从分数到分式(教案)

合集下载

人教版八年级上册15.1.1 从分数到分式 教案

人教版八年级上册15.1.1 从分数到分式 教案

从分数到分式【教学目标】:1、了解分式的概念,理解并掌握分式的有意义、无意义、值为零的条件。

2、类比用数字表示实际问题的数量关系到用字母表示实际问题的数量关系,加强学生用类比转化的思想方法研究解决问题。

3、体会从特殊到一般的数学思想方法,培养学生的推理能力,构建代数模型。

【教学重难点】重点:了解分式的概念,理解分式有意义的条件及值为零的条件.难点:能熟练的求出分式有意义的条件及值为零的条件.【教学过程】一、导入新课、明确目标已知篮球场的面积为450 2m ;长为28m,则宽为____m ;若长方形的面积为S ,长为z,则宽为___ cm ;已知比赛三天共打16场比赛,因赛制不同每队打了m 场比赛,则共有____队;; 教练开车从家到三中,行驶路程为akm ,平均时间为b h ,则他的平均速度为___h km /;若遇大雾天气,在路程不变的情况下,行驶时间增加了m 小时,则他的平均速度为___h km /.二、自主学习、精讲点拨 思考:28450,z S ,m 16,b a ,mb a + 问题1:你能判断出哪些是分数哪些不是分数吗?问题2:这些式子与分数相比有什么相同点?问题3:这些式子与分数相比有什么不同点?分式定义:一般地,如果A,B 表示两个整式,并且B 中含有字母, 那么式子B A 叫做分式. 分式BA 中,A 叫做分子,B 叫做分母. 练习:判断下列式子是否为分式?πa x n m n m x x x x ab x x 2,1,,1212,352,534,31223-++-++-+, 重点:1.判断分式时关键要看分母中是否含有字母.2.判断分式时是从形式上看,即不能约分.3.π表示的是一个具体的数,它不是字母.拼一拼:你能任选两个式子,分别拖到分子 、分母的位置,并使它是分式吗? x ,x -2,π,4,0,2+x ,42-x在分数中,0不能做除数,那在分式中呢?分式的分母能不能为0?请大家阅读书128页思考中的问题及第二自然段。

1.1 从分数到分式 一等奖创新教案_2

1.1 从分数到分式 一等奖创新教案_2

1.1 从分数到分式一等奖创新教案第十五章分式15.1 分式15.1.1 从分数到分式一、教学目标【知识与技能】1.了解分式的概念,会判断一个代数式是否是分式;2.能用分式表示简单问题中数量之间的关系,能解释简单分式的实际背景或几何意义.【过程与方法】能通过回忆分数的意义,类比地探索分式的意义及分式的值,渗透数学中的类比,分类等数学思想.【情感、态度与价值观】通过探索和合作交流,培养创新意识和合作精神.二、课型新授课三、课时1课时四、教学重难点【教学重点】分式的概念,掌握分式有意义的条件.【教学难点】分式值为零的条件、分类意识的渗透.五、课前准备教师:课件、直尺、长方形图片等。

