东南大学信息学院DSP课程第二次实验报告
东南大学DSP实验报告.

第三章DSP芯片系统实验实验3.1 :数据存取实验一.实验目的1.了解TMS320F2812A的内部存储器空间的分配及指令寻址方式。
2.了解ICETEK-F2812-A评估板扩展存储器空间寻址方法,及其应用。
3.了解ICETEK-F2812-EDU实验箱扩展存储器空间寻址方法,及其应用。
4.学习用Code Composer Studio修改、填充DSP内存单元的方法。
5.学习操作TMS32028xx内存空间的指令。
二.实验设备计算机,ICETEK-F2812-A-EDU实验箱(或ICETEK仿真器+ICETEK-F2812-A评估板+相关连线及电源)。
三.实验内容在外部SARAM的0x80000~0x8000f单元置数0~0xf,将该单元块存储的数据复制到0x80100~0x8010f处,最后通过“Memory”查看窗口观察各存储区中的数据。
四.实验原理TMS32028xx DSP内部存储器资源介绍:TMS32028xx系列DSP基于增强的哈佛结构,可以通过三组并行总线访问多个存储空间。
它们分别是:程序地址总线(PAB)、数据读地址总线(DRAB)和数据写地址总线(DW AB)。
由于总线工作是独立的,所以可以同时访问程序和数据空间。
TMS32028xx系列DSP的地址映象请参考第一章1.2.4节ICETEK-F2812-A评估板的存储空间定义及寄存器映射说明中的介绍。
五.实验步骤1.实验准备连接实验设备。
参见第一章1.3.1节中的“硬件连接方法”。
连接仿真器USB口接线,打开实验箱电源开关,接通评估板电源(关闭实验箱上的扩展模块和信号源电源开关)。
2.设置Code Composer Studio 2.21在硬件仿真(Emulator)方式下运行。
参见第一章1.4.2节中的“设置CCS工作在硬件仿真环境”。
3.启动Code Composer Studio 2.21选择菜单Debug→Reset CPU。
DSP第二次实验报告

void IDFT(float xx[],float yx[],int m,float RX[],float CX[])/*IDFT*/ { int k,n; for(k=0;k<=m-1;k++) { RX[k]=0;CX[k]=0; {for(n=0;n<=m-1;n++) { RX[k]=RX[k]+xx[n]*(cos(2*3.14159265359798*n*k/m))yx[n]*(sin(2*3.14159265359798*n*k/m)); CX[k]=CX[k]+xx[n]*(sin(2*3.14159265359798*n*k/m))+ yx[n]*(cos(2*3.14159265359798*n*k/m)); } } RX[k]=RX[k]/m; CX[k]=CX[k]/m; } }
电子 1401 班
张鹏辉
20142192
实验感悟:
这次实验从实践中验证了以下若干理论推导和编程所要注意的问题: 逆变换验证时的补点问题:因为两个长都为为 32 的时域序列进行卷积产 生的结果是 63 位的序列。如果两个时域序列先进行 DFT 变换到频域,应该也都 为长 32 的序列,相乘后是一长度为 32 的序列。为了在长度上满足还原条件,所 以要在乘积序列的结果后补充 63-32=31 长度的 0 序列。 定义 DFT 和 IDFT 函数乘积问题:为了用 C 来定义 DFT 和 IDFT 从两者定 义出发,分别用循环判断嵌套的结构完成 N 点的计算,具体解释在上代码后书 写。 另,在这次试验中,一方面提高了自己 C 语言函数编写水平,使自己更深 一步了解 C 中关于图像绘制和逻辑嵌套的相关知识。 另一方面, 在实际操作中证 实了 DSP 课程所提出的相关理论,加深了有关离散傅里叶变换及其逆变换的理 解。
DSP第二次实验报告

DSP实验报告(第二次实验)实验四、正弦信号发生器学院:信息工程学院班级:11级通信工程3班姓名:李慧学号:2011551309指导老师:姚志强完成日期:2014.4.12验四、正弦信号发生器一、 实验目的1. 掌握利用DSP 产生正弦信号的原理2. 熟悉子程序调用的程序结构以及堆栈的使用3. 掌握CCS 的图形输出操作二、 实验设备1. 集成开发环境Code Composer Studio (简称CCS )2. 实验代码Sin.s54、Lab.cmd 和Lab.gel三、实验内容1. 阅读理解多项式逼近正弦的文档2. 阅读和理解Sin.s543. 调试正弦波发生器4. 加入断点,并选取图形观测,利用动画及时更新5. 试利用迭代的方法来实现正弦信号发生器四、实验结果和提示1.2345sin()= 3.140625 + 0.02026367 - 5.325196 + 0.5446778 + 1.800293x x x x x x ,x 为第一象限内的弧度值。
