2021年信号与系统 抽样定理实验

合集下载

《信号与系统实验》信号的采样与恢复(抽样定理)实验一

《信号与系统实验》信号的采样与恢复(抽样定理)实验一

《信号与系统实验》信号的采样与恢复(抽样定理)实验一、实验目的1、了解电信号的采样方法与过程以及信号恢复的方法。

2、验证抽样定理。

二、实验设备1、信号与系统实验箱2、双踪示波器三、原理说明1、离散时间信号可以从离散信号源获得,也可以从连续时间信号抽样而得。

抽样信号f s(t)可以看成连续f(t)和一组开关函数s (t)的乘积。

s (t)是一组周期性窄脉冲,见实验图5-1,T s(t)称为抽样周期,其倒数f s(t)= 1/T s称为抽样频率。

图5-1 矩形抽样脉冲对抽样信号进行傅立叶分析可知,抽样信号的频率包括了原连续信号以及无限个经过平移的信号频率。

平移的频率等于抽样频率f s(t)及其谐波频率2f s、3f s》》》》》》。

当抽样信号是周期性窄脉冲时,平移后的频率幅度(sinx)/x规律衰减。

抽样信号的频谱是原信号频谱周期的延拓,它占有的频带要比原信号频谱宽得多。

2、正如测得了足够的实验数据以后,我们可以在坐标纸上把一系列数据点连起来,得到一条光滑的曲线一样,抽样信号在一定条件下也可以恢复到原信号。

只要用一截止频率等于原信号频谱中最高频率f n的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器输出可以得到恢复后的原信号。

3、但原信号得以恢复的条件是f s 2B,其中f s为抽样频率,B为原信号占有的频带宽度。

而f min=2B为最低抽样频率又称“柰奎斯特抽样率”。

当f s<2B时,抽样信号的频谱会发生混迭,从发生混迭后的频谱中我们无法用低通滤波器获得原信号频谱的全部内容。

在实际使用中,仅包含有限频率的信号是及少的,因此即使f s=2B,恢复后的信号失真还是难免的。

图5-2画出了当抽样频率f s>2B(不混叠时)f s<2B(混叠时)两种情况下冲激抽样信号的频谱。

t f(t)0F()t 0m ωm ω-(a)连续信号的频谱Ts t 0f s (t)F()t0m ωm ω-s ω-s ω()(b)高抽样频率时的抽样信号及频谱 不混叠图5-2 冲激抽样信号的频谱实验中f s >2B 、f s =2B 、f s <2B 三种抽样频率对连续信号进行抽样,以验证抽样定理——要使信号采样后能不失真地还原,抽样频率f s 必须大于信号频率中最高频率的两倍。

抽样定理_实验报告

抽样定理_实验报告

1. 了解电信号的采样方法与过程。

2. 理解信号恢复的方法。

3. 验证抽样定理的正确性。

二、实验原理抽样定理是信号处理中的一个基本原理,它指出:如果一个连续信号x(t)的频谱X(f)在频率域中满足带限条件,即X(f)在f=0到f=fm的范围内为有限值,且在f=fm之后为零,那么,只要采样频率fs大于2fm(其中fm是信号中最高频率分量的频率),则通过这些采样值就可以无失真地恢复出原信号。

三、实验设备与器材1. 信号与系统实验箱TKSS-C型。

2. 双踪示波器。

四、实验步骤1. 信号产生:使用信号与系统实验箱产生一个带限信号,其频谱在f=fm以下,在f=fm以上为零。

2. 采样:设置采样频率fs为fm的2倍以上,对产生的信号进行采样,得到采样序列。

3. 频谱分析:对采样序列进行频谱分析,观察其频谱特性。

4. 信号恢复:使用数字信号处理技术,对采样序列进行插值,恢复出原信号。

5. 波形比较:将恢复出的信号与原信号在示波器上进行比较,观察其波形差异。

五、实验结果与分析1. 采样序列的频谱分析:从实验结果可以看出,当采样频率fs大于2fm时,采样序列的频谱在f=fm以下与原信号的频谱相同,在f=fm以上为零,符合抽样定理的要求。

