应用随机过程第三章Poisson_过程
合集下载
第三章泊松(Poisson)过程.

基础部张守成 2020年2月28日星期五
4. 齐次泊松过程的两个相关随机变量
设{N (t), t 0}是强度为的泊松过程,Wn(n 1)
表示事件第n次出现的等待时间.
W0 0
记 Ti Wi Wi1, i 1,2, 则Ti 表示第n-1次
事件发生到第n次事件发生的时间间隔.
(每小时)的泊松过程 {N(t), t 0}, 若每个人消费 的金额(元)为独立同分布的随机变量 Yn:
f ( y) 0.05e0.05 y ( y 0)
设 X(t) 表示 [0,t) 时间内该超市的总营业额,求3 小时内总营业额的期望和方差.
基础部张守成 2020年2月28日星期五
令 s 0, 根据假设 N (0) 0 可得
均值函数: E[N (t)] t,
方差函数: DN (t) Var[N (t )] t
E[ N (t)].
t
泊松过程的强度等于单位长时间间隔内发生的事件 数目的均值.
基础部张守成 2020年2月28日星期五
(2) 协方差函数:
设{N(t), t0}是强度的泊松过程,{Yk,k=1,2,}是
独立同分布随机变量序列,且与{N(t), t0}独立,令
N (t)
X (t) Yk , t 0 k 1
则称为复合泊松过程. 例 设N(t)是在(0, t]内来到某商店的顾客数,Yk是
N (t)
第k个顾客的花费,则 X (t) 是Yk (0, t]内的营业额. k 1
如果对任意的实数h 和 0 s h t h,
X (t h) X (s h) 和 X (t) X (s) 具有相同的分布, 则称增量具有平稳性.
4. 齐次泊松过程的两个相关随机变量
设{N (t), t 0}是强度为的泊松过程,Wn(n 1)
表示事件第n次出现的等待时间.
W0 0
记 Ti Wi Wi1, i 1,2, 则Ti 表示第n-1次
事件发生到第n次事件发生的时间间隔.
(每小时)的泊松过程 {N(t), t 0}, 若每个人消费 的金额(元)为独立同分布的随机变量 Yn:
f ( y) 0.05e0.05 y ( y 0)
设 X(t) 表示 [0,t) 时间内该超市的总营业额,求3 小时内总营业额的期望和方差.
基础部张守成 2020年2月28日星期五
令 s 0, 根据假设 N (0) 0 可得
均值函数: E[N (t)] t,
方差函数: DN (t) Var[N (t )] t
E[ N (t)].
t
泊松过程的强度等于单位长时间间隔内发生的事件 数目的均值.
基础部张守成 2020年2月28日星期五
(2) 协方差函数:
设{N(t), t0}是强度的泊松过程,{Yk,k=1,2,}是
独立同分布随机变量序列,且与{N(t), t0}独立,令
N (t)
X (t) Yk , t 0 k 1
则称为复合泊松过程. 例 设N(t)是在(0, t]内来到某商店的顾客数,Yk是
N (t)
第k个顾客的花费,则 X (t) 是Yk (0, t]内的营业额. k 1
如果对任意的实数h 和 0 s h t h,
X (t h) X (s h) 和 X (t) X (s) 具有相同的分布, 则称增量具有平稳性.
泊松过程

dPk 1 ( t ) 已得 Pk 1 ( t ) Pk ( t ) dt
t d [ e Pk 1 ( t )] t 两边同乘 e 得, e t Pk ( t ) dt
k d [ e t Pk 1 ( t )] [ ( t s )] 即 e s dt k!
对t s, n m:
4. P{N t n | N s m} e ( t s ) [ (t s )]n m ( n m)!
n s m 5. P{N s m | N t n} ( ) (1 s ) n m t m t
例 : 顾客依泊松过程到达某商店,速率为 4人/小时。已知商店上午9:00开门. (1)求到9:30时仅到一位顾客,而到11:30时 已到5位顾客的概率? (2)求第2位顾客在10点前到达的概率? (3)求第一位顾客在9:30前到达且第二位 顾客在10:00前到达的概率?
