应用随机过程(第三章)
2016应用随机过程讲义第三篇

【伊藤等距(Ito isometry) 】 为方便计,令 D j W t j 1 W t j , j 0,1,
k 1 j 0
k
2 t u dW u E t 2 u du E I t E 0 0 2
.
k
, k 1, Dk W t W tk ,于
j 0
是, I t t j W t W tk t j D j ,从 W t j 1 W t j tk
j 0
n 1
t j 1
j
2 u du 2 u du 。
0
t
【注1】1) 一个过程的二次变差与方差的不同之处在于:
j l 1
k 1
k 1
E E t j W t j 1 W t j Ft j Fs j l 1
j l 1
E t E W t F
k 1 j j 1
tj
0 ;4) E tk W t W tk Fs Fs Ftk E E W t W tk Ftk tk Fs
W t , t 0 下,从事资产交易的收益。由于鞅既没有上升又没
有下降趋势,故可以预期作为积分上限 t 的过程 I t 也没有上 升和下降的趋势,即:Ito 积分 0 u dW u 是一个鞅: 给定 0 s t T ,假定 s, t 分别位于分划 的不同的子区间(位 于同一子区间的情形类似) ,即存在分点 tl 和 tk tl tk ,使得 s tl , tl 1 且 t tk , tk 1 ;从而,
应用随机过程(第三章)PPT课件

Poisson的特性
平稳增量性。
由 E N tt ,知λ是单位时间内发和事件
的平均次数。 称λ为Poisson近程的强度或速率。
例3.1.1 售票处乘客以10人/小时的平均速率 到达,则9:00 ~10:00最多有5名乘客的 概率?10:00 ~11:00没有人的概率?
例3.1.2 保险公司接到的索赔次数
k 0
k 0 m m k pm 1pkm t m k k !e t
k 0m m !k k !!pm 1pkm t m k k !e t
pm tet 1pktk
m ! k0 k!
tpm ept
m!
Poisson过程的推广
非齐Poisson过程
定义3.3.1 计数过程 N t,t0称作强度函
过程 N t,t0 ,每次的赔付金额Yi都相
互独立,且有相同的分布F,且每次的索赔 额与与它发生的时间无关。则[0,t]内保险
公司赔付的总额 X t,t0 就是一个复
合Poisson 过程,其中:
XtNtYi i1
例3.3.3
(顾客成批到达的排队系统)设顾客到达某
服务系统的时刻 S1, S2, ,形成一个
t 6 6 1 02
1 第i位顾客在商场买东西 Yi 0 第i位顾客在商场未买东西
• 以 N1t 表示在时间[0,t]内到达商场的人
数, E N 112 4320
• 以 N2t 表示在时间[0,t]内在商场买东西
的人数,
E N 1 t E N 1 tY i t 0 .9 i 1
• 若以Zi 表示第i位顾客在商场消费金额,且
Z i~ B 2,0 .5 0
•则
N3 t N 1tZi i1
随机过程第三章 泊松过程

义 3.2 可知
PN (2) N (1) 5 5 e101 (101)n
n0
n!
PN (3) N (2) 0 e101 (101)0 e10
0!
例 3.2(事故发生次数及保险公司接到的索赔数)若以 N (t) 表示某公路交叉口、矿山、
,利用数学归纳法证明。假设当 (n 1) 时成立,因
此
d dt
(et Pn (t))
et
et
t n1 (n 1)!
t n1 (n 1)!
解得
et Pn (t)
(t)n n!
C
又 Pn (0) PN(0) n 0 代入进一步解得
Pn (t)
et
(t)n n!