2. 信号恢复:通过插值恢复出的信号与原信号在示波器上显示的波形基本一致,说明在满足抽样定理的条件下,可以通过采样值无失真地恢复出原信号。

1. 通过本次实验,验证了抽样定理的正确性,加深了对信号采样与恢复方法的理解。

2. 在实际应用中,应根据信号的特点选择合适的采样频率,以确保信号采样后的质量。

3. 采样定理是信号处理中的基本原理,对于理解信号处理技术具有重要意义。

七、实验心得1. 本次实验使我深刻理解了抽样定理的基本原理,以及信号采样与恢复的方法。

2. 在实验过程中,我学会了使用信号与系统实验箱产生信号,以及进行频谱分析等基本操作。

3. 通过本次实验,我认识到理论与实践相结合的重要性,为今后的学习和工作打下了基础。

抽样定理实验报告(信号与系统)

抽样定理实验报告(信号与系统)

实验五抽样定理实验内容及步骤1、阅读范例程序Program5_2,在这个程序中,选择的信号的最高频率是多少?这个频率选择得是否恰当?为什么?答:选择信号的最高频率为100Hz。

这个频率选择恰当,因为f>2f max。

2、在1—8 之间选择抽样频率与信号最高频率之比,即程序Program5_2 中的a 值,反复执行范例程序Program5_2,观察重建信号与原信号之间的误差,通过对误差的分析,说明对于带限信号而言,抽样频率越高,则频谱混叠是否越小?解:a=1时图1a=3时图2a=8时图3第四幅图error代表着原信号与重建信号之间的误差。

由此得到结论,凡是带限信号,抽样频率越高,误差越小。

3、画出连续时间信号的时域波形及其幅频特性曲线,信号为:x=cos(5*pi*t)+1.5*sin(8*pi*t)+0.5*cos(25*pi*t)(1)、对信号进行采样,得到采样序列,画出采样频率分别为15Hz,30 Hz,60 Hz 时的采样序列波形;解:代码如下:tmax= 4;dt = 0.01;t = 0:dt:tmax;Ts = 1/15;ws= 2*pi/Ts;w0 = 25*pi;dw= 0.1;w = -w0:dw:w0;n = 0:1:tmax/Ts;x = cos(5*pi*t)+1.5*sin(8*pi*t)+0.5*cos(w0*t);xn =cos(5*pi*n*Ts)+1.5*sin(8*pi*n*Ts)+0.5*cos(w0*n*Ts);subplot(221)plot(t,x);title('A continuous-time signal x(t)');xlabel('Time t');grid onsubplot(223)stem(n,xn,'.');title('The sampled version x[n] of x(t)'),xlabel('Time index n');axis([0,tmax/Ts,0,1]),grid onxa= x*exp(-j*t'*w)*dt;X = 0;for k = -8:8;X = X + x*exp(-j*t'*(w-k*ws))*dt;endsubplot(222)plot(w,abs(xa))title('Magnitude spectrum of x(t)'),grid onaxis([-60,60,0,1.8*max(abs(xa))])subplot(224)plot(w,abs(X))title('Magnitude spectrum of x[n]');xlabel('Frequency in radians/s'),grid onaxis([-60,60,0,1.8*max(abs(xa))])图像如下:Ts=1/15时:图4 Ts=1/30时:图5Ts=1/60时:图6(2)、对不同采样频率下的采样序列进行频谱分析,绘制其幅频曲线,对比各频率下采样序列和的幅频曲线有无差别。

