)5477--<; (4)73-<-84. 【设计说明】让学生体会出这四道题的难度较大,培养学生的自学能力.课内探究 一、导入新课,探究新知教材12页探究如图1.2-6给出了一周中每天的最高气温和最低气温,其中最低的是 ℃,最高的是 ℃.你能将这14个数按从低到高的顺序排列吗?分析:图1.2-6给出的14个温度按从低到高排列为: -4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9.按照这个顺序排列的温度,与温度计上所对应的点是从下到上的,按照这个顺序把这些数表示在数轴上,表示它们的各点的顺序是从左到右的.(学生活动)在练习纸上画出数轴,把每个数标在对应点上,并比较大小. 师:我们已知两个正数(或0)之间怎样比较大小,例如0<1,1<2,2<3,… 任意两个有理数(例如-4和-3,-2和0,-1和1)怎样比较大小呢?数学中规定,在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数.由这个规定可知:-6<-5,-5<-4,-4<-3,-2<0,-1<1,… 得出结论:(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小. 例如 1 0,0 -1,1 -1,-1 -2【设计说明】探究数的大小比较的方法,采用把两个负数在数轴表示,利用在数轴上的数“左边的数小于右边的数”;得出“绝对值大的负数反而小”的结论.从而得出利用绝对值比较有理数大小的方法. 二、应用新知例 比较下列各对数的大小 (1)-(-1)和-(+2); (2)73218--和; (3)-(-0.3)和31-.解:(1)先化简,-(-1)=1,-(+2)=-2.正数大于负数,1>-2,即-(-1)>-(+2) .(2) 这是两个负数比较大小,要比较它们的绝对值.218218=-,2197373==- . ∵219218<, 即73218-<-, ∴ 73218-<-. (3)先化简,-(-0.3)=0.3, 3131-= , ∵0.3 <31,∴-(-0.3) <31-.【设计说明】比较两个负分数的大小是这节的重点也是难点,利用这两个小题让学生从整体上把握一下方法,达到熟练掌握的程度. 三、巩固新知(1)比较下列各对数的大小:-3和-5; -2.5和5.2--(2)判断题:①两个有理数比较大小,绝对值大的反而小 . ( ) ②有理数中没有最小的数.( )③若b a -=,则b a =.( ) ④若a <b <0,则a <b .( )(3)写出绝对值不大于4的所有整数,并把它们表示在数轴上. (4)比较大小:-2_________-5,-2.5 2.5--; 65-56-,87- 98-. (写出过程)四、归纳小结师:谁能说说今天这节课我们学习了哪些内容?生:如何比较两个有理数大小.师:两个有理数是如何比较大小的? 生:(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小. 师:还有没有方法了?生:利用数轴比较,左边的数小于右边的数.【设计说明】教师的小结必须把今天的所学纳入知识系统,明确说明利用数轴可以比较任意两数的大小,而利用绝对值比较大小只适用于两个负数. 【布置作业】比较下列各组数的大小. 5-9-和,-2.22和-2.25,85-2413和-,14.3-722-和⎪⎭⎫⎝⎛+ 〖参考答案〗-9<-5,-2.22>-2.25,852413->-,14.3722--<⎪⎭⎫⎝⎛+【板书设计】 2.4 绝对值 (2)(1)正数大于0,0大于负数,正数大于负数 (2)两个负数,绝对值大的反而小.例 解:(1) -(-1)=1,-(+2)=-2. ∴ 1>-2,即-(-1)>-(+2).(2) 218218=-,2197373==- . ∵219218<, 即73218-<-, ∴ 73218-<-. (3)先化简,-(-0.3)=0.3, 3131-= . ∵0.3 <31,∴-(-0.3) <31- .课后提升课后练习题及答案:(1)若|a|=6,则a=______;(2)若|-b|=0.87,则b=______;(3)若x+|x|=0,则x是______数.(4)已知│a│=4,│b│=3,且a>b,求a、b的值.〖参考答案〗(1)∵|a|=6,∴a=±6;(2)∵|-b|=0.87,∴b=±0.87;(3)∵x+|x|=0,∴|x|=-x.∵|x|≥0,∴-x≥0∴x≤0,x是非正数.(4) ∵|a|=4,∴a=±4∵|b|=3,∴b=±3∵a>b,∴a=4,b=±3【设计说明】“绝对值”是代数中最重要的概念之一,应当从正、逆两个方面来理解这个概念.对绝对值的代数定义,至少要认识到以下三点:(1)任何一个数的绝对值一定是正数或0,即|a|≥0;(2)互为相反数的两个数的绝对值相等,|a|=|-a|;(3) 求一个含有字母的代数式的值,一定要根据字母的取值范围分情况进行讨论.。