第三章:泊松过程
1.生成函数与泊松分布
分布律为:
或母函数
浙大数学随机过程
1
生成函数唯一地决定各阶矩 (可能为 ) (可能为 )
例如:
定理:如果X 和Y 都是取值非负整数值的随机变量, 那么当X 与Y 独立时,对0 s 1都有: X Y ( s ) X ( s )Y ( s ). 这里 X Y , X ,Y 分别是X Y ,X ,Y 的生成函数.
泊松过程也可用另一形式定义: 称 N (t ), t 0是参数为的泊松过程,若满足: 1. N (0) 0 2. 独立增量 3. 对任意的t s 0, N (t ) N (s) ~ t s
证 : P{N (t h ) N (t ) 1} he h(1 h o( h )) h o( h )
第三章泊松过程

定理 设是{N (t), t≥0}一个强度为l的泊松过程,则对任 意固定的t, N(t)服从泊松分布,即
P(N (t) = k ) = (lt)k e-l t
k!
k = 0,1, 2,L
二、泊松过程的数字特征与特征函数
1. 泊松过程的均值函数
mN (t) = E[N(t)]= lt
2. 泊松过程的方差函数
DN (t) = D[N(t)]= lt
3. 泊松过程的均方值函数
y
2 N
(t)
=
E[N
2
(t)]
=
DN
(t)
+
mN2
(t)
=
lt
+
(lt)2
4. 泊松过程的自相关函数
E(N (t1)N (t2 ))
令t2 ³ t1E{[N (t1)- N (0)][N (t2 )- N (t1)+ N (t1)]} 展开 E{[N(t1)- N (0)][N (t2 )- N(t1)]+ [N(t1)- N(0)]N(t1)} 展开 E{[N(t1)- N (0)][N (t2 )- N(t1)]}+ E{[N(t1)- N (0)]N (t1)} 增量独立E{[N(t1)- N(0)][N(t2 )- N(t1)]}+ E{[N(t1)- N(0)]N(t1)} 增量独立E[N (t1)- N (0)]E[N (t2 )- N (t1)]+ E{[N (t1)- N (0)]N (t1)}
mN (t) = 4t = DN (t)
RN (t1,t2 ) = 4 min(t1,t2 ) + 16t1t2 , t1,t2 Î T
CN (t1,t2 ) = 4 min(t1,t2 )
随机过程第三章-泊松过程

N (tk )
X (tk ) X (tk1)
Yi
iN (tk1 )1
相互独立,即 X (t)具有独立增量性.
k 1,2, , n
(2) (2)的证明需要用到矩母函数(略).
例3.10 在保险中的索赔模型中,设索赔 要求以平均2次/月的速率的泊松过程到达 保险公司.每次赔付为均值为10000元的 正态分布,则一年中保险公司平均赔付额 是多少?
例3.3 设进入商店的顾客数可以用一个泊松过程来近似.
第 i 个顾客在商店购物支付的款数记作 Yi ,并设 Y1,Y2 ,
相互独立同分布,则在时段 (0,t] 中商店的营业额
N (t)
X (t) Yi i 1
是一个复合泊松过程.
例3.4 设保险公司接到的索赔次数服从一个泊松过程,每 次要求赔付的金额独立同分布,则在任一时段内保险公司 需要赔付的总金额就是一个复合泊松过程.
事件A发生的次数.
如果在不相交的时间区间中发生的事件数是独立的,则该 计数过程有独立增量.即到时刻t已发生的事件个数必须独 立于时刻t与t+s之间所发生的事件数.这就意味着, N(t)与 N(t s) N(t) 相互独立.
若在任一时间区间中发生的事件个数 N(t) 的分布只依 赖于时间区间的长度,则称计数过程 N(t) 有平稳增量.这就 意味着此时 N (t2 s) N (t1 s)与 N(t2 ) N(t1) 有相同的分布.
,
x0
0,
x0
则称 X 服从参数为 , 的 分布,记为 X ~ ( , )
当 1 时,就是参数为 的指数分布.