实验四信号的抽样和抽样定理

实验四信号的抽样和抽样定理
实验四:信号的抽样和抽样定理
一、实验目的:
1、掌握对连续时间信号进行取样的方法,了解取样信号 的频谱的特点; 2、验证取样定理。 二、实验原理: 1、所谓取样信号是对连续时间信号每隔一定的时间抽取一 次函数值而得到的一离散时间信号,取样信号 f s (t) 可以表 示成连续时间信号 f (t) 与取样脉冲序列 p(t) 的乘积,即

t
-ωs
ωs
ω
E Ts
Fs(jω)
t 0 图4-1 脉冲取样的时域波形 图4-2 脉冲取样的频谱
ω
如连续信号的频谱为F(jω ),则取样信号的频谱Fs(jω )如 图4-2所示: 即 Fs ( j ) Pn F[ j ( ns )] 上式表明,取样信号的频谱 Fs( j) 是被取样信号的频谱 F ( j )以取样频率 s 为间隔周期延拓而得到的,在周期延拓 过程中幅度被 Pn 加权。当取样脉冲 p(t ) 是周期矩形脉冲时, 取样信号的频谱为: E n Fs ( j ) Sa ( ) F [ j ( ns )] Ts n 2 2、取样信号在一定的条件下可以恢复出原信号。由取样 定理可知,要恢复出原信号首先必须满足 f s 2 f m ,其中 f s 为取样频率,f m 为原信号的最高频率分量;在满足取样 定理的前提下,用一截止频率为 f c 的低通滤波器滤除取样 信号中的高频分量则可得到原信号。
1、绘出实验内容(1)中的f(t)和fs(t)的波形; 2、绘出实验内容(2)中三种不同取样频率下的f(t)和 f’(t)的波形;比较后得出结论。
RLd和 f c 就可按下式计算出元件的数值。
RLd L fc 1 C f c RLd
L
C/2
C/2
图4-5

信号抽样定理实验报告

信号抽样定理实验报告

一、实验目的1. 理解并验证信号抽样定理的基本原理。

2. 学习信号抽样过程中频谱的变换规律。

3. 掌握信号从抽样信号中恢复的基本方法。

4. 通过实验加深对信号处理理论的理解。

二、实验原理信号抽样定理,也称为奈奎斯特定理,指出如果一个带限信号的最高频率分量小于抽样频率的一半,那么通过适当的方法可以将这个信号从其抽样信号中完全恢复出来。

具体来说,如果一个连续信号 \( x(t) \) 的最高频率分量为 \( f_{max} \),那么为了不失真地恢复原信号,抽样频率 \( f_s \) 必须满足 \( f_s > 2f_{max} \)。

三、实验设备与软件1. 实验设备:信号发生器、示波器、信号源、滤波器等。

2. 实验软件:MATLAB或其他信号处理软件。

四、实验步骤1. 信号生成:使用信号发生器生成一个连续的带限信号,例如正弦波、方波等,并记录其频率和幅度。

2. 信号抽样:使用信号源对生成的带限信号进行抽样,设定抽样频率 \( f_s \),并记录抽样后的信号。

3. 频谱分析:对原始信号和抽样信号分别进行傅里叶变换,分析其频谱,观察抽样频率对信号频谱的影响。

4. 信号恢复:使用滤波器对抽样信号进行低通滤波,去除高频分量,然后对滤波后的信号进行逆傅里叶变换,观察恢复后的信号与原始信号的一致性。

5. 改变抽样频率:重复步骤2-4,分别使用不同的抽样频率进行实验,比较不同抽样频率对信号恢复效果的影响。

五、实验结果与分析1. 频谱分析:通过实验发现,当抽样频率 \( f_s \) 小于 \( 2f_{max} \) 时,抽样信号的频谱会发生混叠,无法恢复出原始信号。