学生:直尺、练习本、铅笔、圆珠笔。

六、教学过程(一)导入新课8÷9可以写成分数,那么y÷x可以写成这样的形式吗?假如你认为可以,那么这个式子是我们以前学习的整式吗?那它是什么式子呢?通过今天的学习,我们会进一步认识它.(出示课件2)(二)探索新知1.创设情境,探究分式的概念教师问1:长方形的面积为10cm2,长为7cm,宽应为________cm;长方形的面积为S,长为a,宽应为________.(出示课件4)学生回答:;教师问2:把体积为200cm3的水倒入底面积为33cm2的圆柱形容器中,水面高度为________cm;把体积为V的水倒入底面积为S 的圆柱形容器中,水面高度为________.(出示课件5)学生回答:;教师问3:春天来了,万物复苏,一年一度的春游离我们近了.现在就让我们进行一次模拟旅游:(1)我们从学校出发,以5km/h的速度向离学校4km的公园出发,那么经过________小时到达目的地;(2)到了公园后要先买门票,门票价格:成人每人8元,学生每人3元,若我们有m个老师和n个学生,买门票需要________元;(3)公园内有一个大型文物店,内有A、B两种型号的柜台,其中A型规格的柜台有p个,收藏文物m件,平均每个柜台存放了________件文物,另有B型规格的柜台q个,收藏文物n件,本店内平均每个柜台存放了________件文物.学生讨论回答:(1);(2)8m+3n;(3)教师问4:一艘轮船在静水中的最大航速是20千米/时,它沿江以最大船速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用的时间相等.江水的流速是多少(出示课件6)师生共同分析如下:最大船速顺流航行100千米所用时间=以最大航速逆流航行60千米所用的时间如果设江水的流速为v千米/时.学生回答:教师问5:请大家观察式子和,有什么特点?(出示课件7)学生回答:分子和分母中都含有字母.学生问6:请大家观察式子和,有什么特点?学生回答:分母中都含有字母.教师问7:它们与分数有什么相同点和不同点?学生回答:相同点:都具有分数的形式不同点(观察分母):分母中有字母.教师问8:单项式、多项式我们早已熟知,它们都属于整式,剩下的式子我们能给它命名为分式,你能说一下分式的定义吗?学生回答:分母中含有字母的式子叫做分式.教师问9:这两类式子有何区别与联系?师生共同分析后解答如下:联系:分式的分子、分母都是整式,即分式由整式组成;区别:分式的分母中含字母,而整式不具备.总结点拨:分式概念(出示课件8)一般地,如果A、B都表示整式,且B中含有字母,那么称为分式.其中A叫做分式的分子,B为分式的分母.注意:分式是不同于整式的另一类式子,且分母中含有字母是分式的一大特点.类比分数、分式的概念及表达形式:注意:由于字母可以表示不同的数,所以分式比分数更具有一般性.教师问10:你能说一说分数与分式的相同点、不同点吗?(出示课件9)师生共同讨论后解答如下:相同点不同点例1:指出下列代数式中,哪些是整式,哪些是分式?(出示课件10)师生共同解答如下:解:整式有分式有总结点拨:判断一个式子是分式的关键:分母中含有字母.2:师生互动,分式有无意义的探寻,分式值为零的条件教师讲解:同学们都知道,字母能表示数,我相信下面的题目同学们肯定能轻松完成.教师问11:填表求值:x ……-2 -1 0 1 2 …………………………学生回答:x ……-2 -1 0 1 2 …………0 -1 无意义………… 2 无意义0 ……教师问12:这两个分式在什么情况下无意义?学生回答:分母为零时无意义.教师问13:这两个分式在什么情况下值为零?学生回答:分子为零时.教师问14:分式的分母有什么条件限制?(出示课件12)学生回答:当B=0时,分式无意义.当B≠0时,分式有意义教师问15:当=0时分子和分母应满足什么条件?学生回答:当A=0而B≠0时,分式的值为零。

人教版数学八年级数学上册15.1.1从分数到分式优秀教学案例

人教版数学八年级数学上册15.1.1从分数到分式优秀教学案例
(五)作业小结
最后,我会布置一些相关的作业,让学生们能够通过练习来巩固所学的知识。同时,我还会要求学生们在作业中进行小结,反思自己的学习过程,总结学习的经验和教训。
在作业小结环节,我会及时批改学生的作业,给予他们反馈和指导。通过作业小结,让学生们能够进一步提高自己的学习效果,为下一节课的学习做好准备。
四、教学内容与过程
(一)导入新课
本节课的导入,我选择了学生们熟悉的生活实例——分配物品。我会向学生们展示一个场景:有一个袋子里面有10个苹果,需要分给3个人,每个人分得几个苹果?学生们可以通过实际操作来解决这个问题。通过这个实例,学生们能够直观地理解到分数的概念,同时也能够引发他们对分式的思考。
在导入环节,我会引导学生积极参与,鼓励他们提出自己的解决方案。这样不仅能够激发学生的学习兴趣,还能够培养他们的思考能力和问题解决能力。
5.通过课后练习,巩固学生对分式的理解和掌握。
在教学过程中,我注重启发学生思考,引导学生从实际问题中发现和总结分式的规律。同时,我还注重培养学生的团队合作意识,鼓励他们积极参与讨论,提高他们的表达能力和交流能力。
二、教学目标
(一)知识与技能
1.让学生理解分式的概念,掌握分式的基本性质和运算法则;
2.能够运用分式解决实际问题,提高学生的数学应用能力;
人教版数学八年级数学上册15.1.1从分数到分式优秀教学案例
一、案例背景
本案例背景基于人教版数学八年级数学上册15.1.1从分数到分式的教学内容。在教学过程中,我发现学生们对分数的概念已经较为熟悉,但对其背后的意义和分式的应用却理解不深。因此,我设计了一系列的教学活动,旨在帮助学生从分数到分式的理解和掌握,提高他们的数学思维能力和实际应用能力。
3.培养学生独立思考、合作交流的能力,提高他们的数学素养。