因此,结论得证,即定义 3.3 蕴含定义 3.2。 (2)再证定义 3.2 蕴含定义 3.3。欲证此结论,只需验证定义 3.3 中的条件(3)(4)
题。 注:定理 3.2 的命题易于理解。泊松过程的平稳独立增量性质等价于表示在概率意义上
过程在任何时刻都重新开始,即从任何时刻起过程独立于先前已发生的一切(由独立增量); 且与原过程具有完全一样的分布(由平稳增量)。换言之,泊松过程是无记忆的,因此间隔 序列服从指数分布。
另一感兴趣的量是Tn ,第 n 次事件发生的时间,也称为第 n 次事件的等待时间。 定理 3.3 Tn , n 1, 2,服从参数为 n 和 的 分布,即其概率密度为
工厂等场所在 (0,t]时间内发生事故的次数,则泊松过程就是N(t),t 0 的一种很好近似。
另外,保险公司接到赔偿请求的次数(设一次事故就导致一次索赔)等都可以应用泊松过程 的模型。以保险为例,设保险公司每次的赔付都是 1,每月平均接到 4 次索赔请求,则一年中 它们要付出的金额平均为多少?
应用随机过程第三章习题解

g(t) = f (x, tx)|x|dx
3
第三章 更新过程
第三章 更新过程
其中 f (t, tx) 是 Xi 与 TiXi 的联合密度函数, 当 Xi 与 TiXi 独立时,有
∫ g(t) = λ exp{−λtx}f (x)|x|dx
所以这样的 Ti 是存在的.
3.6 如果 p = P (X = ∞) > 0, 则称 X 是广义的随机变量. 设 X 是广
是 3 分钟. 假设每台电话独立工作, 一共有 6 部电话, 估算上午 10:30 时恰
有 5 部电话占线的概率.
解:
由题可知每台电话占线的概率为
p
=
3 23
,
又各电话是否占线独立,
所以 10:30 有 5 部电话占线的概率为:
P = C65p5(1 − p)
3.11 眨眼使泪水均匀地涂在角膜和结膜的表面,以保持眼球润湿而不
∑ ∑k
∑
P ( Xi = j, Xk+1 > t − j) = (kλ)jexp(−kλ)P (X1 > t − j)/j!
0≤j≤t i=1
0≤j≤t
3.9 设更新过程 N (t) 的更新间隔是 Xn, i1, i2, . . . , in 是 1, 2, . . . , n 的一
个全排列. 对于 n ≥ 2, 证明
= 1/p − 1
3.7 对于泊松过程验证定理 1.2(2)成立.
证明: 对于泊松过程 N (t) 有 m(t) = E(N (t)) = λ·t, 而 λ·(t) 是连续的且 在 t≥0 时是严格增加的,当然是单调不减的, 也即定理 1.2(2) 对于泊松过 程是成立的。
3.8 设更新过程N(t)的更新间隔是来自总体 X 的随机变量。
(解答)《随机过程》第三章习题

(1)试求随机过程{Z (t); t 0}的均值函数 E{Z (t)}和二阶矩 E{Z 2 (t)} ;
(2)试证明: pn (t)u n exp{(1 2 )t } exp{1ut 2u 1t }。 n
P{X (s) i}
P{N (s) 2(i 1)}
P{N (s) 2(i 1)}P{N (t s) 2( j i)} [(t s)]2( ji) e(ts) ; ( j i, t s)
P{N (s) 2(i 1)}
[2( j i)]!
lim
h0
Pt
2
h 2
S2
t2
h 2 ,t5 h2
h 2
S5
t5
h
2
5 2
t2 (t5
t2 )2 et5
,
0 t2 t5
(2)由于{N (t) 1} {S1 t} ,由泊松过程与指数分布的关系可知,在{S1 t} 条件 下, S1 的分布密度函数为
(3)由于{N (t) 1} {S1 t S2} ,令: 0 t1 t t2 ,取充分小的 h1, h2 0 ,
使得: t1 h1 t1 t t2 h2 t2 ,由
t1 h1 S1 t1, t2 h2 S2 t2 N t1 h1 0, N t1 N t1 h1 1,
3、 设{N1 (t); t 0}和{N 2 (t); t 0} 是相互独立的 Poisson过程,其参数分别为 1 和 2 .若 N0 (t) N1 (t) N 2 (t) ,问: (1) {N0 (t); t 0} 是否为 Poisson 过程,请说明理由; (2) {N0 (t); t 0} 是否为平稳过程,请说明理由。 解:(1)由于 N 0 (t) 的状态空间为 S {,1, 0,1,} ,因此 N 0 (t) 不是计数过程,更
随机过程 第3章 泊松过程

泊松过程
[定义] 称计数过程{ X (t) , t 0 }为具有参数 的泊松过程, 若它满足下列条件: (1) X (0) = 0 ; (2) X (t) 是独立增量过程; (3) (平稳性)在任一长度为 t 的区间中,事件A发生的次 数服从参数 >0的泊松分布,即对任意 s , t 0 ,有
3.2 泊松过程的基本性质
泊松分布:
( t ) n t P{ X (t s ) X ( s ) n} e , n!