因为sin()sin(),sin()sin()x x x x π-=-=-,所以只需将第二,三,四象限内的弧度值转换到第一象限即可计算出相应的正弦函数值。
由于有限精度,规定弧度值从~ππ-,其中π=0x7FFF ,π/2=0x4000,π-=0x8000。
利用级数展开产生正弦波,必须在调用计算子程序之前备份好累加器A 中的当前弧度值,以便计算结束后实现x 增量。
正弦波的频率可以通过增幅的大小来进行控制,如果假定程序循环一次为一个时间单位,则正弦波的周期为65536/步长,频率为周期倒数。
x 自动增长时要注意当x 超过π后必须调整到~ππ-的范围内才能调用计算子程序,即若,2x x x ππ>=-则。
2. 需要使用临时数据时,必须用frame 语句留出所需空间,使用结束后要将堆栈指针还原以防堆栈内存泄漏。
要注意的是frame 的下一条指令不能使用直接寻址。
精选-东南大学信息学院_DSP_第二次实验报告

实验三 IIR 数字滤波器的设计04013222 张嘉俊一、实验目的(1)掌握双线形变换法及脉冲响应不变法设计IIR 数字滤波器的具体设计方法及其原理,熟悉用双线形变换法及脉冲响应不变法设计低通,高通和带通IIR 数字滤波器的计算机编程。
(2)观察双线形变换法及脉冲响应不变法设计的滤波器的频域特性,了解双线形变换法及脉冲响应不变法的特点。
(3)熟悉巴特沃思滤波器,切比雪夫滤波器和椭圆滤波器的频率特性。
(3)实验中有关变量的定义cr sf f At f T 通带边界频率阻带边界频率通带波动最小阻带衰减采样频率采样周期(4)设计一个数字滤波器一般包括以下两步a. 按照任务要求,确定滤波器性能指标b. 用一个因果稳定的离散时不变系统的系统函数去逼近这一性能要求(5)数字滤波器的实现对于IIR 滤波器,其逼近问题就是寻找滤波器的各项系数,使其系统函数逼近一个所要求的特性。
先设计一个合适的模拟滤波器,然后变换成满足约定指标的数字滤波器。
用双线形变换法设计IIR 数字滤波器的过程:a. 将设计性能指标中的关键频率点进行“预畸”b. 利用“预畸”得到的频率点设计一个模拟滤波器。
c. 双线形变换,确定系统函数二、实验内容(1)fc=0.3kHz,δ=0.8dB,fr=0.2kHz,At=20dB,T=1ms;设计一切比雪夫高通滤波器,观察其通带损耗和阻带衰减是否满足要求。
源程序:clc,clear;wc=2000*tan(2*pi*300*0.001/2);wr=2000*tan(2*pi*200*0.001/2);[N,wn]=cheb1ord(wc,wr,0.8,20,'s');[B,A]=cheby1(N,0.8,wn,'high','s');[num,den]=bilinear(B,A,1000);[h,w]=freqz(num,den);f=w/(2*pi)*1000;plot(f,20*log10(abs(h)));axis([0,500,-80,10]);grid;xlabel('Frequency/Hz');ylabel('Amplitude/dB');title('Chebyshev High-pass Filter');实验结果:分析与结论:观察图形可知,δ趋近于0;f=200Hz时,幅度约为-30dB,满足At=20dB的要求,故其通带损耗和阻带衰减满足要求。
DSP技术及课程设计实验报告二(精)

DSP技术及课程设计实验报告二(精)东南大学自动化学院实验报告课程名称: D SP 原理及C 程序开发第二次实验实验名称:基于DSP 系统的实验——指示灯、拨码开关和定时器院(系):自动化专业:自动化姓名:学号:实验室:实验组别:同组人员:实验时间:2012 年 4 月 18日评定成绩:审阅教师:第一部分实验:基于DSP 系统的实验——指示灯和拨码开关一.实验目的1. 了解ICETEK –F28335-A 评估板在TMS320F28335DSP外部扩展存储空间上的扩展。
2. 了解ICETEK –F28335-A 评估板上指示灯和拨码开关扩展原理。