15.1.1 从分数到分式 教学设计

15.1.1 从分数到分式  教学设计

15.1.1 从分数到分式教学设计一、教学目标:1.了解分式的概念.2.理解分式有意义的条件及分式值为零、为正、为负的条件.二、教学重、难点:重点:了解分式的概念,确定分式有意义的条件.难点:确定分式有意义的条件,分式的值为零的条件.三、教学过程:复习回顾1.下列两个整数相除如何表示成分数的形式:3÷4= 10÷3= 12÷11= -7÷2=2.在代数式中,整式的除法是否也能类似地表示?试用类似分数的形式表示下列整式的除法:(1) 90÷x 可以用式子( )来表示;60÷(x -6)可以用式子( )来表示.(2) n 公顷麦田共收小麦 m 吨,平均每公顷产量可以用式子 ( )吨来表示. 知识精讲思考:填空:(1)长方形的面积为10cm 2,长为7cm ,则宽为________cm ;长方形的面积为S ,长为a ,宽应为________.(2)把体积为200cm 3的水倒入底面积为33cm 2的圆柱形容器中,则水面高度为________cm ;把体积为V 的水倒入底面积为S 的圆柱形容器中,则水面高度为_________.思考:式子aS ,S V ,n m ,x 90,6060-x ,v +3090,v -3060,有什么共同点?它们与分数有什么相同点和不同点?可以发现,这些式子与分数一样都是BA (即A ÷B )的形式. 分数的分子 A 与分母 B 都是整数,而这些式子中的 A , B 都是整式,并且 B 中都含有字母. 分式:一般地,如果 A ,B 表示两个整式,并且 B 中含有字母,那么式子BA 叫做分式. 分式B A 中,A 叫做分子,B 叫做分母. (1)分式是不同于整式的另一类式子.(2)分母中含有字母是分式的一大特点.(3)分式比分数更具有一般性. 例如,分数32仅表示2÷3的商,而分式yx 既可以表示2÷3,又可以表示(-5)÷2,8÷(-9)等.典例解析例1.下列各式中,哪些是整式?哪些是分式?5x -7,3x 2-1,123+-a b ,7)(p n m +,-5,1222-+-x y xy x ,72,c b +54 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓整式 整式 分式 整式 整式 分式 整式 分式3π是分式吗? 11+a 是分式吗? 【点睛】1.判断时,注意含有π的式子,π是常数. 2.式子中含有多项时,若其中有一项分母含有字母,则该式也为分式,如:11+a思考:我们知道,要使分数有意义,分数中的分母不能为0.要使分式有意义,分式中的分母应满足什么条件?分式的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当 B ≠0时,分式BA 才有意义. 例2.下列分式中的字母满足什么条件时分式有意义? (1) x 32 (2) 1-x x (3) b 351- (4) y x y x -+ 解:(1)要使分式x 32有意义,则分母3x ≠0,即x ≠0; (2)要使分式1-x x 有意义,则分母x -1≠0,即x ≠1; (3)要使分式b 351-有意义,则分母5-3b ≠0,即b ≠35; (4)要使分式yx y x -+有意义,则分母x -y ≠0,即x ≠y .如无特别声明,本章出现的分式都有意义.例3.已知分式1(1)(2)x x x ---有意义,则x 应满足的条件是 ( C ) A.x ≠1 B .x ≠2 C.x ≠1且x ≠2 D.以上结果都不对【点睛】分式有意义的条件是分母不为零.如果分母是几个因式乘积的形式,则每个因式都不为零.【针对练习】下列分式中的字母满足什么条件时分式有意义? (1) a 2(2) 11-+x x (3) 232+m m(4) y x -1 (3) b a ba -+32(4) 122-x 解:(1)当分母a ≠0时,分式a 2有意义;(2)当分母x -1≠0,即x ≠1时,分式11-+x x 有意义;(3)当分母3m +2≠0,即m ≠- 时,分式232+m m有意义;(4)当分母x -y ≠0,即x ≠y 时,分式y x -1有意义;(5)当分母3a -b ≠0,即b ≠3a 时,分式b a ba -+32有意义;(6)当分母x 2-1≠0,即x ≠±1时,分式122-x 有意义.例4.当x 为何值时,分式211x x -+的值为零?解:当分子等于零而分母不等于零时,分式的值为零.则x 2-1=0,∴x =±1,而x +1≠0,∴x ≠-1.∴当x =1时分式211x x -+的值为零.【针对练习】1.当 时,分式22x x -+的值为零.2.若2||323x x x ---的值为零,则x = .三、课堂小结1.本节课你有哪些收获?2.还有没解决的问题吗?【设计意图】培养学生概括的能力。