n 0, 1,
( t ) n t P{ X (t ) n} e , n 0, 1, 2, n!
Φ X ( ) E[e
假设在[0 , t ]内事件A已经发生一次,确定这一事件到 达时间W1的分布 ——均匀分布
P{W1 s, X (t ) 1} P{W1 s X (t ) 1} P{ X (t ) 1} P{ X ( s ) 1, X (t ) X ( s ) 0} P{ X (t ) 1} P{ X ( s ) 1} P{ X (t ) X ( s ) 0} P{ X (t ) 1}
故仪器在时刻 t0 正常工作的概率为:
k 1 ( t ) P P (T t 0 ) e t dt t0 ( k 1)! n k 1 ( t ) 0 P [ X (t 0 ) k ] e t
0
n0
n!
(3) 到达时间的条件分布
P{ X k }
k e
k!
, k 0, 1, 2, ( 0为常数 )
则随机变量X 服从参数为 的泊松分布,简记为 ()。
E(X ) ,
电子科大 应用随机过程及应用 (陈良均 朱庆棠)第三章作业

(ii) 分解 对于参数为λ 对于参数为λ的Poisson过程, 过程,假设发生的每一个事件 独立的以概率做了记录, 独立的以概率做了记录,未做记录的概率为1-p。令 N1(t)是到t为止做了记录的事件数, 为止做了记录的事件数,而N2(t)是未做记录 的事件数, 的事件数,则{N1(t);t ≥0}和 {N2(t);t ≥0}分别是具 有参数pλ 和(1-p)λ的独立Poisson过程。 过程。
相互独立。 相互独立。而且
P ( N (t ) = k ) = ∑ P ( N 1 (t ) = j, N 2 (t ) = k − j ) = ∑ P ( N 1 (t ) = j )P ( N 2 (t ) = k − j )
j=0 j=0 j k− j k k
(λ t ) (λ t ) = ∑ 1 e − λ1 t 2 e −λ2t j! ( k − j )! j=0
[
]
( )
( )
(
)
ρ=
(
)(
)
一维概率密度函数
一维特征函数 二维概率函数 f (s , t , x , y ) = −
[X − m (t )]2 t ∈ T 1 exp − 2 D (t ) 2 λ D (t ) x∈ R t∈T ϕ (t , u ) = exp im (t )u − 1 D (t )u 2 2 x∈ R f (t , x ) =
i i i =1
n
X (t )为正态分布 m X (t ) = E [X (t )] = E [ξ t + W (t )] = E (t )E (ξ ) + E [W (t )] = 0
(t > s ) E [X 2 (t )] = E [ξ 2 t 2 + W (t )W (s ) + W (t )ξ s + W (s )ξ t ] = ts + s σ 2 D (t ) = t 2 + t 2σ 2 D (s ) = s 2 + s 2 σ 2 C (s , t ) = C (t , s ) = R (t , s ) = ts + s σ 2
应用随机过程课后习题解答 毛用才 胡奇英

第一章习题解答1. 设随机变量X 服从几何分布,即:(),0,1,2,k P X k pq k ===。
求X 的特征函数,EX 及DX 。
其中01,1p q p <<=-是参数。
