九年级数学竞赛讲座:充满活力的韦达定理

合集下载

九年级数学秋季教材班第8次课 充满活力的韦达定理 定稿

九年级数学秋季教材班第8次课   充满活力的韦达定理  定稿

充满活力的韦达定理姓名 日期【知识要点】1.一元二次方程两根和与两根积和系数的关系: 如果ax 2+bx+c=0(a ≠0)的两个根是x 1,x 2,那么acx x a b x x =-=+2121,,2.一元二次方程的根与系数的关系简化形式:如果把方程()002≠=++a c bx ax 变形为02=++acx a b x ,即x 2+px+q=0的形式,其中acq a b P ==,.从而得出:如果方程 x 2+px+q =0的两个根是x 1,x 2,那么x 1+x 2=-p ,x 1·x 2=q . 3.韦达定理的逆定理:以两个数21,x x 为根的一元二次方程(二次项系数为1)是()021212=++-x x x x x x .一般地,如果有两个数21,x x 满足⎪⎪⎩⎪⎪⎨⎧=-=+a c x x ab x x 2121那么21,x x 必定是一元二次方程02=++c bx ax ()0≠a 的两个实数根. 2.不解方程,判断根的性质与符号:已知一元二次方程02=++c bx ax ()0≠a 有两个根21,x x .(1)方程两根的符号由“a b x x -=+21”,“acx x 21=”确定:①两根同号时, .②两根正号时, 且 . ③两根同负时, 且 . ④两根异号时, .(2)当两根异号时,即 ,利用abx x -=+21判断绝对值 较大的根是正还是负或者是零.①021>+x x 时, 根的绝对值较大; ②021<+x x 时, 根的绝对值较大;③021=+x x 时,两根的 相等,即两根互为 . 【典型例题】例1.下列方程中,两根的和与两根的积各是多少?(1)x 2-2x +1=0;(2)x 2-9x +10=0;(3)2x 2-9x +5=0;例2.判定下列各方程后面的两个数是不是它的两个根例3.已知方程5x 2+kx-6=0的根是2,求它的另一根及k 的值.例5.设x 1,x 2是方程2x 2+4x-3=0的两个根,利用根与系数的关系,求下列各式的值:(1)(x 1+1)(x 2+1) (2)x 12x 2+x 1x 22 (3)(x 1-x 2)2;例6.m 为何值时:(1)方程01342=++-m x x 有两个不相等的正数根? (2)方程()0234122=-+++m mx x m 有一正根、一负根?(3)方程()02152=-+-+m x m x 的两根是相反数?例7.(1)以和为根的一元二次方程 。

韦达定理详细讲解初中

韦达定理详细讲解初中

韦达定理详细讲解初中1. 韦达定理的基本概念嘿,大家好!今天咱们聊聊一个有趣的数学小知识,那就是韦达定理。

你可能会问,韦达是谁呀?其实,他是个很牛的数学家,专门研究方程的。

韦达定理主要是讲关于二次方程的根和系数之间的关系。

简单来说,如果你有一个形如 (ax^2 + bx + c = 0) 的方程,韦达定理告诉我们根的和和根的积是怎么回事。

听起来有点复杂,但别担心,咱们一步一步来,保证你听得明白!1.1. 根的和与根的积首先,咱们来看看根的和。

设这个方程的两个根是 (x_1) 和 (x_2),那么根据韦达定理,它们的和就是 (frac{b{a)。

哦,别以为这就完了!根的积也很重要,两个根的积是(frac{c{a)。

这就像你找朋友聚会,知道总共有多少人(和)和几对情侣(积),就能推算出不少事情来。

1.2. 实际例子来个实际例子,让你更容易理解。

假设我们有个方程 (2x^2 4x + 2 = 0)。

这里 (a = 2),(b = 4),(c = 2)。

根据韦达定理,根的和是 (frac{4{2 = 2),根的积是 (frac{2{2 = 1)。

哇,这样一算,感觉根的关系就像你和你最好的朋友一样,彼此心知肚明呢!2. 韦达定理的应用说到这儿,可能有的小伙伴会想:“这理论有啥用呢?”别急,让我给你讲讲韦达定理在实际生活中的妙用。

其实,这个定理在解决各种实际问题时简直是个好帮手!比如说,你想找出一个水池的水位变化,或者解决一些最优化问题,韦达定理都能派上用场,帮助你理清思路。

2.1. 在几何中的应用不仅如此,韦达定理在几何学里也大显身手哦!想象一下,一个三角形的顶点坐标,你可以用韦达定理来帮助你计算出某些重要的点,简直就是数学界的瑞士军刀,功能强大到不行。