(4) 分布关于参数 具有可加性.即若 X ~ (1, ),
Y ~ (2, ), 且 X 与 Y 独立,则
应用随机过程第三章Poisson_过程

t s t
(u)du的Poisson分布,即
n [m(t+s)-m(t)] P(N(t+s)-N(t)=n)= exp{[ m(t+s)-m(t)]} n!
例 3.7
见黑板
3.3.2 复合Poisson过程
设{Yi,i 1,2, ...}是一列独立且同分布的随机变量, {N(t),t 0}是Poisson过程,且N(t),t 0}与{Yi, i 1,2, ...}独立.记 X(t)= Yi ,
这定理说明,由于Poisson过程具有平稳独立增量 性,从而在已知[0,t]内事件A发生一次的条件下, 事件发生时刻T1在[0,t]上是“等可能性的”,即T1 的条件分布是[0,t]上的均匀分布.
问题:自然地,我们会问
这个性质是否可推广到 N(t)=n, n 1的情形?
定理 3.4
设{N(t),t 0}是Poisson过程,则时间相继发 生时刻T1,T2,...,Tn在已知N(t)=n下的条件 概率密度为 n! f(t1,t2 ,..., tn )= n , t 0 t1 t2 ... tn .
i 1 N(t)
我们就称{X(t),t 0}为复合Poisson过程.
注:复合Poisson过程未必是计数过程;但当Y i = c(常数),i= 1, 2,...,可化为Poisson过程.
例:考虑一保险公司:它接到索赔次数服从Poisson 过程{N(t)},每次的索赔额Yi是独立同分布的,且与 其发生时刻无关,那么该公司在[0,t]内的总索赔额 X(t)= Yi
注意 定理3.2的逆命题亦为真,且该逆命题也给出了 Poisson过程的另一个定价定义(即定义3.3),希 望同学们务必记住.
(u)du的Poisson分布,即
n [m(t+s)-m(t)] P(N(t+s)-N(t)=n)= exp{[ m(t+s)-m(t)]} n!
例 3.7
见黑板
3.3.2 复合Poisson过程
设{Yi,i 1,2, ...}是一列独立且同分布的随机变量, {N(t),t 0}是Poisson过程,且N(t),t 0}与{Yi, i 1,2, ...}独立.记 X(t)= Yi ,
这定理说明,由于Poisson过程具有平稳独立增量 性,从而在已知[0,t]内事件A发生一次的条件下, 事件发生时刻T1在[0,t]上是“等可能性的”,即T1 的条件分布是[0,t]上的均匀分布.
问题:自然地,我们会问
这个性质是否可推广到 N(t)=n, n 1的情形?
定理 3.4
设{N(t),t 0}是Poisson过程,则时间相继发 生时刻T1,T2,...,Tn在已知N(t)=n下的条件 概率密度为 n! f(t1,t2 ,..., tn )= n , t 0 t1 t2 ... tn .
i 1 N(t)
我们就称{X(t),t 0}为复合Poisson过程.
注:复合Poisson过程未必是计数过程;但当Y i = c(常数),i= 1, 2,...,可化为Poisson过程.
例:考虑一保险公司:它接到索赔次数服从Poisson 过程{N(t)},每次的索赔额Yi是独立同分布的,且与 其发生时刻无关,那么该公司在[0,t]内的总索赔额 X(t)= Yi
注意 定理3.2的逆命题亦为真,且该逆命题也给出了 Poisson过程的另一个定价定义(即定义3.3),希 望同学们务必记住.