3. 学习在C 语言中使用扩展的控制寄存器的方法。
二.实验设备计算机,ICETEK –F28335-A 实验箱(或ICETEK仿真器+ICETEK–F28335-A 评估板+相关连线及电源)。
三.实验原理1.TMS320F28335DSP 的存储器扩展接口存储器扩展接口是DSP扩展片外资源的主要接口,它提供了一组控制信号和地址、数据线,可以扩展各类存储器和存储器、寄存器映射的外设。
-ICETEK –F28335-A 评估板在扩展接口上除了扩展了片外SRAM外,还扩展了指示灯、DIP 开关和D/A 设备。
具体扩展地址如下:0x180004- 0x180005:D/A 转换控制寄存器0x180001:板上DIP 开关控制寄存器0x180000:板上指示灯控制寄存器-与ICETEK –F28335-A 评估板连接的ICETEK-CTR显示控制模块也使用扩展空间控制主要设备:208000-208004h :读-键盘扫描值,写-液晶控制寄存器208002-208002h :液晶辅助控制寄存器208003-208004h :液晶显示数据寄存器2.指示灯与拨码开关扩展原理图1指示灯扩展原理图2拨码开关扩展原理四.实验步骤LED 程序如下:#define LED (*(unsigned short int *0x180000 for(;;{LED=0x01; Delay(1000; LED=0x02;Delay(1000;LED=0x04;Delay(1000;LED=0x08;Delay(1000;}开关程序如下;#define SW (*(unsigned short int *0x180001 for(;;{LED=SW;}五.实验结果可知:映射在扩展存储器空间地址上的指示灯寄存器在设置时是低4位有效的,数据的最低位对应指示灯D1,次低位对应D2,... 依次类推。
DSP实验报告(二)

DSP实验报告(二)实验二应用FFT对信号进行频谱分析一、实验目的1、在理论学习的基础上,通过本次实验,加深对快速傅里叶变换的理解,熟悉FFT算法及其程序的编写。
2、熟悉应用FFT对典型信号进行频谱分析的方法。
3、了解应用FFT进行信号频谱分析过程中可能出现的问题,以便在实际中正确应用FFT。
二、实验原理与方法①一个连续信号的频谱可以用它的傅立叶变换表示为+ Xa(jW)=-jWtx(t)edtòa-如果对该信号进行理想采样,可以得到采样序列x(n)=xa(nT)同样可以对该序列进行z变换,其中T为采样周期X(z)=+ x(n)z-n+ -令z为ejw,则序列的傅立叶变换X(ejw)=x(n)ejwn-其中ω为数字频率,它和模拟域频率的关系为w=WT=W/fs式中的是采样频率。
上式说明数字频率是模拟频率对采样率的归一化。
同模拟域的情况相似。
数字频率代表了序列值变化的速率,而序列的傅立叶变换称为序列的频谱。
序列的傅立叶变换和对应的采样信号频谱具有下式的对应关系。
1X(e)=Tjw+ - w-2pXa(j)T即序列的频谱是采样信号频谱的周期延拓。
从式可以看出,只要分析采样序列的谱,就可以得到相应的连续信号的频谱。
注意:这里的信号必须是带限信号,采样也必须满足Nyquist定理。
在各种信号序列中,有限长序列在数字信号处理中占有很重要的地位。
无限长的序列也往往可以用有限长序列来逼近。
有限长的序列可以使用离散傅立叶变换。
当序列的长度是N时,定义离散傅立叶变换为:X(k)=DFT[x(n)]=其中W=e2pj-NN-1n=0WNkn它的反变换定义为:1x(n)=IDFT[X(k)]=N根据式和,则有N-1n=0X(k)WNknX(z)|z=Wnk=NN-1n=0x(n)WNnk=DFT[x(n)]j2pN可以得到X(k)2pk的点,就NN是将单位圆进行N等分以后第k个点。
所以,X(k)是z变换在单位圆上的等距采样,或者说是序列傅立叶变换的等距采样。
DSP课程实验报告

DSP课程设计实验报告语音噪声滤波院(系):电子信息工程学院设计人员:刘聪学号:08213013叶鸣08213023成绩:工程设计50 报告20 答辩30 总分评语:指导教师签字:日期:目录一、设计任务书 (1)二、设计内容 (2)三、设计方案、算法原理说明 (3)四、程序设计、调试与结果分析 (11)五、设计(安装)与调试的体会 (37)六、参考文献 (39)语音通信的目的是传递声音信息。
位于甲地的通信者发出的声音经语音传感器变换成为电信号,经发送端设备变换为适合传输的形式,通过传输信道传输到乙地。