当 \( f_s \) 大于\( 2f_{max} \) 时,抽样信号的频谱不会发生混叠,可以恢复出原始信号。

2. 信号恢复:通过低通滤波器对抽样信号进行滤波,可以有效地去除高频分量,从而恢复出原始信号。

滤波器的截止频率应设置在 \( f_{max} \) 以下。

实验四、抽样定理

实验四、抽样定理

实验四、抽样定理
抽样定理是模拟信号数字化的理论基础。

当采样频率 小于 时, 在接收端恢复的信号失真比较大, 这是因为存在信号的混频;当采样频率大于或等于奈奎斯特频率 时, 恢复信号与原信号基本一致。

理论上, 理想的抽样频率为2倍的奈奎斯特带宽, 但实际工程应用中, 限带信号绝不会严格限带, 且实际滤波器特性并不理想, 通常选取抽样频率的2.5~5倍的最高频率 进行采样以避免失真。

例如, 普通的话音信号带宽为3.4kHz 左右, 而抽样频率则通常选取8kHz 。

本实验被采样的模拟信号源是幅度1V 、频率为100Hz 的正弦波, 抽样脉冲为窄矩形脉冲, 脉宽为1微秒。

抽样器用乘法器代替。

用于恢复信号的低通滤波器采用三阶巴特沃斯低通滤波器(Butterworth )。

为验证信号与恢复不失真条件和分析信号失真的原因, 我们分别选取了100Hz 、200Hz 、500Hz 等几种不同的抽样频率, 对原输入信号波形与抽样恢复后的波形进行观察和分析。

实验信号采样与恢复原理图:
信号采样与恢复的仿真模型如图:
1.实验要求: 信号源 信号预处理 LPF 抽样脉冲
恢复信号
2.根据要求搭建实验仿真的电路模型, 并进行参数设置, 系统采样速率为10kHz, 采样点为1024;
3.实验恢复过程, 为了便于观察, 将图中的两个增益置100;
4.观察原始信号、抽样脉冲、抽样信号、及恢复信号的波形与频谱;
5.将抽样脉冲频率分别置100、200、500Hz, 观察恢复后信号的波形的失真度, 验证抽样定理的要求;
6.观察图中使用的1.4两个LPF的作用;
将实验结果记录下来, 完成实验报告。