第三章 泊松过程

第一节、泊松过程的基本概念
证明: (1) 0 N (0) N1 (0) N2 (0) 可得 N1 (0) N2 (0) 0 (2)由N(t)的独立增量性可得,N1 (t ), N2 (t ) 也为独立增量过程; (3)记 N (t s) N (t ) N (t , t s) P[ N1 (t , t s ) k1 ]
泊松过程(Poisson process)最早由法国人Poisson于 1837年引入。
主 要 内 容
第一节 第二节 第三节 第四节 第五节 第六节
泊松过程的基本概念 相邻时间的时间间隔 剩余寿命与年龄 非时齐泊松过程 复合泊松过程 更新过程
第一节、泊松过程的基本概念
一、定义 一随机过程N (t ), t 0 ,若满足条件: (1)是一计数过程,且N(0)=0; (零初值性) (2)任取 0 t1 t2 tn , (独立增量过程) N (t1 ), N (t2 ) N (t1 ), , N (tn ) N (tn1 ) 相互独立; (3)s, t 0, n 0, P[ N (s t ) N (s) n] P[ N (t ) n] (增量平稳性) (4)对任意 t 0 和充分小的 t 0 ,有 P[ N (t t ) N (t ) 1] t o(t ) P[ N (t t ) N (t ) 2] o(t ) 称N (t ), t 0 是强度 为的时齐泊松过程。 其中 0 称 为强度常数。
即 N (s t ) N ( s) 是参数为 t 的泊松分布。
证明
第一节、泊松过程的基本概念
泊松过程的等价定义: 一计数过程N (t ), t 0 ,若满足条件: (1)N(0)=0; (2)N(t)是独立增量过程; (3)对 s, t 0, N (s t ) N (s) P(t ) ,即
随机过程第三章 泊松过程 ppt课件

(5)泊松过程的样本轨迹是跳跃度为1的阶梯函数.记T n 为
第 n次事件发生的时刻, X n 是第 n次与第n 1 次事件发生
的时间间隔.
一. X n和 T n 的分布
定理3.2 X n (n 1)服从参数为 的指数分布,且相互独立.
证 当 t 0时,有
F 1 ( t ) P { X 1 t } 1 P { X 1 t } ቤተ መጻሕፍቲ ባይዱ1 P { N ( t ) 0 }
重复以上的推导可证定理之结论.
定理3.3 Tn ~(n,)
n
证 由于 Tn
Xi
i 1
故由定理3.2以及引理的结论马上可得本定理之结论.
注:1 (n,)的概率密度为
fTn (x) et
(t)n1
(n1)!
2. {T nt} {N (t)n}
(t 0)
由定理3.2,我们给出泊松过程的另一个等价定义.
p 的泊松过程.
证 M (t)满足定义3.2中的前两个条件是显然的,下证它也 满足第三个条件.
显然, M (t)的可能取值为 0,1,2, ,并且由全概率公式,有
P { M (t) m } P { M (t) m |N (t) n } P { N (t) n } n 0
而 P { M (t) m |N (t) n } 0 若 nm
f (x)() x1ex, x0
0,
x0
则称 X服从参数为 , 的 分布,记为 X~(,)
当 1 时,就是参数为 的指数分布.
(4) 分布关于参数 具有可加性.即若 X~(1,),
Y~(2,),且 X与 Y独立,则
X Y~ (1 2,)
指数引分理布,则设有X1,X2, ,Xn 相互独立且均服从参数为 的 X 1 X 2 X n ~ ( n ,)
第 n次事件发生的时刻, X n 是第 n次与第n 1 次事件发生
的时间间隔.
一. X n和 T n 的分布
定理3.2 X n (n 1)服从参数为 的指数分布,且相互独立.
证 当 t 0时,有
F 1 ( t ) P { X 1 t } 1 P { X 1 t } ቤተ መጻሕፍቲ ባይዱ1 P { N ( t ) 0 }
重复以上的推导可证定理之结论.
定理3.3 Tn ~(n,)
n
证 由于 Tn
Xi
i 1
故由定理3.2以及引理的结论马上可得本定理之结论.
注:1 (n,)的概率密度为
fTn (x) et
(t)n1
(n1)!
2. {T nt} {N (t)n}
(t 0)
由定理3.2,我们给出泊松过程的另一个等价定义.
p 的泊松过程.
证 M (t)满足定义3.2中的前两个条件是显然的,下证它也 满足第三个条件.
显然, M (t)的可能取值为 0,1,2, ,并且由全概率公式,有
P { M (t) m } P { M (t) m |N (t) n } P { N (t) n } n 0
而 P { M (t) m |N (t) n } 0 若 nm
f (x)() x1ex, x0
0,
x0
则称 X服从参数为 , 的 分布,记为 X~(,)
当 1 时,就是参数为 的指数分布.