在乙地经接收端设备恢复出原来的语音信号,经耳机或者喇叭转换为接收者可以听到的声音信号。
这就是最基本的语音通信系统,但是由于周围环境的原因,我们采集到语音信号经常含有不同程度的噪声。
噪声是由于发生体作无规则振动产生的。
典型语音通信系统中的噪声来自三个方面:①信号处理设备产生的电噪声及传输信道中的电噪声;②信号发送端空间环境中的音频噪声信号经麦克风变换为电信号之后,与有用信号共同传递到接收端;③信号接收端空间环境中的音频噪声对信号接收者的影响。
在很多情况下,环境中的背景噪声是通信系统中噪声干扰的主要来源。
当语音信号受到背景噪声干扰时语音通信质量变得不可接受,因此要对语音信号中的噪声滤除。
DSP利用直接存储器访问方式DMA(Direct Memory Access)采集数据时不打扰CPU,因此利用DMA方式工作时,CPU可以对语音信号进行实时地滤波。
本设计要求利用DSP的DMA方式进行信号采集和信号输出,对语音信号进行数字编码,滤波后进行解码。
自适应滤波不仅能够选择信号,而且能够控制信号的特性。
自适应滤波器具有跟踪信号和噪声变化的能力,它的系数能够被一种自适应算法所修改。
利用DSP可以实时地对信号进行自适应滤波。
DSP利用直接存储器访问方式DMA采集数据时不打扰CPU,因此CPU可以对信号进行实时地滤波。
DSP实验二报告

实验步骤及源程序
1.新建一个m文件,完成实验内容1。具体程序如下:
nb=0:50;
x=(0.8).^nb;
yb=filter(1,[1,-0.8],x);
stem(nb,yb);axis([-1,51,-1,3])
xlabel('n');ylabel('y_b(n)');title('Filter output');
教师评分
操作成绩
报告成绩
教师签名
日期
subplot(3,1,3);plot(t,xa,n3*Ts,x3,'o');
ylabel('x_3(n)');title('Sampling of x_a(t) using Ts=0.1');
实验结果
分析
1.实验内容1生成的结果。
2.实验内容2结果。
问题讨论
继续完成实验内容2。
采用sinc内插(用 )从样本 重建
Ts=0.05;N2=round(1/Ts);n2=0:N2;x2=cos(20*pi*n2*Ts);
subplot(3,1,2);plot(t,xa,n2*Ts,x2,'o');
ylabel('x_2(n)');title('Sampling of x_a(t) using Ts=0.05');
Ts=0.1;N3=round(1/Ts);n3=0:N3;x3=cos(20*pi*n3*Ts);
DSP实验报告书
姓名吴晓虹学号200907211106实验时间2012.09.24
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字信号处理第二次实验报告--------IIR 数字滤波器的设计姓名:印友进 学号:04012540一、实验目的(1)掌握双线形变换法及脉冲响应不变法设计IIR 数字滤波器的具体设计方法及其原理,熟悉用双线形变换法及脉冲响应不变法设计低通,高通和带通IIR 数字滤波器的计算机编程。
(2)观察双线形变换法及脉冲响应不变法设计的滤波器的频域特性,了解双线形变换法及脉冲响应不变法的特点。
(3)熟悉巴特沃思滤波器,切比雪夫滤波器和椭圆滤波器的频率特性。
二、实验原理(1)脉冲响应不变法用数字滤波器的单位脉冲响应序列()h n 模仿模拟滤波器的冲激响应()a h n ,让()h n 正好等于()a h n 的采样值,即()()a h n h n =,其中T 为采样间隔,如果以()a H n 及()H z 分别表示()a h n 的拉式变换及()h n 的Z 变换,则有)2(1)(m T j s H T z H m a e z sT ∑∞-∞==+=π(2)双线性变换法S 平面与z 平面之间满足以下映射关系:111212,112T sz s z T T z s --+-=⋅=+- s 平面的虚轴单值地映射于z 平面的单位圆上,s 平面的左半平面完全映射到z 平面的单位圆内。
双线性变换不存在混叠问题。
双线性变换是一种非线性变换(tan22TωΩ=),这种非线性引起的幅频特性畸变可通过预畸而得到校正。