信号与系统实验3-抽样定理

信号与系统实验3-抽样定理

信号与系统实验指导书实验三 抽样定理一、实验目的1、理解奈奎斯特频率、奈奎斯特间隔。

2、理解时域抽样定理。

2、了解过抽样、欠抽样和临界抽样的区别。

二、实验内容f (t )被抽样后形成的抽样函数为f s (t ),设f (t )的最高频率为m ω,抽样冲激序列的频谱间隔为s ω。

如果m s ωω2>,称为过抽样;如果m s ωω2=,称为临界抽样;如果m s ωω2<,称为欠抽样。

对于过抽样和临界抽样可以从中恢复原信号,但无法从欠抽样信号中恢复原信号。

1、设()()t t Sa t f sin ==,()⎪⎩⎪⎨⎧><=101ωωπωF ,对信号Sa(t )进行过抽样,并由过抽样的信号恢复Sa(t)。

【解】f (t )的带宽为1=m ω,采样间隔ππ=<m s T ,取π7.0=s T (过抽样)。

利用MATLAB 的抽样函数Sinc(t )来表示Sa(t ),有Sa(t )=Sinc(t /π)。

为了比较抽样信号恢复后的信号与原信号的误差,计算两信号的绝对误差。

MATLAB 程序如下:wm=1; wc=1.1*wm;Ts=0.7*pi/wm; ws=2*pi/Ts;n= -100:100; %生成向量n=[-100,-99…-1,0,1…99,100]nTs=n*Ts; f=sinc(nTs/pi);Dt=0.005; t=-15:Dt:15; %生成向量t,(-15,15),间隔0.005fa=f*Ts*wc/pi*sinc((wc/pi)*(ones(length(nTs),1)*t-nTs'*ones(1,length(t)))); %恢复信号Sa(t)的表达式error=abs(fa-sinc(t/pi)); %绝对误差t1= -15:0.5:15; %生成向量t,(-15,15),间隔0.5f1=sinc(t1/pi); %取f1向量值subplot(311); %三个图,3行1列,绘制第一张stem(t1,f1); %一个t1值对应一个f1值,绘制火柴梗图ylabel('f(kTs)'); %标注纵坐标title('sa(t)=sinc(t/pi)的抽样信号'); %第1张图标题subplot(312); %绘制第2张图plot(t,fa); %绘图,t 横坐标,fa 纵坐标ylabel('fa(t)'); %标注纵坐标title('由sa(t)=sinc(t/pi)的过抽样信号重构sa(t)');grid; %指定图中带网格subplot(313); %绘制第3张图plot(t,error); %绘图,t 横坐标,error 纵坐标ylabel('error(t)'); %标注纵坐标title('过抽样信号与原信号的误差error(t)');【上机运行上述程序,记录运行结果,如果有图,定性画出,或者截图保存】2、对上题中Sa(t )进行欠抽样,并由欠抽样的信号恢复Sa(t )。

抽样定理与信号恢复实验报告

抽样定理与信号恢复实验报告

抽样定理与信号恢复实验报告一、实验目的1、掌握抽样定理的基本原理和抽样过程。

2、理解抽样频率对信号恢复的影响。

3、学会使用实验设备进行抽样和信号恢复的操作。

4、通过实验观察和数据分析,验证抽样定理的正确性。

二、实验原理1、抽样定理抽样定理指出,对于一个带宽有限的连续信号,如果抽样频率大于或等于信号最高频率的两倍,那么可以通过抽样值无失真地恢复出原始信号。

设连续信号为$f(t)$,其频谱为$F(ω)$,最高频率为$ω_m$。

以抽样间隔$T_s = 1/f_s$ 对$f(t)$进行抽样,得到抽样信号$f_s(t)$。

抽样信号的频谱$F_s(ω)$是原信号频谱$F(ω)$以抽样频率$ω_s =2πf_s$ 为周期进行周期延拓。

2、信号恢复从抽样信号恢复原始信号通常使用低通滤波器。

理想低通滤波器的频率响应为:\H(ω) =\begin{cases}1, &|ω| <ω_c \\0, &|ω| >ω_c\end{cases}\其中,$ω_c$ 为低通滤波器的截止频率,通常取$ω_c =ω_m$。

通过低通滤波器对抽样信号进行滤波,即可得到恢复后的信号。

三、实验设备1、信号发生器:用于产生连续信号。

2、抽样脉冲发生器:产生抽样脉冲。

3、示波器:用于观察信号的波形。

4、低通滤波器:实现信号的恢复。

四、实验内容及步骤1、产生连续信号使用信号发生器产生一个频率为$f_1$ 的正弦信号,调节信号的幅度和频率,使其在示波器上显示清晰稳定。

2、选择抽样频率设置不同的抽样频率$f_s$,分别为$2f_1$、$3f_1$ 和$5f_1$。

3、抽样过程将抽样脉冲与连续信号同时输入到示波器的两个通道,观察抽样信号的波形。

4、信号恢复将抽样信号通过低通滤波器,在示波器上观察恢复后的信号,并与原始信号进行比较。

5、记录数据记录不同抽样频率下抽样信号和恢复信号的波形、幅度和频率等数据。

五、实验数据及分析1、当抽样频率为$2f_1$ 时抽样信号的频谱发生了混叠,通过低通滤波器恢复的信号出现了明显的失真,幅度减小,频率也发生了变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

*欧阳光明*创编 2021.03.07
信号与系统
欧阳光明(2021.03.07)
实验报告
实验六抽样定理
实验六抽样定理
一、实验内容:(60分)
1、阅读并输入实验原理中介绍的例题程序,观察输出的数据和图形,结合基本原理理解每一条语句的含义。