(4) 分布关于参数 具有可加性.即若 X~(1,),
Y~(2,),且 X与 Y独立,则
X Y~ (1 2,)
指数引分理布,则设有X1,X2, ,Xn 相互独立且均服从参数为 的 X 1 X 2 X n ~ ( n ,)
(解答)《随机过程》第三章习题

义随机过程 Z (t) X (t) Y (t), t 0 ,且令: pn (t) P{Z (t) n}。
(1)试求随机过程{Z (t); t 0}的均值函数 E{Z (t)}和二阶矩 E{Z 2 (t)} ;
(2)试证明: pn (t)u n exp{(1 2 )t } exp{1ut 2u 1t }。 n
P{X (s) i}
P{N (s) 2(i 1)}
P{N (s) 2(i 1)}P{N (t s) 2( j i)} [(t s)]2( ji) e(ts) ; ( j i, t s)
P{N (s) 2(i 1)}
[2( j i)]!
lim
h0
Pt
2
h 2
S2
t2
h 2 ,t5 h2
h 2
S5
t5
h
2
5 2
t2 (t5
t2 )2 et5
,
0 t2 t5
(2)由于{N (t) 1} {S1 t} ,由泊松过程与指数分布的关系可知,在{S1 t} 条件 下, S1 的分布密度函数为
(3)由于{N (t) 1} {S1 t S2} ,令: 0 t1 t t2 ,取充分小的 h1, h2 0 ,
使得: t1 h1 t1 t t2 h2 t2 ,由
t1 h1 S1 t1, t2 h2 S2 t2 N t1 h1 0, N t1 N t1 h1 1,
3、 设{N1 (t); t 0}和{N 2 (t); t 0} 是相互独立的 Poisson过程,其参数分别为 1 和 2 .若 N0 (t) N1 (t) N 2 (t) ,问: (1) {N0 (t); t 0} 是否为 Poisson 过程,请说明理由; (2) {N0 (t); t 0} 是否为平稳过程,请说明理由。 解:(1)由于 N 0 (t) 的状态空间为 S {,1, 0,1,} ,因此 N 0 (t) 不是计数过程,更
(1)试求随机过程{Z (t); t 0}的均值函数 E{Z (t)}和二阶矩 E{Z 2 (t)} ;
(2)试证明: pn (t)u n exp{(1 2 )t } exp{1ut 2u 1t }。 n
P{X (s) i}
P{N (s) 2(i 1)}
P{N (s) 2(i 1)}P{N (t s) 2( j i)} [(t s)]2( ji) e(ts) ; ( j i, t s)
P{N (s) 2(i 1)}
[2( j i)]!
lim
h0
Pt
2
h 2
S2
t2
h 2 ,t5 h2
h 2
S5
t5
h
2
5 2
t2 (t5
t2 )2 et5
,
0 t2 t5
(2)由于{N (t) 1} {S1 t} ,由泊松过程与指数分布的关系可知,在{S1 t} 条件 下, S1 的分布密度函数为
(3)由于{N (t) 1} {S1 t S2} ,令: 0 t1 t t2 ,取充分小的 h1, h2 0 ,
使得: t1 h1 t1 t t2 h2 t2 ,由
t1 h1 S1 t1, t2 h2 S2 t2 N t1 h1 0, N t1 N t1 h1 1,
3、 设{N1 (t); t 0}和{N 2 (t); t 0} 是相互独立的 Poisson过程,其参数分别为 1 和 2 .若 N0 (t) N1 (t) N 2 (t) ,问: (1) {N0 (t); t 0} 是否为 Poisson 过程,请说明理由; (2) {N0 (t); t 0} 是否为平稳过程,请说明理由。 解:(1)由于 N 0 (t) 的状态空间为 S {,1, 0,1,} ,因此 N 0 (t) 不是计数过程,更
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:设0:00为0时刻.
(1)由Poisson过程的平稳增量性及N (1)的分布,知 P ( N (2) N (1) 5) P( N (1) 5) P ( N (1) n)
n (10 1) e 101 n! n 0 n 5 10 e 10 . n0 n ! n0 5 5
( pt )m pt 即 P(M(t)=m) e . m !