2.2. 数学竞赛中的好帮手另外,韦达定理在数学竞赛中也是一大法宝。

许多题目都能通过它轻松解出,比如求解二次方程的根,甚至能帮助你推导出一些新的数学性质。

初中数学竞赛:韦达定理(附练习题及答案)

初中数学竞赛:韦达定理(附练习题及答案)

初中数学竞赛:韦达定理一元二次方程的根与系数的关系,通常也称为韦达定理,这是因为该定理是由16世纪法国最杰出的数学家韦达发现的。

韦达定理简单的形式中包含了丰富的数学内容,应用广泛,主要体现在:运用韦达定理,求方程中参数的值;运用韦达定理,求代数式的值;利用韦达定理并结合根的判别式,讨论根的符号特征;利用韦达定理逆定理,构造一元二次方程辅助解题等。

韦达定理具有对称性,设而不求、整体代入是利用韦达定理解题的基本思路。

韦达定理,充满活力,它与代数、几何中许多知识可有机结合,生成丰富多彩的数学问题,而解这类问题常用到对称分析、构造等数学思想方法。

【例题求解】【例1】 已知α、β是方程012=--x x 的两个实数根,则代数式)2(22-+βαα的值为 。

思路点拨:所求代数式为α、β的非对称式,通过根的定义、一元二次方程的变形转化为(例【例2】如果a 、b 都是质数,且0132=+-m a a ,0132=+-m b b ,那么ba ab +的值为( ) A 、22123 B 、22125或2 C 、22125 D 、22123或2思路点拨:可将两个等式相减,得到a 、b 的关系,由于两个等式结构相同,可视a 、b 为方程0132=+-m x x 的两实根,这样就为根与系数关系的应用创造了条件。

注:应用韦达定理的代数式的值,一般是关于1x 、2x 的对称式,这类问题可通过变形用1x +2x 、1x 2x 表示求解,而非对称式的求值常用到以下技巧:(1)恰当组合;(2)根据根的定义降次;(3)构造对称式。

【例3】 已知关于x 的方程:04)2(22=---m x m x (1)求证:无论m 取什么实数值,这个方程总有两个相异实根。

(2)若这个方程的两个实根1x 、2x 满足212+=x x ,求m 的值及相应的1x 、2x 。

思路点拨:对于(2),先判定1x 、2x 的符号特征,并从分类讨论入手。

【例4】 设1x 、2x 是方程02324222=-++-m m mx x 的两个实数根,当m 为何值时,2221x x +有最小值?并求出这个最小值。

初中数学竞赛第三讲充满活力的韦达定理(含答案)

初中数学竞赛第三讲充满活力的韦达定理(含答案)