从分数到分式教案

从分数到分式教案

从分数到分式教案教学目标:1.了解分数的定义。

2.掌握从分数到分式的转换方法。

3.能够在实际问题中运用分数和分式进行计算。

4.培养学生的逻辑思维能力和解决问题的能力。

教学准备:1.教师准备黑板、粉笔、教学PPT等教学工具。

2.学生准备笔记本、作业本等学习工具。

教学步骤:Step 1:引入新知1.教师通过展示几个例子,引导学生回忆分数的定义,如"1/2是什么意思?" "2/3又是什么意思?"2.教师与学生一起总结分数的定义,即一个分数由分子和分母组成,分数的分子表示被分成的份数,分母表示将整体分成的份数。

Step 2:从分数到分式的转换1.教师通过例子向学生介绍从分数到分式的转换方法。

2.教师提示学生观察分数和分式之间的联系,并给出几个例子,如"1/3可以写成什么样的分式?" "3/4又可以写成什么样的分式?"3.教师引导学生发现规律,即将一个分数转换成分式时,将分数的分子作为分式的分子,分数的分母作为分式的分母。

Step 3:练习题1.教师出示多个分数,并要求学生将其转换为分式。

2.学生在纸上写出答案,并与同桌对比检查答案。

3.教师随机点名学生回答问题,并给予肯定或指导。

Step 4:应用实际问题1.教师给学生一些实际问题,要求学生利用分数和分式进行计算。

2.学生尝试解决问题,并将解题过程写在纸上。

3.学生展示自己的答案和解题过程,教师给予评价和指导。

Step 5:巩固与拓展1.教师出示一些复杂一些的转换题目,并要求学生解答。

2.学生在纸上解答题目,教师检查并给予指导。

3.学生与同桌交流答案和解题思路。

Step 6:总结和反思1.教师与学生一起总结本节课的内容,巩固学生对从分数到分式的转换的理解。

2.学生回答教师提出的几个问题,如"为什么需要将分数转换为分式?" "从分数到分式有什么规律?"3.学生针对本节课的内容进行反思,写下自己的收获和困惑。

数学人教版八年级上册15.1.1从分数到分式教案

数学人教版八年级上册15.1.1从分数到分式教案
实践活动和小组讨论环节,学生们表现出较高的热情。他们积极参与讨论,互相交流想法,共同解决问题。这使我意识到,小组合作学习不仅能提高学生的团队协作能力,还能激发他们的思维,促进对知识的深入理解。
然而,我也发现了一些不足之处。在实践活动过程中,部分学生对于如何将实际问题转化为分式模型感到困惑。这说明我在教学中需要更多关注学生的问题解决能力,培养他们从实际问题中提炼数学模型的能力。
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《从分数到分式》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过分母为零的情况?”(如:在平均分配物品时,若物品总数为零,该如何表示每个人得到的数量?)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索分式的奥秘。
本节课将结合实际例题,让学生在实际操作中掌握分式的概念和性质,为后续学习分式的运算打下基础。
二、核心素养目标
1.培养学生的逻辑推理能力:通过从分数到分式的过渡,引导学生理解分式概念的内涵和外延,培养学生的抽象逻辑思维,提高其逻辑推理能力。
2.增强学生的数学运算能力:让学生掌握分式的性质,并运用这些性质简化分式,解决实际问题,提高学生的数学运算能力。
数学人教版八年级上册15.1.1从分数到分式教案
一、教学内容
本节课选自数学人教版八年级上册第15章《分式》中的第1节“从分数到分式”。教学内容主要包括以下两部分:
1.分式的概念:通过回顾分数的定义,引导学生理解分式的概念,即分母不为零的表达式称为分式。列举一些具体实例,让学生观察并总结分式的特点。
2.分式的性质:探讨分式的分子、分母与分式值之间的关系,引入分式的基本性质,如分子分母同乘(除)一个非零数,分式的值不变。结合实际例题,让学生运用这些性质简化分式,并解决相关问题。同时,强调分母不为零的重要性。