P(M(t)=m)= P(M(t)=m|N(t)=m+n) P(N(t)=m+n)
mn ( t ) m n t = Cn p (1 p ) e m+n (m n)! n =0 n ( (1 p ) t ) e t ( pt ) m m !n ! n =0 m n ( pt ) ( (1 p ) t ) e t m ! n =0 n! m ( pt ) e t e (1 p )t m ! m ( pt ) pt e . m ! n=0
(2)由Poisson过程的平稳独立增量性及N (1)的分布,得 P( N (4) N (3) 0 | N (3) N (2) 0) P( N (4) N (3) 0) P( N (1) 0) e10 .
(2)由Poisson过程的平稳独立增量及N (t )的分布,得 P( N (4.5) N (0) 10, N (5.5) N (0) 20) P( N (4.5) N (0) 10, N (5.5) N (4.5) 10) P( N (4.5) N (0) 10) P( N (5.5) N (4.5) 10) P( N (4.5) 10) P( N (1) 10) (10 4.5)10 104.5 (10 1)10 101 e e 10! 10! 10 45 10 55 e . 2 (10!)
计数过程{N(t),t 0}称为参数为 ( 0)的Poisson过程, 如果 (1) N(0)=0; (2)该过程是独立增量过程; (3)对任意的s, t 0,
n ( t ) P(N(t+s)-N(s)=n) e t , n 0,1, 2, .... n!
注释
(1).由定义3.2(3)知 Poisson过程具有平稳增量性.
3.3 Poisson过程的推广
3.3.1 非齐次Poisson过程
Poisson过程的强度 是一个不变的常数, 若它不再 是常数,而是与时间t有关的, 从而可将Poisson过程 推广到非齐次Poisson过程,即
定义3.4 一计数过程{N(t),t 0}称作强度函数为 { (t ) 0,t 0}的非齐次Poisson过程,如果 (1) N(0)=0; (2)过程是独立增量过程; (3)P(N(t+h )-N(t)=1) (t )h o(h), P(N(t+h )-N(t) 2) o(h).
再例: 顾客成批到达的排队系统
选择: 如果N(t)是强度为λ的Poisson过程, 那么c N(t) 的
强度是( ). A. cλ B. λ/c C. λ D. 无法确定
定理 3.6 设{X(t)= Yi,t 0}是复合Poisson过程,其
(2).E[N(t)]= t, 即Poisson过程的均值函数为 t. 这 里的直观意义是单位时间内发生事件的平均次数, 被称为Poisson过程的强度或速率.
Poisson过程的应用
1. Poisson过程在排队论的应用
在随机服务系统中的排队模型中,可以用Poisson 过程模拟在一定时间段内顾客到达(或电话呼叫) 的数目.
0
t
t 0}的累计强度函数(或均值函数) .
非齐次Poisson过程的等价定义: 计数过程{N(t),t 0}称作强度函数为{ (t ) 0, t 0}的非齐次Poisson过程,如果 (1) N(0)=0; (2)过程是独立增量过程; (3)对s, t 0, N(t+s)-N(t)服从参数为m(t+s)-m(t)
3.2.1 Xn和T的分布 n
定理 3.2 如果 {N(t),t 0} 是Poisson过程,那么事件发生的时间 间隔{Xn,n 1, 2,...}是一列相互独立的且服从参数 为的指数分布.
证明见黑板
本定理证明的关键:
(X1 t ) ( N (t ) 0);
(X2 t | X1 s) ( N (s t ) N (s) 0 | X1 s).
3.2 与Poisson过程相关的分布
Poisson过程的一条样本路径是跳跃度为1的阶梯函数:
N(t) 第三个事件到达 … … … … 第二个事件到达 第一个事件到达
X1
X2 T1 T2
X3 T3
X4 T4
X5 T5
X6 T6
T0
t
Tn,n =1,2,...表示第n次事件发生的时刻,规定 T0 0. Xn Tn Tn-1,n 1, 2,...表示第n次与第n-1次事件发 生的时间间隔.
例 3.4
3.2.2 事件发生时刻的条件分布
考虑在N (t ) n的条件下,T1,T2,...Tn的联合分布.