人教版七年级上册数学 1.2.4 第2课时 有理数大小的比较 优质教案

人教版七年级上册数学 1.2.4 第2课时 有理数大小的比较 优质教案

1.2.4 绝对值第2课时 有理数大小的比较【教学目标】 (一)知识技能1.使学生进一步巩固绝对值的概念,能说出有理数大小的比较法则2. 能熟练运用法则结合数轴比较有理数的大小,特别是应用绝对值概念比较两个负数的大小,能利用数轴对多个有理数进行有序排列。

3. 能正确运用符号“<”“>”“∵”“∴”写出表示推理过程中简单的因果关系 (二)过程方法经历由实际问题总结归纳出应用绝对值概念比较有理数大小,特别是比较两个负数的大小的过程,渗透数形结合思想。

(三)情感态度通过学生自己动手操作,观察、思考,使学生亲身体验探索的乐趣,培养学生合作交流能力和观察、归纳、用数学语言表达数学规律的能力。

同时培养学生逻辑思维能力和推理论证能力。

教学重点运用法则借助数轴比较两个有理数的大小。

教学难点利用绝对值概念比较两个负分数的大小。

【复习引入】1.复习绝对值的几何意义和代数意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

2.(多媒体显示)某一天我们5个城市的最低气温分别是画一画:(1)把上述5个城市最低气温的数表示在数轴上,(2)观察这5个数在数轴上的位置,从中你发现了什么?3.温度的高低与相应的数在数轴上的位置有什么关系?(通过学生自己动手操作,观察、思考,发现原点左边的数都是负数,原点右边的数都是正数;同时也发现5在0右边,5比0大;10在5右边,10比5大,初步感受在数轴上原点右边的两个数,右边的数总比左边的数大。