从分数到分式教案

从分数到分式教案

从分数到分式教案教案标题:从分数到分式教案目标:1. 理解分数和分式的概念;2. 掌握将分数转化为分式的方法;3. 运用分式解决实际问题。

教学资源:1. 白板、黑板或投影仪;2. 教学课件或PPT;3. 学生练习册或作业本。

教学步骤:引入活动:1. 在黑板或投影仪上展示一些常见的分数,如1/2、3/4等,并请学生回忆并分享自己对分数的理解。

概念解释:2. 通过教学课件或PPT,对分数和分式的概念进行解释。

强调分数是表示部分与整体关系的数,而分式是用分数表示的式子。

示例分析:3. 以一个具体的例子来说明分数和分式的转化过程。

例如,将1/4转化为分式的形式,即1 ÷ 4。

方法讲解:4. 介绍将分数转化为分式的方法。

强调分数的分母可以表示为分式的分母,而分数的分子可以表示为分式的分子。

练习演练:5. 在黑板或投影仪上展示一些分数,要求学生将其转化为分式的形式,并进行练习。

逐步增加难度,让学生逐渐熟练掌握转化方法。

实际应用:6. 提供一些实际问题,要求学生用分式解决。

例如,如果小明每天吃掉1/3个苹果,那么他吃掉几个苹果后会吃完5个苹果?总结回顾:7. 总结分数和分式的概念、转化方法以及实际应用,并与学生一起回顾所学内容。

作业布置:8. 布置相关的作业,要求学生练习将分数转化为分式,并解决一些实际问题。

教学延伸:9. 鼓励学生进一步探索分数和分式的应用领域,如比例、百分比等,并提供相关的资源供学生自主学习。

评估反馈:10. 对学生进行评估,检查他们对分数和分式的理解和应用能力,并提供反馈。

教学拓展:11. 根据学生的学习情况,进行教学拓展,进一步引导学生掌握更复杂的分数和分式问题。

教学注意事项:1. 确保学生对分数的基本概念有一定的理解;2. 鼓励学生积极参与课堂讨论和练习;3. 根据学生的学习进度,适时调整教学内容和难度;4. 提供足够的练习机会,巩固学生的学习成果。

希望这个教案能够对你有所帮助!。

从分数到分式教学设计(共5篇)

从分数到分式教学设计(共5篇)

另一方面,本节课在处理分数与分式的不同时,老师板书到黑板上,引导学生再次发觉“类比”这一思想方法的的好用性,并通过找寻、表述共同点,进一步总结出“分式的意义”。

这样的设计技能培育学生的发散思维,也能训练学生的语言表达实力,更重要的是,学生从中驾驭了对比总结定义的方法。

)练习1:下列各式中哪些是分式?哪些是整式?它们的区分是什么?①1x142a-5xm-n,②,③,④,⑤,⑥,⑦ , 222x33b53x-ym nx22x1c4a2⑧2,⑨ ,⑩ 。

x-2x13(a-b)a分式有:;整式有:。

两类式子的区分是:在学整式时,给出其中字母一个确定值,能够求出整式的值,类比整式,给出其中字母一个确定值,我们也能够求出分式的值,咱们以1为例,请自选一个你喜爱得数,代入分式中x1求值。

由于我们选的数不同,代入到同一个分式中,得到的答案不同,看来分式比分数更具有一般性。

是不是全部的数都能带到分式中来?为什么?接下来咱们再次类比分数有意义的条件再探究分式有意义的条件。

(设计意图:老师在“分式的定义”与“分式有意义的条件”两个环节的过度上特别自然,在“分式比分数更具有一般性”“是不是全部的数都能带到分式中来?为什么?”问题及其学生思维的火花,让“分式有意义的条件”在无意识中总结出来,效果较好。