先看下面的定理:
定理 设{N(t),t 0}是Poisson过程,则对 0 s<t, s P(T1 s | N (t ) 1) . t
证明: 对于s t, P(T1 s,N(t)=1) P(T1 s|N(t)=1)= P(N(t)=1) P(A发生在s时刻之前,(s,t]内A不发生) P(N(t)=1) P(N(s)=1) P(N(t) N(s) 0) P(N(t)=1) s (t s ) se e s . t te t
注意: 1. 非齐次Poisson过程不具备平稳增量性. 2. 非齐次Poisson过程可以描述机器的故障次数 养鸡场的产蛋数.
类似Poisson过程,非齐次Poisson过程也有一个等价 定义,首先介绍一个名词:
设m(t ) ( u )du, 并称之为非齐次Poisson过程{N (t ),
注意 定理3.2的逆命题亦为真,且该逆命题也给出了 Poisson过程的另一个定价定义(即定义3.3),希 望同学们务必记住.
定理 3.3 如果 {N(t),t 0} 是Poisson过程,那么事件发生时刻 Tn, n 1, 2,...服从参数为n和的分布.
证明关键之所在:
(Tn t ) ( N (t ) n),即第n次事件发生在时刻t 或之前相当于到时刻t已经发生的事件数至少 是n.
i 1 N(t)
我们就称{X(t),t 0}为复合Poisson过程.
注:复合Poisson过程未必是计数过程;但当Y i = c(常数),i= 1, 2,...,可化为Poisson过程.
例:考虑一保险公司:它接到索赔次数服从Poisson 过程{N(t)},每次的索赔额Yi是独立同分布的,且与 其发生时刻无关,那么该公司在[0,t]内的总索赔额 X(t)= Yi
第3章
主要内容:
Poisson 过程
1. 背景及定义 2. 与Poisson过程相关的分布 3. Poisson过程的推广
学习要求:
1.了解Poisson过程的基本概念极其背景。 2.掌握与Poisson过程相联系的、分布。 3.了解几种推广的Poisson过程。
§3.1 Poisson 过程
{N(t),t 0}: 在“排队模型”中刻画[0,t]内来到的顾客数; 在“风险模型”中表示[0,t]内发生的理赔次 数.
计数过程、Poisson过程
定义 3.1
随机过程{N(t),t 0}称为计数过程,若N(t)表示 时间段[0,t]内某一事件A发生的次数,且满足 (1) N(t)取值为非负的整数; (2) 当s<t 时,N(s) N(t)且N(t) N(s)表示 (s,t]时间内事件A发生的次数.
定义 3.2
t s t
(u)du的Poisson分布,即
n [m(t+s)-m(t)] P(N(t+s)-N(t)=n)= exp{[ m(t+s)-m(t)]} n!
例 3.7
见黑板
3.3.2 复合Poisson过程
设{Yi,i 1,2, ...}是一列独立且同分布的随机变量, {N(t),t 0}是Poisson过程,且N(t),t 0}与{Yi, i 1,2, ...}独立.记 X(t)= Yi ,
Poisson过程分解定理
作业
• 例题:
设南京火车站某个售票窗口,前来购票的乘客数 构成了一个Piosson过程. 设从凌晨0:00开始,此 售票窗口连续售票,乘客按照10人/时的平均速率 到达. 试求: (1) 从1:00到2:00这1小时内最多由5名乘客来此 购票的概率是多少? (2) 若已知从2:00到3:00没有人来买票,那么在 未来的1小时内,仍无乘客到来的概率是多少? (3) 若到4:30时共有10名乘客到来,且到5:30时 总计已到达20位乘客的概率是多少?
化为解微分方程
两边同乘eλt
再由数学归纳法得
例 3.3
(t) - t Pn(t)= e . n!
n
Hale Waihona Puke 事件A的发生形成了强度为的Poisson过程 {N(t), t 0}.如果每次事件发生时被记录下 来的概率为p,并用M(t)是一个强度为 p的 Piosson过程.
解答:
因为每次事件发生时,对它记录还是没记录与其 他事件的记录与否独立,而且事件发生形成了 Poisson过程,所以M(t)也具有平稳独立增量 性.下证M(t)服从 pt的Poisson分布.
2. Poisson过程在保险理论的应用