IIR 低通、高通、带通数字滤波器设计采用双线性原型变换公式:(3)实验中有关变量的定义c rs f f At f T δ通带边界频率阻带边界频率通带波动最小阻带衰减采样频率采样周期(4)设计一个数字滤波器一般包括以下两步 a. 按照任务要求,确定滤波器性能指标b. 用一个因果稳定的离散时不变系统的系统函数去逼近这一性能要求(5)数字滤波器的实现 对于IIR 滤波器,其逼近问题就是寻找滤波器的各项系数,使其系统函数逼近一个所要求的特性。
先设计一个合适的模拟滤波器,然后变换成满足约定指标的数字滤波器。
用双线形变换法设计IIR 数字滤波器的过程: a. 将设计性能指标中的关键频率点进行“预畸”b. 利用“预畸”得到的频率点设计一个模拟滤波器。
c. 双线形变换,确定系统函数三、实验内容(1)fc=0.3kHz ,δ=0.8dB ,fr=0.2kHz ,At=20dB ,T=1ms ;设计一切比雪夫高通滤波器,观察其通带损耗和阻带衰减是否满足要求。
源程序:clc,clear;% 预畸变,W=2/T*tan(w/2) % w 为数字角频率,w=2*pi*fc/fswc=2000*tan(2*pi*300*0.001/2);wr=2000*tan(2*pi*200*0.001/2);[N,wn]=cheb1ord(wc,wr,0.8,20,'s');[B,A]=cheby1(N,0.8,wn,'high','s');[num,den]=bilinear(B,A,1000);[h,w]=freqz(num,den);f=w/(2*pi)*1000;plot(f,20*log10(abs(h)));axis([0,500,-80,10]);grid;xlabel('Frequency/Hz');ylabel('Amplitude/dB');title('Chebyshev High-pass Filter');实验结果:分析与结论:观察图形可知,δ趋近于0;f=200Hz时,幅度约为-30dB,满足At=20dB的要求,故其通带损耗和阻带衰减满足要求。
(2)fc=0.2kHz,δ=1dB,fr=0.3kHz,At=25dB,T=1ms;分别用脉冲响应不变法及双线形变换法设计一巴特沃思数字低通滤波器,观察所设计数字滤波器的幅频特性曲线,记录带宽和衰减量,检查是否满足要求。
比较这两种方法的优缺点。
源程序:clc,clear;%脉冲响应不变法对应的频率wc=2*pi*200;wr=2*pi*300;%双线性变换法对应的频率(预畸变)wc2=2*1000*tan((2*pi)*200*0.001/2);wr2=2*1000*tan((2*pi)*300*0.001/2);%脉冲响应不变法[N1,wn]=buttord(wc,wr,1,25,'s');[B1,A1]=butter(N1,wn,'s');[num1,den1]=impinvar(B1,A1,1000);[h1,w1]=freqz(num1,den1);%双线性变换法[N2,wn2]=buttord(wc2,wr2,1,25,'s');[B2,A2]=butter(N2,wn2,'s');[num2,den2]=bilinear(B2,A2,1000);[h2,w2]=freqz(num2,den2);%作图f1=w1/pi*500;f2=w2/pi*500;plot(f1,20*log10(abs(h1)),'-',f2,20*log10(abs(h2)),'-.'); axis([0,500,-80,10]);grid;xlabel('Frequency/Hz');ylabel('Amplitude/dB');title('Butterworth Lowpass Filter');程序结果:分析与结论:从图中可见,通带边界和阻带边界分别为200hz,300hz,衰减量也满足为25Db。
脉冲响应不变法的一个重要特点是频率坐标的变换是线性的,ω=ΩΤ,ω与Ω是线性关系:在某些场合,要求数字滤波器在时域上能模仿模拟滤波器的功能时,如要实现时域冲激响应的模仿,一般使用脉冲响应不变法。
脉冲响应不变法的最大缺点:有频谱周期延拓效应,因此只能用于带限的频响特性,如衰减特性很好的低通或带通,而高频衰减越大,频响的混淆效应越小,至于高通和带阻滤波器,由于它们在高频部分不衰减,因此将完全混淆在低频响应中,此时可增加一保护滤波器,滤掉高于Ωs/2的频带,再用脉冲响应不变法转换为数字滤波器,这会增加设计的复杂性和滤波器阶数,只有在一定要满足频率线性关系或保持网络瞬态响应时才采用。