解()()jtxjtkk X k f t E eepq ∞===∑()k jtkk p q e∞==∑ =0()1jt kjtk pp qe qe ∞==-∑又200()kkk k q qE X kpq p kq p p p ∞∞======∑∑222()()[()]q D X E X E X P =-=〔其中 00(1)nnn n n n nxn x x ∞∞∞====+-∑∑∑〕令 0()(1)n n S x n x ∞==+∑那么 1000()(1)1xxnn k n xS t dt n t dt x x∞∞+===+==-∑∑⎰⎰22201()()(1)11(1)1(1)xn n dS x S t dt dxx xnx x x x ∞=∴==-∴=-=---⎰∑同理 2(1)2kkkk k k k k k x k x kx x ∞∞∞∞=====+--∑∑∑∑令20()(1)k k S x k x ∞==+∑ 那么211()(1)(1)xkk k k k k S t dt k t dt k xkx ∞∞∞+====+=+=∑∑∑⎰〕2、〔1〕 求参数为(,)p b 的Γ分布的特征函数,其概率密度函数为1,0()0,0()0,0p p bxb x e x p x b p p x --⎧>⎪=>>Γ⎨⎪≤⎩(2) 其期望和方差;(3) 证明对具有一样的参数的b 的Γ分布,关于参数p 具有可加性。
解 〔1〕设X 服从(,)p b Γ分布,那么10()()p jtxp bxX b f t ex e dx p ∞--=Γ⎰ 1()0()p p jt b x b x e dx p ∞--=Γ⎰101()()()()(1)p u p p p p p b e u b u jt b x du jt p b jt b jt b∞----==Γ---⎰ 10(())x p p e x dx ∞--Γ=⎰ 〔2〕'1()(0)X p E X f j b∴== 2''221(1)()(0)X p p E X f j b +== 222()()()PD XE X E X b∴===(4) 假设(,)i i X p b Γ 1,2i = 那么121212()()()()(1)P P X X X X jt f t f t f t b-++==-1212(,)Y X X P P b ∴=+Γ+同理可得:()()iiP X b f t b jt∑=∑-3、设X 是一随机变量,()F x 是其分布函数,且是严格单调的,求以下随机变量的特征函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PN
12
N
0
n
e412
412 n
n!
EN12 N0 412 48
Poisson过程的等价定义
• 设 Nt,t 0 是一个计数过程,它满足:
(1)′ N(0)=0; (2)′ 过程有平稳独立增量; (3)′ 存在λ>0,当h↓0时有:
PNt h Nt 1 h oh
(4)′ 当h↓0时有:
N t 是强度为3的Poisson过程
PN
4
N
0
n
12n n!
e
12
PN
4
N
0
9
129 9!
e12
例3.2.2
• 假定某天文台观测到的流星流是一个 Poisson过程,以往资料统计,平均每小时 观察到3颗流星,试求上午8:00 ~12:00 期间,该天文台没有观测到流星的概率?
N t 是强度为3的Poisson过程
平稳增量性。
由 ENt t ,知λ是单位时间内发和事件
的平均次数。 称λ为Poisson近程的强度或速率。
例3.1.1 售票处乘客以10人/小时的平均速率 到达,则9:00 ~10:00最多有5名乘客的 概率?10:00 ~11:00没有人的概率?
例3.1.2 保险公司接到的索赔次数
• 设保险公司每次的赔付都是1,每月平均接 到的索赔要求是4次,则一年中它要付出的 金额平均是多少?
被记录下来的事件总数,则 M t,t 0
是一个强度为λp的Poisson过程。
PM t m
PM t m Nt n m PNt n m
n0
Cmmn pm 1 p
e n t mn t
m n !
n0
et
pt m 1 p t n
m!n!
n0
et
pt m
m!
1 p t n
定义3.1.2
计数过程Nt,t 0 称为参数为λ的
Poisson过程,如果:
(1) N0 0 ;
(2)过程有独立增量;
(3)在任一长度为t的时间区间中事件发生 的次数服从均值为λt的Poisson分布,即对 一切 s 0,t 0 ,有:
PN
t
s
N
s
n
e
t n
n!