教师趁机追问,原点左边的数也有这样的规律()吗?)由小组讨论后,教师归纳得出结论: 【教学过程】1.在数轴上表示的两个数,右边的数总比左边的数大。

正数都大于零,负数都小于零,正数大于负数。

例1:在数轴上表示数5,0,-4,-1,并比较它们的大小,将它们按从小到大的顺序用“<”号连接。

(师生共同完成) 分析:本题意有几层含义?应分几步?要点总结:小组讨论归纳,本题解题时的一般步骤:①画数轴;②描点;③有序排列;④不等号连接。

七年级数学上册-绝对值课时2有理数的大小比较教案新版新人教版

七年级数学上册-绝对值课时2有理数的大小比较教案新版新人教版

第一章有理数1.2 有理数1.2.4 绝对值课时2 有理数的大小比较【知识与技能】会利用数轴及绝对值的知识,比较有理数的大小.【过程与方法】经历将实际问题数学化的过程,感受数学与生活的联系,贯彻数形结合思想.【情感态度与价值观】渗透数形结合思想与分类讨论思想,培养学生的概括能力有理数大小的比较方法.比较两个负数的大小.多媒体课件教师提问:1.什么是绝对值?(绝对值的几何意义)2.正数、0、负数的绝对值分别是什么?3.说出下列各数的绝对值,并完成它们之间几组数的比较.4,-5,0,0.5,-3,-0.5,24 2;2 0.5;0.5 0;0 -0.5;-0.5 -3;-3 -5;4 -3.学生回答问题.教师:负数与负数之间,正数与负数之间怎样比较大小?这节课我们就来解决这个问题. (引入新课,板书课题).一、思考探究,获取新知一、最低气温.某一天5个城市的最低气温分别如下:(1)画一画:把上述5个城市最低气温的数据表示在数轴上.(2)观察这5个数在数轴上的位置,从中你发现了什么?(3)温度的高低与相应的数在数轴上的位置有什么关系?学生动手画图,教师对学生的结果进行展示与讲解.师生共同归纳:1.在数轴上表示的两个数,右边的数总比左边的数大.2.正数都大于0,负数都小于0,正数大于负数.二、做一做.(1)在数轴上表示下列各对数,并比较它们的大小.(2)求出上述各对数的绝对值,并比较它们的大小.(3)从(1)(2)中你发现了什么?学生动手操作、讨论,教师巡视、指导.教师总结:两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小.二、典例精析,掌握新知例1下列各数的大小:教师强调:异号两数比较大小,要考虑它们的正负;同号两数比较大小,要考虑它们的绝对值.例2已知a>0,b<0,且|b|>|a|,比较a,-a,b,-b的大小.【分析】可通过数轴比较a,-a,b,-b的大小,先在数轴上找出表示a,-a,b,-b的点的大致位置,再进行比较.【解】首先由a>0,b<0可知,表示a的点在原点的右边,表示b的点在原点的左边;然后由|b|>|a|可知,表示b的点距离原点更远;最后根据“两个互为相反数的数在数轴上所表示的点在原点的两边,且与原点的距离相等”即可得到图1-2.4-1.根据数轴上左边的点所表示的数较小,可得b<-a<a<-b.1.有理数的大小比较:正数大于0,0大于负数,正数大于负数.2.两个负数,绝对值大的反而小.教材P14习题1.2第6,7,8,9题。

七年级数学上册(人教版)1.2.4绝对值(第2课时有理数大小的比较)优秀教学案例

七年级数学上册(人教版)1.2.4绝对值(第2课时有理数大小的比较)优秀教学案例
在教学过程中,我充分考虑了学生的认知规律和兴趣,设计了丰富多样的教学活动。首先,我通过数轴引导学生直观地理解绝对值的概念,然后通过实例让学生掌握绝对值的计算方法。接着,我设计了一些有趣的问题,让学生在解决实际问题的过程中自然地引入有理数大小的比较。在课堂讲解中,我注重与学生互动,鼓励他们积极参与讨论,提出自己的观点和疑问。此外,我还布置了针对性的练习题,帮助学生巩固所学知识。
五、案例亮点
1.数轴的直观运用:本节课通过数轴的直观展示,使学生能够更直观地理解绝对值的概念和有理数的大小比较。数轴作为数学中的重要工具,可以帮助学生建立起数与形的关系,有助于学生对抽象数学概念的理解。
2.生活实例的引入:通过设计有趣的生活实例,将绝对值的概念引入到学生的日常生活中,使学生能够更好地理解和运用绝对值。这种教学方法能够激发学生的学习兴趣,提高学生的学习积极性。
在评价学生学习效果时,我采用了多种方式,如课堂问答、作业批改和课后访谈等。通过这些评价方法,我发现大部分学生能够掌握绝对值的概念和有理数大小的比较方法,但在解决复杂问题时仍有一定的困难。针对这一情况,我在课后针对性地进行辅导,帮助学生进一步提高。
二、教学目标
(一)知识与技能
1.学生能够理解绝对值的概念,掌握绝对值的计算方法,能够运用绝对值判断两个有理数的大小关系。
1.引导学生通过观察和分析数轴上的点,自主发现绝对值的概念。
2.讲解绝对值的计算方法,举例说明绝对值的性质。
3.通过实例讲解有理数大小的比较方法,引导学生理解有理数大小比较的规则。
(三)学生小组讨论
1.组织学生进行小组讨论,让学生分享各自对绝对值和有理数大小比较的理解。
2.引导学生通过合作解决问题,培养学生的团队精神和沟通能力。
2.通过生活实例,引导学生理解绝对值的实际意义,激发学生的学习兴趣。