2、已知一个连续时间信号f(t)=sinc(t),取最高有限带宽频率f m=1Hz。

(1)分别显示原连续信号波形和F s=f m、F s=2f m、F s=3f m三种情况下抽样信号的波形;
程序如下:
dt=0.1;
f0=0.2;
T0=1/f0;
fm=5*f0;
Tm=1/fm;
t=-10:dt:10;
f=sinc(t);
subplot(4,1,1);
plot(t,f);
axis([min(t),max(t),1.1*min(f),1.1*max(f)]);
title('Ô-Á¬ÐøÐźźͳéÑùÐźÅ');
for i=1:3;
fs=i*fm;Ts=1/fs;
n=-10:Ts:10;
f=sinc(n);
subplot(4,1,i+1);stem(n,f,'filled');
axis([min(n),max(n),1.1*min(f),1.1*max(f)]); end
运行结果如下:
(2)求解原连续信号和抽样信号的幅度谱;
程序: dt=0.1;fm=1;
t=-8:dt:8;N=length(t);
f=sinc(t);
wm=2*pi*fm;k=0:N-1;w1=k*wm/N;
F1=f*exp(-
j*t'*w1)*dt;subplot(4,1,1);plot(w1/(2*pi),abs(F1));
axis([0,max(4*fm),1.1*min(abs(F1)),1.1*max(abs(F1))]); for i=1:3;
if i<=2 c=0;else c=1;end
fs=(i+c)*fm;Ts=1/fs;
n=-6:Ts:6;
N=length(n);
f=sinc(n);
wm=2*pi*fs;
k=0:N-1;
w=k*wm/N;
F=f*exp(-1i*n'*w)*Ts;
subplot(4,1,i+1);plot(w/(2*pi),abs(F));
axis([0,max(4*fm),0.5*min(abs(F)),1.1*max(abs(F))]); end
波形如下:
(3)用时域卷积的方法(内插公式)重建信号。

程序、波形如下:
dt=0.01;f0=0.2;T0=1/f0;
fm=5*f0;Tm=1/fm;
t=-3*T0:dt:3*T0;
x=sinc(t);
subplot(4,1,1);plot(t,x);
axis([min(t),max(t),1.1*min(x),1.1*max(x)]);
title('原连续信号与抽样信号');
for i=1:3;
fs=i*fm;Ts=1/fs;
n=0:(3*T0)/Ts;
t1=-3*T0:Ts:3*T0;
x1=sinc(n/fs);
T_N=ones(length(n),1)*t1-n'*Ts*ones(1,length(t1)); xa=x1*sinc(fs*pi*T_N);
subplot(4,1,i+1);plot(t1,xa);
axis([min(t1),max(t1),1.1*min(xa),1.1*max(xa)]); end
3、已知一个时间序列的频谱为:j ω
-j ωn -j ω-j2ω-j3ω-j4ωn=-X(e )=x(n)e =2+4e +6e +4e +2e ∞∞∑
分别取频域抽样点数N 为3、5和10,用IFFT 计算并求出其时间序列x(n),绘图显示个时间序列。