第三讲 充满活力的韦达定理一元二次方程的根与系数的关系,通常也称为韦达定理,这是因为该定理是由16世纪法国最杰出的数学家韦达发现的.韦达定理简单的形式中包含了丰富的数学内容,应用广泛,主要体现在:运用韦达定理,求方程中参数的值;运用韦达定理,求代数式的值;利用韦达定理并结合根的判别式,讨论根的符号特征;利用韦达定理逆定理,构造一元二次方程辅助解题等.韦达定理具有对称性,设而不求、整体代入是利用韦达定理解题的基本思路.韦达定理,充满活力,它与代数、几何中许多知识可有机结合,生成丰富多彩的数学问题,而解这类问题常用到对称分析、构造等数学思想方法.【例题求解】【例1】 已知α、β是方程012=--x x 的两个实数根,则代数式)2(22-+βαα的值为 .思路点拨 所求代数式为α、β的非对称式,通过根的定义、一元二次方程的变形转化为(例【例2】如果a 、b 都是质数,且0132=+-m a a ,0132=+-m b b ,那么ba ab +的值为( ) A .22123 B .22125或2 C .22125 D .22123或2 思路点拨 可将两个等式相减,得到a 、b 的关系,由于两个等式结构相同,可视a 、b 为方程0132=+-m x x 的两实根,这样就为根与系数关系的应用创造了条件.注:应用韦达定理的代数式的值,一般是关于1x 、2x 的对称式,这类问题可通过变形用1x +2x 、1x 2x 表示求解,而非对称式的求值常用到以下技巧:(1)恰当组合;(2)根据根的定义降次;(3)构造对称式.【例3】 已知关于x 的方程:04)2(22=---m x m x (1)求证:无论m 取什么实数值,这个方程总有两个相异实根. (2)若这个方程的两个实根1x 、2x 满足212+=x x ,求m 的值及相应的1x 、2x . 思路点拨 对于(2),先判定1x 、2x 的符号特征,并从分类讨论入手.【例4】 设1x 、2x 是方程02324222=-++-m m mx x 的两个实数根,当m 为何值时,2221x x +有最小值?并求出这个最小值.思路点拨 利用根与系数关系把待求式用m 的代数式表示,再从配方法入手,应注意本例是在一定约束条件下(△≥0)进行的.注:应用韦达定理的前提条件是一元二次方程有两个实数根,即应用韦达定理解题时,须满足判别式△≥0这一条件,转化是一种重要的数学思想方法,但要注意转化前后问题的等价性.【例5】 已知:四边形ABCD 中,AB ∥CD ,且AB 、CD 的长是关于x 的方程047)21(222=+-+-m mx x 的两个根. (1)当m =2和m>2时,四边形ABCD 分别是哪种四边形?并说明理由.(2)若M 、N 分别是AD 、BC 的中点,线段MN 分别交AC 、BD 于点P ,Q ,PQ =1,且AB<CD ,求AB 、CD 的长.思路点拨 对于(2),易建立含AC 、BD 及m 的关系式,要求出m 值,还需运用与中点相关知识找寻CD 、AB 的另一隐含关系式.注:在处理以线段的长为根的一元二次方程问题时,往往通过韦达定理、几何性质将几何问题从“形”向“数”(方程)转化,既要注意通过根的判别式的检验,又要考虑几何量的非负性.学历训练A 组1.(1)已知1x 和2x 为一元二次方程013222=-+-m x x 的两个实根,并1x 和2x 满足不等式142121<-+x x x x ,则实数m 取值范围是 . (2)已知关于x 的一元二次方程07)1(82=-+++m x m x 有两个负数根,那么实数m 的取值范围是 .2.已知α、β是方程的两个实数根,则代数式2223βαββαα+++的值为 .3.CD 是Rt △ABC 斜边上的高线,AD 、BD 是方程0462=+-x x 的两根,则△ABC 的面积是 .4.设1x 、2x 是关于x 的方程02=++q px x 的两根,1x +1、2x +1是关于x 的方程02=++p qx x 的两根,则p 、q 的值分别等于( )A .1,-3B .1,3C .-1,-3D .-1,35.在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,a 、b 是关于x 的方程0772=++-c x x 的两根,那么AB 边上的中线长是( )A .23B .25 C .5 D .2 6.方程019972=++px x 恰有两个正整数根1x 、2x ,则)1)(1(21++x x p 的值是( ) A .1 B .-l C .21- D .21 7.若关于x 的一元二次方程的两个实数根满足关系式:)1)(1()1()1(212211++=+++x x x x x x ,判断4)(2≤+b a 是否正确?8.已知关于x 的方程01)32(22=++--k x k x .(1) 当k 是为何值时,此方程有实数根;(2)若此方程的两个实数根1x 、2x 满足:312=+x x ,求k 的值.B 组9.已知方程02=++q px x 的两根均为正整数,且28=+q p ,那么这个方程两根为 .10.已知α、β是方程012=--x x 的两个根,则βα34+的值为 .11.△ABC 的一边长为5,另两边长恰为方程01222=+-m x x 的两根,则m 的取值范围是 .12.两个质数a 、b 恰好是整系数方程的两个根,则b a a b +的值是( ) A .9413 B .1949413 C .999413 D .979413 13.设方程有一个正根1x ,一个负根2x ,则以1x 、2x 为根的一元二次方程为( )A .0232=---m x xB .0232=--+m x xC .02412=---x m xD .02412=+--x m x14.如果方程0)2)(1(2=+--m x x x 的三根可以作为一个三角形的三边之长,那么实数m 的取值范围是( )A .0≤m ≤1B .m ≥43C .143≤<m D .43≤m ≤115.如图,在矩形ABCD 中,对角线AC 的长为10,且AB 、BC(AB>BC)的长是关于x 的方程的两个根.(1)求rn 的值;(2)若E 是AB 上的一点,CF ⊥DE 于F ,求BE 为何值时,△CEF 的面积是△CED 的面积的31,请说明理由.16.设m 是不小于1-的实数,使得关于x 的方程工033)2(222=+-+-+m m x m x 有两个不相等的实数根1x 、2x .(1) 若62221=+x x ,求m 的值.(2)求22212111x mx x mx -+-的最大值.17.如图,已知在△ABC 中,∠ACB=90°,过C 作CD ⊥AB 于D ,且AD =m ,BD=n ,AC 2:BC 2=2:1;又关于x 的方程012)1(24122=-+--m x n x 两实数根的差的平方小于192,求整数m 、n 的值.18.设a 、b 、c 为三个不同的实数,使得方程和012=++ax x 和02=++c bx x 有一个相同的实数根,并且使方程02=++a x x 和02=++b cx x 也有一个相同的实数根,试求c b a ++的值.参考答案。