人教版初中七年级数学第一单元有理数《绝对值(2)》教案

人教版初中七年级数学第一单元有理数《绝对值(2)》教案

人教版初中七年级数学第一单元有理数1.2.4 第二课时 有理数的大小比较一、教学目标(一)学习目标1.理解并掌握有理数大小的比较的方法;2.会比较有理数的大小,并能正确地使用“>”或“<”号连接; 3.通过对有理数大小比较方法的推理,培养学生的数学推理能力.(二)学习重点运用绝对值的知识比较两个负数的大小;(三)学习难点有理数大小比较的推理.二、教学设计(一)课前设计 1.预习任务(1)在数轴上,右边的数总比左边的数大; (2)正数大于0,负数小于0,正数大于负数; (3)两个负数比较,绝对值大的反而小. 2.预习自测(1)有理数a 在数轴上对应的点如图所示,则a ,a -,-1的大小关系是 ( )A .1-<<-a aB .a a <-<-1C .a a -<-<1D .1-<-<a a【知识点】有理数的大小比较 【数学思想】数形结合【解题过程】解:由数轴可知:a a -<-<1【思路点拨】根据数轴上的点,左边的数总比右边的数小即可求解. 【答案】Ca(2)下列四个数中,最大的数是( ) A .-6 B .-2 C .0 D .21- 【知识点】有理数的大小比较【解题过程】解: 题意可得:02126<-<-<-【思路点拨】根据两个负数比较绝对值大的反而小和0大于负数即可求解. 【答案】 C(3)在5,23,-1,+0.001这四个数中,小于0的数是 ( ) A .5 B .23C .-1D .+0.001【知识点】有理数的大小比较 【解题过程】解:在5,23,-1,+0.001这四个数中,小于0的数是 -1. 【思路点拨】根据0大于负数,正数大于0,正数大于负数即可求解. 【答案】C(4)下列四组有理数的大小比较正确的是( )A .3121->- B .11+->--C .3121< D .3121->-【知识点】有理数的大小比较 【解题过程】解: 因为623131,632121==-==-且6263> 所以3121-<-,故A 错误; 因为11,11-=+--=--,所以11+-=--,故B 错误;又C 错误;故应选D . 【思路点拨】根据有理数大小比较的法则即可求解. 【答案】D .(二)课堂设计1.知识回顾(1)绝对值的定义是什么? (2)绝对值的法则是什么? (3)数轴的三要素是什么?2.问题探究探究一有理数大小的比较法则活动①某一天我国5个城市的最低气温如图所示:(1)比较这5个城市,哪个城市的最低气温最低?是多少?哪个城市的最低气温最高?是多少?(2)你能将这5个城市的最低气温按从低到高的顺序排列吗?(3)请你将这5个数字分别在数轴上表示出来?学生举手抢答.总结:(1)数学中规定:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数总小于右边的数.师问:对于正数、0和负数这三类数,它们之间有什么大小关系?两个负数之间如何比较大小?学生举手抢答.总结:有理数大小比较的法则:一般地,(1)正数大于0,0大于负数,正数大于负数;(2)两个负数比较,绝对值大的反而小.【设计意图】学生通过生活中的实际问题的大小比较,自然的引出有理数大小的比较方法,体验数学来源于生活的本质,通过小组合作和师生互动,激发学生学习热情的同时,锻炼学生的小组合作能力,分析归纳的能力等.探究二会比较有理数的大小,并能正确地使用“>”或“<”号连接★活动①:会比较有理数的大小,并能正确地使用“>”或“<”号连接例1 画出数轴,在数轴上表示下列各数,并用“<”连接:+5,-3.5,12,-112,4,0【知识点】有理数的大小比较【数学思想】数形结合.【解题过程】解:如图所示:因为在数轴上右边的数大于左边的数,所以-3.5<-112<0<12<4<+5.5 4【思路点拨】画出数轴,在数轴上标出表示各数的点,然后根据右边的数总比左边的数大进行比较.【答案】-3.5<-112<0<12<4<+5.练习:把如图的直线补充成一条数轴,并表示下列各数:0,-(+4),312,-(-2),|-3|,+(-5),并用“<”号连接.【知识点】有理数的大小比较. 【数学思想】数形结合.【解题过程】解:∵-5<-4<0<2<3<312,∴+(-5)<-(+4)<0<-(-2)<|-3|<312,在数轴上表示:【思路点拨】先判断各数的大小,然后确定数轴的三要素即可在数轴上表示各数的位置. 【答案】+(-5)<-(+4)<0<-(-2)<|-3|<312【设计意图】通过练习,理解用数轴比较大小的方法,体会数形结合给解题带来的方便。