)二、再探分式有意义的条件,加深理解例1 下列分式中的字母满意什么条件时分式有意义? (1)x yx12.; (2);(3);(4)x yx153b3x学生解答后,小组展示,并总结分式有意义的条件。

老师最终强调分母B的整体性。

(板书:整体性)以上题目,假如不变更解题思路,你还可以怎么问?引出分式无意义的条件(板书:分母=0分式无意义。

)(设计意图:此环节接着以问题作为激活学生思维的刺激因素,激发学生产生合理的认知突变,激发起他们的学习爱好;“以上题目,假如不变更解题思路,你还可以怎么问?”用问题作为探究的前提,引导学生探究的爱好,在探究的基础上获得学问。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学内容:从分数到分式
教学目标:
1.以描述实际问题中的数量关系为背景,抽象出分式的概念,了解分式的概念,认识分式是一类应用广泛的重要代数式;
2.类比分数的概念学习分式的概念,让学生经历“从具体到抽象,从特殊到一般”的认知过程,渗透模型思想.
3.能正确判断一个代数式是否为分式;掌握判断一个分式有意义、无意义的方法. 教学重点、难点:
重点:分式的概念.
难点:理解并掌握判断一个分式有意义、无意义的方法.
教学设计:
一、情境引入
(利用第十五章的章前引例)先利用课本插图展示三峡美景,让学生欣赏祖国的大好河山,注意看江面上来往的船只.
问题:一艘轮船在静水中的最大航速为30㎞/h ,它以最大航速沿江顺流航行....90㎞所用的时间与以最大航速逆流航行....60㎞所用时间相等,江水的流速为多少?
提问1:一艘游轮在静水中航行速度为30㎞/h ,它顺流、逆流航行的速度相同吗?船只顺流、逆流的航行速度与什么有关?
(学生独立思考,回忆以往所学知识)
(板书)行程问题基本数量关系:
路程=速度×时间
船顺流航行速度=船在静水中的速度+水流的速度
船逆流航行速度=船在静水中的速度-水流的速度
提问2:这个问题中要想知道船顺流航行的速度及船逆流航行的速度,必须知道什么?如果知道了水流速度,如何表示顺流航行的速度及逆流航行的速度?
提问3:你能假设未知数,得到相应的等量关系吗?
(解:设江水的流速为v 千米/时,则轮船以最大航速顺流航行90千米所用的时间为v +3090小时,以最大航速逆流航行60千米所用的时间为v
-3060小时,根据题意: v
v -=+30603090 这个方程叫分式方程,可以解得v 的值; 引导学生观察:v +3090、v
-3060与我们以往所学过的式子有什么不同? 二、类比引新
1.想一想:
完成课本第127页思考题:
(1)长方形的面积为10平方厘米,长为7厘米,宽为 厘米;
长方形的面积为S ,长为a ,宽为 .
(2)把体积为200立方厘米的水倒入底面积为33平方厘米的圆柱形容器中,水面高度为
厘米;把体积为V 的水倒入底面积为S 的圆柱形容器中,水面高度为 .
思考:在小学学习分数时,把10÷7写成710的形式,把7
10叫做分数,那么s v a s ÷÷,可以
写成什么样的形式呢?(学生类比给出: a S ,s
V ) 710,33200;a S ,s
V (1)两组式子有什么相同点和不同点?
(相同点:形式相同,都可以写成
B A 的形式;不同点:前两个分子、分母是数,后两个分子、分母有字母)
(2)两个式子a S ,s
V 及v +20100,v -2060有什么共同点? (学生小组讨论后全班交流,得出结论) 学生结论:都是
B A 的形式;分子、分母都是整式;分母中含有字母. 结论:它们与分数的形式相同,但它们的分子与分母都是整式,分子中含有字母,特别是分
母,一定含有字母。