数学培优竞赛新方法(九年级)-第3讲-充满活力的韦达定理

数学培优竞赛新方法(九年级)-第3讲-充满活力的韦达定理

A.不大于 1
B.大于 1
C.小于 1
D.不小于 1
(2011 年《数学周报杯》全国初中数学竞赛题)
7.若 ab 1 ,且有 5a 2 2001a 9 0及9b2 2001b 5 0,则 a 的值为( ) b
9
A.
5
5
B.
9
C. 2001 5
D . 2001 9
(全国初中数学联赛题)
1
九年级数学培优竞赛辅导讲座
[充满活力的韦达定理] 学历训练
1.已知方程 x 2 px q 0 的两根均为正整数,且 p q 28 ,那么这个方程两根为

(“祖冲之杯”邀请赛)
2.已知整数 p,q 满足 p q 2010, 且关于 x 的一元二次方程 67x 2 px q 0 的两个根均为正整数,
值范围是( )
A. 0 m 1
B. m 3 4
(全国初中数学联赛题)
C. 3 m 1 D. 3 m 1
4
4
思路点拨 设方程的根分别为 1、 x1, x2 ,由三角形三边关系定理、韦达定理建立 m 的不等式组。
例 3.设 x1 、 x2 是方程 2x 2 4mx 2m 2 3m 2 0 的两个实数根,当 m 为何值时, x12 x2 2 有最小值?
九年级数学培优竞赛辅导讲座
第 3 讲 充满活力的韦达定理
知识纵横
一元二次方程的根与系数的关系,通常也称 为韦达定理,这是因为该定理是由 16 世纪法国最杰出 的数学家韦达发现的.
韦达定理简单的形式中包含了丰富的数学内容,应用广泛,主要体现在: 运用韦达定理,求方程中参数的值; 运用韦达定理,求代数式的值; 利用韦达定理并结合根的判别式,讨论根的符号特征 ; 利用韦达定理逆定理,构造一元二次方程辅助解题等. 韦达定理具有对称性,设而不求、整体代入是利用韦达定理解题的基本思路. 韦达定理,充满活力,它与代数、几何中许多知识可有机结合,生成丰富多彩的数学问题,而解 这类问题常用到对称分析、构造等数学思想方法.