由此讨论由频域抽样不失真地恢复原时域信号的条件。

程序:
Ts=1;N0=[3,5,10];
for r=1:3;
N=N0(r);
D=2*pi/(Ts*N);
kn=floor(-(N-1)/2:-1/2);
kp=floor(0:(N-1)/2);
w=[kp,kn]*D;
X=2+4*exp(-j*w)+6*exp(-j*2*w)+4*exp(-
j*3*w)+2*exp(-j*4*w);
n=0:N-1;
x=ifft(X,N)
subplot(1,3,r);stem(n*Ts,abs(x),'filled');
box
end
显示数据:
x =6.0000 6.0000 6.0000
x =2.0000 4.0000 6.0000 4.0000 2.0000
x =
Columns 1 through 6
2.0000 - 0.0000i 4.0000 + 0.0000i 6.0000 - 0.0000i 4.0000 + 0.0000i 2.0000 - 0.0000i 0 + 0.0000i
Columns 7 through 10
-0.0000 - 0.0000i 0 + 0.0000i 0 - 0.0000i 0 +
0.0000i
波形如下:
由此讨论由频域抽样不失真地恢复原时域信号的条件:X(e)的频谱表达式可知,有限长时间序列x(n)由jω
的长度M=5,现分别取频域抽样点数为N=3,5,10,并由图形的结果可知:
①当N=5和N=10时,N≥M,能够不失真地恢复出原信号x(n);
②当N=3时,N<M,时间序列有泄漏,形成了混叠,不能无失真地恢复出原信号x(n)。

混叠的原因是上一周期的后2点与本周期的前两点发生重叠
结论:从频域抽样序列不失真地恢复离散时域信号的条件是:频域抽样点数N大于或等于序列长度M(即N≥M),才能无失真地恢复原时域信号。

二、思考题:(20分)
1、预习思考题
(1) 什么是内插公式?在MATLAB 中内插公式可用什么函数来编写?
答:抽样信号a ˆx (t)通过滤波器输出,其结果应为
a ˆx (t)与h(t)的卷积积分:
sin[()/]ˆˆ()()()()()()()()/a a a a a n t nT T y t x t x t h t x h t d x nT t nT T
πτττπ∞∞-∞=-∞-==*=-=-∑⎰该式称为内插公式。

MATLAB 中提供了t t c ππ)
sin(sin =函
数,可以很方便地使用内插公式。

(2)从频域抽样序列不失真地恢复离散时域信号的条件是什么?
答:假定有限长序列x(n)的长度为M ,频域抽样点数为N ,原时域信号不失真地由频域抽样恢复的条件如下:
① 如果x(n)不是有限长序列,则必然造成混叠现象,产生误差;
② 如果x(n)是有限长序列,且频域抽样点数N 小于序列长度M (即N<M ),则x(n)以N 为周期进行延拓也将造成混叠,从x(n)中不能无失真地恢复出原信号x(n)。

③如果x(n)是有限长序列,且频域抽样点数N大于或等于序列长度M(即N≥M),则从x(n)中能无失真地恢复出原信号x(n),即
2、①试归纳用IFFT数值计算方法从频谱恢复离散时间序列的方法和步骤。

答:用IFFT数值计算方法从频谱恢复离散时间序列的方法:依据频域抽样定理确定采样点数N必须大于或等于有限长序列x(n)的长度M,才能由频域抽样得到的频谱序列无失真地恢复原时间序列。

步骤: (1).根据奈奎斯特定理确定采样频率Fs (2).进而确定模拟域的分辨率(3).采样点数N取不同的值时,观察从频谱恢复离散时间序列的图形,取没有混叠现象的图形,就是从频谱恢复的离散时间序列。

②从频谱恢复连续时间信号与恢复离散时间序列有何不同?
答:用频谱恢复连续时间信号只不过是将采样周期取得比用频谱恢复离散时间序列的采样周期更小得
X(Ω)后作IDFT,然后再用plot自动进行插值,就获得k
连续时间信号。

三、实验总结:(10分)
通过本实验,要想无失真的恢复原信号,必须满足抽样定理,抽样频率Fs>Fh。

认识Matlab这个功能强大的仿真软件,初步了解了Matlab的操作界面以及简单的程序语言和程序运行方式,通过具体的取样和恢复信号的过程,更加深刻了解了采样定理的定义的具体含义:将模拟信号转换成数字信号,即对连续信号进行等间隔采样形式采样,采样信号的频率是原连续信号的频谱以采样频率为周期的延拓形成的,通过MATLAB编程实现对抽样定理的验证,加深了抽样定理的理解。

同时自己训练应用计算机分析问题的能力。

相关文档
最新文档