双线性变换法的主要优点是S平面与Z平面一一单值对应,s平面的虚轴(整个jΩ)对应于Z平面单位圆的一周,S平面的Ω=0处对应于Z平面的ω=0处,Ω= ∞处对应于Z平面的ω= π处,即数字滤波器的频率响应终止于折叠频率处,所以双线性变换不存在混迭效应。
双线性变换缺点: Ω与ω成非线性关系,导致:a. 数字滤波器的幅频响应相对于模拟滤波器的幅频响应有畸变,(使数字滤波器与模拟滤波器在响应与频率的对应关系上发生畸变)。
b. 线性相位模拟滤波器经双线性变换后,得到的数字滤波器为非线性相位。
c.要求模拟滤波器的幅频响应必须是分段恒定的,故双线性变换只能用于设计低通、高通、带通、带阻等选频滤波器(3)利用双线性变换法分别设计满足下列指标的巴特沃思滤波器,切比雪夫滤波器和椭圆滤波器,并作图验证设计结果:fc=1.2kHz,δ<=0.5dB,fr=2kHz,At>=40dB,fs=8kHz。
比较这三种滤波器的阶数。
源程序:clc,clear;wr=2*8000*tan(2*pi*2000/(2*8000));wc=2*8000*tan(2*pi*1200/(2*8000));[N1 wn1]=buttord(wc,wr,0.5,40,'s');%巴特沃思[B1 A1]=butter(N1,wn1,'low','s');[num1 den1]=bilinear(B1,A1,8000);[h1 w]=freqz(num1,den1);[N2 wn2]=cheb1ord(wc,wr,0.5,40,'s');%切比雪夫[B2 A2]=cheby1(N2,0.5,wn2,'low','s');[num2 den2]=bilinear(B2,A2,8000);[h2 w]=freqz(num2,den2);[N3 wn3]=ellipord(wc,wr,0.5,40,'s');%椭圆[B3 A3]=ellip(N3,0.5,40,wn3,'low','s');[num3 den3]=bilinear(B3,A3,8000);[h3 w]=freqz(num3,den3);f=w/(2*pi)*8000;plot(f,20*log10(abs(h1)),'-',f,20*log10(abs(h2)),'-.',f,20*log10(abs(h3)),'.');axis([0 4000 -100 10]);grid;xlabel('Frequency/Hz');ylabel('Amplitude/dB');title('Three Lowpass Filter');实验结果:分析与结论:在相同指标下:Butterworth型滤波器需要9阶,Chebyshev型需要5阶,椭圆型需要4阶。
(4)分别用脉冲响应不变法及双线形变换法设计一巴特沃思数字带通滤波器,已知fs=3kHz,其等效的模拟滤波器指标为δ<3kHz,2kHz<f<=3kHz,At>=5dB,f>=6kHz,At>=20dB,f<=1.5kHz。
源程序:clc,clear;%脉冲响应不变法w1=2*pi*2000;w2=2*pi*3000;wr1=2*pi*1500;wr2=2*pi*6000;[N1 wn1]=buttord([w1 w2],[wr1 wr2],3,20,'s');[B A]=butter(N1,wn1,'s');[num1 den1]=impinvar(B,A,30000);[h1 w]=freqz(num1,den1);%双线性变换法w1=2*30000*tan(2*pi*2000/(2*30000));w2=2*30000*tan(2*pi*3000/(2*30000));wr1=2*30000*tan(2*pi*1500/(2*30000));[N2 wn2]=buttord([w1 w2],[wr1 wr2],3,20,'s');[B A]=butter(N2,wn2,'s');[num2 den2]=bilinear(B,A,30000);[h2 w]=freqz(num2,den2);f=w/pi*15000;plot(f,20*log10(abs(h1)),'-.',f,20*log10(abs(h2)),'-');axis([0 15000 -80 10]);grid;xlabel('Frequency/Hz');ylabel('Amplitude/dB');title('Butterworth Bandpass Filter');实验结果:分析与结论:由上图可以看出,用脉冲响应不变法由于滤波器的混叠作用在过度带和阻带都衰减的较双线性变换法慢。