韦达定理含答案-

韦达定理含答案-

第三讲 充满活力的韦达定理一元二次方程的根与系数的关系,通常也称为韦达定理,这是因为该定理是由16世纪法国最杰出的数学家韦达发现的.韦达定理简单的形式中包含了丰富的数学内容,应用广泛,主要体现在: 运用韦达定理,求方程中参数的值;运用韦达定理,求代数式的值;利用韦达定理并结合根的判别式,讨论根的符号特征;利用韦达定理逆定理,构造一元二次方程辅助解题等.韦达定理具有对称性,设而不求、整体代入是利用韦达定理解题的基本思路.韦达定理,充满活力,它与代数、几何中许多知识可有机结合,生成丰富多彩的数学问题,而解这类问题常用到对称分析、构造等数学思想方法.【例题求解】【例1】 已知α、β是方程012=--x x 的两个实数根,则代数式)2(22-+βαα的值为 .思路点拨 所求代数式为α、β的非对称式,通过根的定义、一元二次方程的变形转化为(例【例2】如果a 、b 都是质数,且0132=+-m a a ,0132=+-m b b ,那么ba ab +的值为( ) A .22123 B .22125或2 C .22125 D .22123或2 思路点拨 可将两个等式相减,得到a 、b 的关系,由于两个等式结构相同,可视a 、b 为方程0132=+-m x x 的两实根,这样就为根与系数关系的应用创造了条件. 注:应用韦达定理的代数式的值,一般是关于1x 、2x 的对称式,这类问题可通过变形用1x +2x 、1x 2x 表示求解,而非对称式的求值常用到以下技巧:(1)恰当组合;(2)根据根的定义降次;(3)构造对称式.【例3】 已知关于x 的方程:04)2(22=---m x m x (1)求证:无论m 取什么实数值,这个方程总有两个相异实根. (2)若这个方程的两个实根1x 、2x 满足212+=x x ,求m 的值及相应的1x 、2x . 思路点拨 对于(2),先判定1x 、2x 的符号特征,并从分类讨论入手.【例4】 设1x 、2x 是方程02324222=-++-m m mx x 的两个实数根,当m 为何值时,2221x x + 有最小值?并求出这个最小值.思路点拨 利用根与系数关系把待求式用m 的代数式表示,再从配方法入手,应注意本例是在一定约束条件下(△≥0)进行的.注:应用韦达定理的前提条件是一元二次方程有两个实数根,即应用韦达定理解题时,须满足判别式△≥0这一条件,转化是一种重要的数学思想方法,但要注意转化前后问题的等价性.【例5】 已知:四边形ABCD 中,AB ∥CD ,且AB 、CD 的长是关于x 的方程047)21(222=+-+-m mx x 的两个根. (1)当m =2和m>2时,四边形ABCD 分别是哪种四边形?并说明理由.(2)若M 、N 分别是AD 、BC 的中点,线段MN 分别交AC 、BD 于点P ,Q ,PQ =1,且AB<CD ,求AB 、CD 的长.思路点拨 对于(2),易建立含AC 、BD 及m 的关系式,要求出m 值,还需运用与中点相关知识找寻CD 、AB 的另一隐含关系式.注:在处理以线段的长为根的一元二次方程问题时,往往通过韦达定理、几何性质将几何问题从“形”向“数”(方程)转化,既要注意通过根的判别式的检验,又要考虑几何量的非负性.学历训练A 组1.(1)已知1x 和2x 为一元二次方程013222=-+-m x x 的两个实根,并1x 和2x 满足不等式142121<-+x x x x ,则实数m 取值范围是 . (2)已知关于x 的一元二次方程07)1(82=-+++m x m x 有两个负数根,那么实数m 的取值范围是 .2.已知α、β是方程的两个实数根,则代数式2223βαββαα+++的值为 .3.CD 是Rt △ABC 斜边上的高线,AD 、BD 是方程0462=+-x x 的两根,则△ABC 的面积是 .4.设1x 、2x 是关于x 的方程02=++q px x 的两根,1x +1、2x +1是关于x 的方程02=++p qx x 的两根,则p 、q 的值分别等于( )A .1,-3B .1,3C .-1,-3D .-1,35.在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,a 、b 是关于x 的方程0772=++-c x x 的两根,那么AB 边上的中线长是( )A .23B .25 C .5 D .2 6.方程019972=++px x 恰有两个正整数根1x 、2x ,则)1)(1(21++x x p 的值是( ) A .1 B .-l C .21- D .21 7.若关于x 的一元二次方程的两个实数根满足关系式:)1)(1()1()1(212211++=+++x x x x x x ,判断4)(2≤+b a 是否正确?8.已知关于x 的方程01)32(22=++--k x k x .(1) 当k 是为何值时,此方程有实数根;(2)若此方程的两个实数根1x 、2x 满足:312=+x x ,求k 的值.B 组9.已知方程02=++q px x 的两根均为正整数,且28=+q p ,那么这个方程两根为 .10.已知α、β是方程012=--x x 的两个根,则βα34+的值为 .11.△ABC 的一边长为5,另两边长恰为方程01222=+-m x x 的两根,则m 的取值范围是 .12.两个质数a 、b 恰好是整系数方程的两个根,则b a a b +的值是( ) A .9413 B .1949413 C .999413 D .979413 13.设方程有一个正根1x ,一个负根2x ,则以1x 、2x 为根的一元二次方程为( )A .0232=---m x xB .0232=--+m x xC .02412=---x m xD .02412=+--x m x14.如果方程0)2)(1(2=+--m x x x 的三根可以作为一个三角形的三边之长,那么实数m 的取值范围是( )A .0≤m ≤1B .m ≥43C .143≤<mD .43≤m ≤115.如图,在矩形ABCD 中,对角线AC 的长为10,且AB 、BC(AB>BC)的长是关于x 的方程的两个根.(1)求rn 的值;(2)若E 是AB 上的一点,CF ⊥DE 于F ,求BE 为何值时,△CEF 的面积是△CED 的面积的31,请说明理由.16.设m 是不小于1-的实数,使得关于x 的方程工033)2(222=+-+-+m m x m x 有两个不相等的实数根1x 、2x .(1) 若62221=+x x ,求m 的值.(2)求22212111x mx x mx -+-的最大值.17.如图,已知在△ABC 中,∠ACB=90°,过C 作CD ⊥AB 于D ,且AD =m ,BD=n ,AC 2:BC 2=2:1;又关于x 的方程012)1(24122=-+--m x n x 两实数根的差的平方小于192,求整数m 、n 的值.18.设a 、b 、c 为三个不同的实数,使得方程和012=++ax x 和02=++c bx x 有一个相同的实数根,并且使方程02=++a x x 和02=++b cx x 也有一个相同的实数根,试求c b a ++的值.参考答案。