,
n 0,1,2,
Poisson的特性
服从参数为λ的指数分布,且相互独立。
X1 t Nt 0 PX1 t PN t 0 et PX1 t 1 et
PX 2 t X1 s PNs t Ns 0 X1 s
PNs t Ns 0
et
定理3.2.1
Tn n 1,2, 服从参数为n和λ的Γ分布。
证明:
n
Tn X i
i 1
Xi独立且服从相 同的指数分布
指数分布分n=1的Γ分布,且具有可 加性。定理得证。
证明2 Nt n Tn t
PTn t PNt n
et
t j
j!
jn
对上式两端对t求导,可得Tn 的密度函数为:
fn t
et
t j
j!
e
t t j1
j1!jnjn Nhomakorabeases ets tet
s t
定理3.2.3
在已知N(t)=n的条件下,事件发生的n 个时 刻T1,T2,…,Tn的联合密度函数为
f t1,
t2 ,
,
tn
tn n!
0 t1 t2 tn
例3.2.3
• 乘客按强度为λ的Poisson过程来火车站, 火车在t 时刻启程,计算(0,t]内到达的乘 客等车时间总和的数学期望。
E
E
N t
t
i 1
N4 N0 ~ P3 4
PN4
N 0
0
120 0!
e12
e12
事件发生时刻的条件分布
考虑n=1的情形,对于s≤t有:
P T1 s N t 1
PT1 s;N t 1 PN t 1
PA发生在时刻 s之前,(s,t ]内A没有发生
PN t 1
PN S 1PN t N s0 PN t 1
n!
ept
pt
m!
n0
例3.1.4
设每条蚕产卵数服从poisson分布,强度 为λ,而每个卵变成成虫的概率为p,且每 个卵是否变成成虫彼此间没有关系,求在 时间[0,t]内每条蚕养活k条小蚕的概率。
e ptk pt k!
例3.1.5
• 天空中的星体数服从Poisson分布,其参数 为λV,V为被观测区域的体积。若每个星球 上有生命存在的概率为p,则在体积为V的 宇宙空间中有生命存在的星球数服从强度 为λpV的Poisson 分布。
et t n1
n1!
n
n
t
n
1e
t
定义3.2.1
计数过程 Nt,t 0 是参数为λ的
Poisson过程,如果每次事件发生的时间间
隔X1,X2, …, 相互独立,且服从同一
参数为λ的指数分布。
例3.2.1
• 设从早上8:00开始有无穷人排队,只有一 名服务员,且每人接受服务的时间是独立 的并服从均值为20min的指数分布,则到中 午12:00为止平均有多少人已经离去?已有 9人接受服务的概率是多少?
• 解:即要求计算
E
N t
t
i 1
Ti
• 其中Ti是第i个乘客的到达时间。
• 由于N(t)为一随机变量,取条件期望
ENi1tt Ti N t n Ein1t Ti N t n
nt
E in1Ti
N
t
n
nt
nt 2
nt 2
E in1Ti
Nt
n
n
EUi
i 1
nt 2
ENi1tt Ti
第三章 Poisson过程
§3.1 Poisson过程
• 定义3.1.1
随机过程 Nt,t 0 称为计数过程,如 果 Nt 表示从0到t时刻某一特定事件A发
生的次数,它具备以下两个特点:
(1) Nt 0 且取值为整数; (2) s t 时,Ns Nt 且 Nt Ns
表示 s,t 时间内事件A发生的次数。
与Poisson过程相联系 若干分布
N t
3
2
1
0 X1 X2 X3
t
T0
T1
T2
T3
X n 与 Tn 的分布
Tn 表示第n次事件发生的时间; n 1,2, , 规定 T0 0 ,
X n 表示第n次与第n-1次事件发生的时间 间隔, n 1,2, ,
定理3.2.1 X n n 1,2,
PNt h Nt 2 oh
定理3.1.1 满足上述条件(1) ′ ~(4) ′的计数过程
Nt,t 0 是Poisson过程。
反过来Poisson过程一定满足这四个条件。
例3.1.3
事件A的发生形成强度为λ的poisson过
程Nt,t 0 ,如果每次事件发生时以概率
p能够被记录下来,并以M(t)表示到时刻t