1.2.4绝对值——有理数的大小比较教案 2021—2022学年人教版数学七年级上册

1.2.4绝对值——有理数的大小比较教案 2021—2022学年人教版数学七年级上册

1.2.4 绝对值——有理数的大小比较教案一、教学目标1.理解绝对值的概念和意义;2.掌握绝对值的计算方法;3.能够利用绝对值进行有理数的大小比较。

二、教学准备1.课本《数学七年级上册》;2.教学笔记和教具。

三、教学过程1. 导入新知首先,让学生自主观察以下有理数之间的大小关系:-2, -1, 0, 1, 2请思考以下问题:这些数中,哪个数是最小的?哪个数是最大的?2. 引入绝对值的概念要回答上面的问题,我们需要引入绝对值的概念。

请同学们先思考以下问题:1.-2和2之间,哪一个数更大?2.-1和1之间,哪一个数更大?3.0和1之间,哪一个数更大?借助思考,我们可以引出绝对值的概念:一个数的绝对值是它到0的距离。

如果一个数为正数或0,那么它的绝对值就是它本身;如果一个数为负数,那么它的绝对值就是它的相反数。

举例来说:-2的绝对值是2 -1的绝对值是1 0的绝对值是0 1的绝对值是1 2的绝对值是23. 计算绝对值现在,我们来讨论一下如何计算一个数的绝对值。

请同学们仔细观察以下计算步骤:1.如果这个数是正数或0,那么它的绝对值就是它本身;2.如果这个数是负数,那么它的绝对值就是它的相反数。

举例说明:计算|-5|,由于-5是负数,所以它的绝对值就是它的相反数,即5。

计算|3|,由于3是正数,所以它的绝对值就是它本身,即3。

计算|0|,由于0是正数,所以它的绝对值就是它本身,即0。

4. 使用绝对值进行大小比较现在,我们来解决一开始提出的问题:-2, -1, 0, 1, 2中,哪个数是最小的?哪个数是最大的?可以观察到,这些数的绝对值是:2, 1, 0, 1, 2。

由此可见,绝对值可以帮助我们比较有理数的大小。

绝对值越大,数就越大。

所以,-2是最小的数,2是最大的数。

5. 小结与拓展绝对值是数学中的一个重要概念,它帮助我们比较不同的有理数的大小。

通过本课的学习,我们学会了计算绝对值,并使用绝对值进行有理数的大小比较。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版义务教育课程标准实验教科书七年级上册
1.2.4《绝对值(2)有理数的大小比较》教学设计
一、教学内容:课本第12页至第14页.
二、教材分析
有理数大小比较的提出是从学生生活熟悉的情境入手,结合学生自己的实际情况,创设情景通过典型的事例材料、图片,并且使学生从提供的事例材料和活动中,借助数轴得出有理数的大小比较的方法,课本安排了“做一做”等形式的教学活动,让学生通过观察思考,讨论和自己动手操作,体验有理数大小比较法则的探索过程。

三、教学目标
1、知识与技能:
①掌握有理数大小比较的方法
②会比较有理数的大小,特别是比较两个负数的大小。

2、过程与方法:
通过有理数大小比较的探究活动,培养学生观察和动手操作的能力。

3、情感态度与价值观:
通过本课学习使学生感受到有理数大小比较与现实生活密切联系,体会比较数的大小在解决实际问题中的作用。

四、教学重点、难点、关键.
重点:运用法则借助数轴比较两个有理数的大小
难点:利用绝对值概念比较两个负数的大小
关键:正确理解绝对值的概念.
突破难点的方法:激趣教学、自学探究、引导启发。

从学生熟悉和感兴趣的问题情境出发,依据学生已有的知识背景和活动经验,提供大量思考和交流的机会,使学生在自主探究的过程中建立符合个体认知特点的知识结构。

五、教学方法和教学手段
本课采用教师的启发引导与学生的自主探究相结合的教学方法,利用多媒体等手段教学,教师引导学生主动地观察、推理、归纳等数学活动,鼓励学生自主探索与合作交流,使学生主动获取知识,学会学习。

六、教学过程。

相关文档
最新文档