九年级数学竞赛资料专题(三)——韦达定理的应用上

九年级数学竞赛资料专题(三)——韦达定理的应用上

韦达定理的应用一、典型例题例1:已知关于x 的方程2x -(m +1)x +1-m=0的一个根为4,求另一个根。

解:设另一个根为x 1,则相加,得531-=x例2:已知方程x -5x +8=0的两根为x 1,x 2,求作一个新的一元二次方程,使它的两根分别为和.解:∵ 又 ∴代入得, ∴新方程为例3:判断是不是方程9x -10x -2=0的一个实数根? 解:∵二次实数方程实根共轭,∴若是,则另一根为 ∴,。

∴以为根的一元二次方程即为.例4:解方程组解:设∴.∴A=5. ∴x-y=5 又xy=-6.∴解方程组∴可解得例5:已知Rt ABC中,两直角边长为方程x-(2m+7)x+4m(m-2)=0的两根,且斜边长为13,求S的值解:不妨设斜边为C=13,两条直角边为a,b,则2。

又a,b为方程两根。

∴ab=4m(m-2)∴S但a,b为实数且∴∴∴m=5或6 当m=6时,∴m=5 ∴S.例6:M 为何值时,方程8x -(m -1)x +m -7=0的两根① 均为正数 ②均为负数 ③一个正数,一个负数 ④一根为零 ⑤互为倒数解:①∵ ⎪⎩⎪⎨⎧+≥∆02121>>x x xx ∴m>7 ②∵∴不存在这样的情况。

③∴m<7 ④∴m=7 ⑤∴m=15.但使∴不存在这种情况【模拟试题】(答题时间:30分钟)1. 设n为方程x+mx+n=0(n≠0)的一个根,则m+n等于2. 已知方程x+px-q=0的一个根为-2+,可求得p= ,q=3. 若方程x+mx+4=0的两根之差的平方为48,则m的值为()A.±8 B.8 C.-8 D.±44. 已知两个数的和比a少5,这两个数的积比a多3,则a为何值时,这两个数相等?5. 已知方程(a+3)x+1=ax有负数根,求a的取值范围。

6. 已知方程组的两组解分别为,,求代数式a1b2+a2b1的值。

7. ABC中,AB=AC, A,B,C的对边分别为a,b,c,已知a=3,b和c是关于x 的方程x+mx+2-m=0的两个实数根,求ABC的周长。

【九年级】九年级数学竞赛充满活力的韦达定理知识讲座

【九年级】九年级数学竞赛充满活力的韦达定理知识讲座

【九年级】九年级数学竞赛充满活力的韦达定理知识讲座一元二次方程的根与系数的关系,通常也称为韦达定理,这是因为该定理是由16世纪法国最杰出的数学家韦达发现的.魏达定理的简单形式包含着丰富的数学内容,应用广泛,主要体现在:运用韦达定理,求方程中参数的值;利用魏达定理求代数公式的值;利用韦达定理并结合根的判别式,讨论根的符号特征;利用魏达定理和逆定理,我们构造了一个单变量的二次方程来辅助求解问题韦达定理具有对称性,设而不求、整体代入是利用韦达定理解题的基本思路.吠陀的定理充满活力。

它可以与代数和几何中的许多知识有机结合,生成丰富多彩的数学问题。

解决这类问题常用于数学思维方法,如对称分析和构造【例题求解】[例1]如果已知这是方程的两个实根,则代数公式的值为思路点拨所求代数式为、的非对称式,通过根的定义、一元二次方程的变形转化为(例[例2]如果和是素数,而,,是()a.b.或2c.d.或2这两个方程可以相减得到和之间的关系。