归纳:师生共同得出分式概念: 板书:式子B
A 叫分式(A 、
B 表示两个整式,并且B 中含有字母); 其中A 叫分式的分子,B 叫分式的分母. 举例:如分式
`y x 就表示任意两个整式相除的商(除式不等于零),当3,2==y x 时,分式的值为32;当2,5==y x 时,分式的值为2
5;…… 分式
y x 比32、25……更具有一般性. 2.议一议
下列各式中,是分式的是 (填序号) ①x 1,②y x +1,③2b a +,④1
32-x ,⑤32-,⑥25y +-,⑦x y x +,⑧42y . 思考:上面的各式中,除分式外你能判断出其它式子的类型吗?
(独立完成此题后,组内交流答案,组长收集好组内发生的错误并做好展示的准备)
3.写一写
在下面写出两个分式,交给你的同桌判断是否为分式.
(如对判断结果有争议或写出的式子无法判断的请举手示意老师) 举例:常见的有:①x 1;②y x y +;③x
x (对于③是分式,判断分式主要是从形式上看,有同学说1=x
x ,此时你已经对分式进行了约分,结果为整式,所以说式子x x 是分式. 三、深入研究
1.想一想:
填表,求分式的值:
思考并讨论:(1)表中分式的值是怎样确定的?
(2)当0=x 时,x 20等于多少?当21=x 时,1
2-x x 等于多少? (3)分式在什么条件下有意义,有什么条件下无意义?
(分式在分母不为零时有意义,而在分母为零时无意义)
2.练一练
例题:下列分式中字母满足什么条件时分式有意义?
(1)x 32 (2)1-x x (3)b 351- (4)y x y x -+ (5)1-x x (6)122-x 解:(1)当分母03≠x 即0≠x 时,分式x
32有意义. 其余学生口头回答(教师点评后追问分式什么时候无意义)
练习:填空:
(1)若分式2
3+x x 有意义...,则x 的取值范围是 ; 若分式3
25-a 有意义...,则a 的取值范围是 . (2)当_________=m 时,分式21+-m m 无意义...
; 当 时,分式
y x -23无意义.... 3.写出一个与x 有关的分式,并且无论x 取何值该分式始终有意义: (常见的有:112+x ,1
1+x ) (说明:以下内容有条件的可以补充讲,也可以不讲)
探一探
问题:对于分式1
253-+x x ,当x 取何值时,分式的值为零? (教师点拨:分式的值为0,首先必须保证分母不为0,其次分子为0,分式的值才为0)
解题示范:根据题意得:⎩⎨⎧=+≠-053012x x ,解得⎪⎪⎩
⎪⎪⎨⎧-=≠35
21x x ∴35-=x 练习:
(1)1
32+-x x (2)242+-x x (3)11+--x x (4★)222---m m m 想一想
(1)当a 为何值时,分式3
1-a 的值为正数? (2)当m 为何值时,分式
m m 12-的值为非负数? (3)当x 为何值时,分式2
3--x x 的值为负数? 四、课堂小结:
(学生自由发言,谈学到的知识及方法)
知识:
(1)分式的概念;(2)分式有意的条件;(3)分式无意义的条件;(4)分式值为0的条件 方法:研究分式的方法类似于研究分数的方法.
五、课堂测试
(总分50分)
1.列代数式表示(30分)
(1)某村有n 人,耕地共有400亩,则人均耕地面积为 亩.
(2)已知长方形的面积是162cm ,一边长是acm ,则另一边长是_____cm ;已知长方形的面
积是2acm ,一边长是16cm ,则另一边长是_____cm .
(3)产量由m 千克增长15%,就达到_______千克.
(4)轮船在静水中每小时走50千米,水流速度是每小时b 千米,那么轮船在逆水中航行100
千米所用的时间为________小时;轮船在顺水中航行100千米中所用的时间为______小时.
2.下列式子2x ,x 2,y x y x -+,3
2y x +中,分式有( )(5分) A .1个 B .2个 C .3个 D .4个
3.当x 为任何实数时,下列分式一定有意义的是( )(5分)
A .
x x 1+ B .212x x - C .112+-x x D .1
32-+x x 3.已知分式x
x +-24.(10分) (1)若分式有意义...,则x 的取值范围是 ;
(2)当 时,分式无.意义..; 思考题:
1.若分式1
12--x x 的值为0,求x 的值. 2.已知分式
x 432-的值为正,求x 的取值范围. 3.已知
x +16表示一个整数,求整数x 的值.。

相关文档
最新文档