由于这两个方程具有相同的结构,它们可以被视为方程的两个实根,这为应用根和系数之间的关系创造了条件注:应用韦达定理的代数式的值,一般是关于、的对称式,这类问题可通过变形用+、表示求解,而非对称式的求值常用到以下技巧:(1)适当组合;(2)根据根的定义降次;(3)构造一个对称公式【例3】已知关于的方程:(1)证明:不管m取什么实值,方程总是有两个不同的实根(2)若这个方程的两个实根、满足,求m的值及相应的、.对于(2),首先确定和的符号特征,并从分类讨论开始【例4】设、是方程的两个实数根,当m为何值时,有最小值?并求出这个最小值.利用根和系数之间的关系,将要求解的公式表示为M的代数公式,然后从匹配方法开始,需要注意的是,该示例是在某些约束条件下执行的(△ ≥ 0)注:应用韦达定理的前提条件是一元二次方程有两个实数根,即应用韦达定理解题时,须满足判别式△≥0这一条件,转化是一种重要的数学思想方法,但要注意转化前后问题的等价性.【例5】已知在四边形ABCD中,ab‖CD,以及ab和CD的长度是关于(1)当m=2和m>2时,四边形abcd分别是哪种四边形?并说明理由.(2)如果M和N分别是AD和BC的中点,则线段Mn在点P、Q、PQ=1和ab处与AC和BD相交思路点拨对于(2),易建立含ac、bd及m的关系式,要求出m值,还需运用与中点相关知识找寻cd、ab的另一隐含关系式.注:在处理以线段长度为根的一元二次方程问题时,几何问题往往通过魏达定理和几何性质从“形”转化为“数”(方程)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学竞赛讲座:充满活力的韦达定理
一元二次方程的根与系数的关系,通常也称为韦达定理,这是因为该定理是由16世纪法国最杰出的数学家韦达发现的.
韦达定理简单的形式中包含了丰富的数学内容,应用广泛,主要体现在: 运用韦达定理,求方程中参数的值; 运用韦达定理,求代数式的值;
利用韦达定理并结合根的判别式,讨论根的符号特征; 利用韦达定理逆定理,构造一元二次方程辅助解题等.
韦达定理具有对称性,设而不求、整体代入是利用韦达定理解题的基本思路.
韦达定理,充满活力,它与代数、几何中许多知识可有机结合,生成丰富多彩的数学问题,而解这类问题常用到对称分析、构造等数学思想方法. 【例题求解】
【例1】 已知α、β是方程012=--x x 的两个实数根,则代数式)2(22-+βαα的值为 .
思路点拨 所求代数式为α、β的非对称式,通过根的定义、一元二次方程的变形转化为(例
【例2】如果a 、b 都是质数,且0132=+-m a a ,0132=+-m b b ,那么b
a a b
+的值为( ) A .
22123 B .22
125
或2 C .
22125 D .22
123
或2
思路点拨 可将两个等式相减,得到a 、b 的关系,由于两个等式结构相同,可视a 、b 为方程
0132=+-m x x 的两实根,这样就为根与系数关系的应用创造了条件.
注:应用韦达定理的代数式的值,一般是关于1x 、2x 的对称式,这类问题可通过变形用1x +2x 、
1x 2x 表示求解,而非对称式的求值常用到以下技巧:
(1)恰当组合; (2)根据根的定义降次; (3)构造对称式.
【例3】 已知关于x 的方程:04
)2(2
2
=---m x m x
(1)求证:无论m 取什么实数值,这个方程总有两个相异实根.
(2)若这个方程的两个实根1x 、2x 满足212+=x x ,求m 的值及相应的1x 、2x . 思路点拨 对于(2),先判定1x 、2x 的符号特征,并从分类讨论入手.
【例4】 设1x 、2x 是方程02324222=-++-m m mx x 的两个实数根,当m 为何值时,2221x x +有最小值?并求出这个最小值.
思路点拨 利用根与系数关系把待求式用m 的代数式表示,再从配方法入手,应注意本例是在一定约束条件下(△≥0)进行的.
注:应用韦达定理的前提条件是一元二次方程有两个实数根,即应用韦达定理解题时,须满足判别式△≥0这一条件,转化是一种重要的数学思想方法,但要注意转化前后问题的等价性. 【例5】 已知:四边形ABCD 中,AB ∥CD,且AB 、CD 的长是关于x 的方程0
4
7)2
1
(222=+-+-m mx x
的两个根.
(1)当m =2和m>2时,四边形ABCD 分别是哪种四边形?并说明理由.
(2)若M 、N 分别是AD 、BC 的中点,线段MN 分别交AC 、BD 于点P,Q,PQ =1,且AB<CD,求AB 、CD 的长. (2003年哈尔滨市中考题)
思路点拨 对于(2),易建立含AC 、BD 及m 的关系式,要求出m 值,还需运用与中点相关知识找寻C D 、AB 的另一隐含关系式.
注:在处理以线段的长为根的一元二次方程问题时,往往通过韦达定理、几何性质将几何问题从“形”向“数”(方程)转化,既要注意通过根的判别式的检验,又要考虑几何量的非负性.
学历训练
1.(1)已知1x 和2x 为一元二次方程013222=-+-m x x 的两个实根,并1x 和2x 满足不等式
14
212
1<-+x x x x ,则实数m 取值范围是 .
(2)已知关于x 的一元二次方程07)1(82=-+++m x m x 有两个负数根,那么实数m 的取值范围是 .
2.已知α、β是方程的两个实数根,则代数式2223βαββαα+++的值为 .
3.CD 是Rt △ABC 斜边上的高线,AD 、BD 是方程0462=+-x x 的两根,则△ABC 的面积是 . 4.设1x 、2x 是关于x 的方程02=++q px x 的两根,1x +1、2x +1是关于x 的方程02=++p qx x 的两根,则p 、q 的值分别等于( )
A .1,-3
B .1,3
C .-1,-3
D .-1,3
5.在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,a 、b 是关于x
的方程0772=++-c x x 的两根,那么AB 边上的中线长是( ) A .2
3 B .2
5 C .5 D .2
6.方程019972=++px x 恰有两个正整数根1x 、2x ,则)
1)(1(21++x x p
的值是( )
A .1
B .-l
C .2
1- D .2
1
7.若关于x 的一元二次方程的两个实数根满足关系式:)1)(1()1()1(212211++=+++x x x x x x ,判断
4)(2≤+b a 是否正确?
8.已知关于x 的方程01)32(22=++--k x k x . (1)当k 是为何值时,此方程有实数根;
(2)若此方程的两个实数根1x 、2x 满足:312=+x x ,求k 的值.
9.已知方程02=++q px x 的两根均为正整数,且28=+q p ,那么这个方程两根为 .
10.已知α、β是方程012=--x x 的两个根,则βα34+的值为 .
11.△ABC 的一边长为5,另两边长恰为方程01222=+-m x x 的两根,则m 的取值范围是 .
12.两个质数a 、b 恰好是整系数方程的两个根,则b
a a
b
+的值是( )
A .9413
B .
1949413 C .999413 D .97
9413
13.设方程有一个正根1x ,一个负根2x ,则以1x 、2x 为根的一元二次方程为( )
A .0232=---m x x
B .0232=--+m x x
C .02412=---x m x
D .02412=+--x m x
14.如果方程0)2)(1(2=+--m x x x 的三根可以作为一个三角形的三边之长,那么实数m 的取值范围是( )
A .0≤m ≤1
B .m ≥4
3 C .14
3≤<m D .4
3≤m ≤1 15.如图,在矩形ABCD 中,对角线AC 的长为10,且AB 、BC(AB>BC)的长是关于x 的方程的两个根.
(1)求
rn 的值;
(2)若E 是AB 上的一点,CF ⊥DE 于F,求BE 为何值时,△CEF 的面积是△CED 的面积的3
1,请说明理由.
16.设m 是不小于1-的实数,使得关于x 的方程工033)2(222=+-+-+m m x m x 有两个不相等的实数根1x 、2x .
(1)若62221=+x x ,求m 的值.
(2)求
2
2
212111x mx x mx -+-的最大值.
17.如图,已知在△ABC 中,∠ACB=90°,过C 作CD ⊥AB
于D,且
AD =m,BD=n,AC 2:BC 2=2:1;又关于x 的方程012)1(24
1
22=-+--m x n x 两实数根的差的平方小于192,求整数m 、n 的值.
18.设a 、b 、c 为三个不同的实数,使得方程和012=++ax x 和02=++c bx x 有一个相同的实数根,
并且使方程02=++a x x 和02=++b cx x 也有一个相同的实数根,试求c b a ++的值.
参考答案。

相关文档
最新文档