概率论与数理统计41数学期望
高等教育自学考试 概率论与数理统计期末自学 复习重要知识点

概率论与数理统计期末复习重要知识点第二章知识点:1.离散型随机变量:设X 是一个随机变量,如果它全部可能的取值只有有限个或可数无穷个,则称X 为一个离散随机变量。
2.常用离散型分布:(1)两点分布(0-1分布): 若一个随机变量X 只有两个可能取值,且其分布为12{},{}1(01)P X x p P X x p p ====-<<,则称X 服从12,x x 处参数为p 的两点分布。
两点分布的概率分布:12{},{}1(01)P X x p P X x pp ====-<<两点分布的期望:()E X p =;两点分布的方差:()(1)D X p p =-(2)二项分布:若一个随机变量X 的概率分布由式{}(1),0,1,...,.k kn k n P x k C p p k n -==-=给出,则称X 服从参数为n,p 的二项分布。
记为X~b(n,p)(或B(n,p)).两点分布的概率分布:{}(1),0,1,...,.k k n kn P x k C p p k n -==-= 二项分布的期望:()E X np =;二项分布的方差:()(1)D X np p =-(3)泊松分布:若一个随机变量X 的概率分布为{},0,0,1,2,...!kP X k ek k λλλ-==>=,则称X 服从参数为λ的泊松分布,记为X~P (λ)泊松分布的概率分布:{},0,0,1,2,...!kP X k ek k λλλ-==>=泊松分布的期望:()E X λ=;泊松分布的方差:()D X λ=4.连续型随机变量:如果对随机变量X 的分布函数F(x),存在非负可积函数()f x ,使得对于任意实数x ,有(){}()xF x P X x f t dt-∞=≤=⎰,则称X 为连续型随机变量,称()f x 为X 的概率密度函数,简称为概率密度函数。
5.常用的连续型分布: (1)均匀分布:若连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧<<-=其它,0,1)(bx a a b x f ,则称X 在区间(a,b )上服从均匀分布,记为X~U(a,b)均匀分布的概率密度:⎪⎩⎪⎨⎧<<-=其它,0,1)(b x a a b x f 均匀分布的期望:()2a bE X +=;均匀分布的方差:2()()12b a D X -= (2)指数分布:若连续型随机变量X 的概率密度为00()0xe xf x λλλ-⎧>>=⎨⎩,则称X 服从参数为λ的指数分布,记为X~e (λ)指数分布的概率密度:00()0xe xf x λλλ-⎧>>=⎨⎩指数分布的期望:1()E X λ=;指数分布的方差:21()D X λ=(3)正态分布:若连续型随机变量X的概率密度为22()2()x f x x μσ--=-∞<<+∞则称X 服从参数为μ和2σ的正态分布,记为X~N(μ,2σ)正态分布的概率密度:22()2()x f x x μσ--=-∞<<+∞正态分布的期望:()E X μ=;正态分布的方差:2()D X σ=(4)标准正态分布:20,1μσ==,2222()()x t xx x e dtϕφ---∞=标准正态分布表的使用: (1)()1()x x x φφ<=--(2)~(0,1){}{}{}{}()()X N P a x b P a x b P a x b P a x b b a φφ<≤=≤≤=≤<=<<=-(3)2~(,),~(0,1),X X N Y N μμσσ-=故(){}{}()X x x F x P X x P μμμφσσσ---=≤=≤={}{}()()a b b a P a X b P Y μμμμφφσσσσ----<≤=≤≤=-定理1: 设X~N(μ,2σ),则~(0,1)X Y N μσ-=6.随机变量的分布函数: 设X 是一个随机变量,称(){}F x P X x =≤为X 的分布函数。
概率论与数理统计4.1离散型随机变量的数学期望

12×0.6-5×0.4=5.2万元 平均效益的计算方法就是离散型随机变量数学期望的计算方法.
河北农业大学理学院
一维离散型随机变量数学期望的概念
定义 设离散型随机变量X的概率分布为P(X=xk)=pk,k=1,2,...,
④若(X,Y)是二维随机向量,且X与Y独立,则E(XY)=EXEY 证明:
E(X Y)
(xi y j ) pij
X0
1
2
3
P 0.750 0.204 0.041 0.005
则有:
E( X ) 0 0.750 1 0.204 2 0.041 3 0.005 0.301.
河北农业大学理学院
一维离散型随机变量数学期望例题小结
经计算可得: (1) 若X服从参数为p的0-1分布,则EX=p; (2) 若X~B(n,p),则EX=np; (3) 若X服从参数为λ的泊松分布,则EX= λ.
若Y=g(X),且E(g(X))存在,则:E(g( X )) g(xn ) pn
n
同理
若g(X,Y)为随机变量X,Y的函数,E[g(X,Y)]存在,则
E[g(X ,Y)]
g(xi , y j ) pij
ij
河北农业大学理学院
例题分析
例1 设随机变量X 的分布律为
X
-1
0
1
2
P
0.1
0.3
0.4 0.2
k
注意 数学期望反映了随机变量取值的平均值,它是一种加权平均.
河北农业大学理学院
一维离散型随机变量数学期望例题分析
例1 泊松分布 设 X ~ P(), 且分布律为
概率论与数理统计复习笔记

概率论与数理统计复习第一章概率论的基本概念一.基本概念随机试验E:1可以在相同的条件下重复地进行;2每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;3进行一次试验之前不能确定哪一个结果会出现.样本空间S: E的所有可能结果组成的集合. 样本点基本事件:E的每个结果.随机事件事件:样本空间S的子集.必然事件S:每次试验中一定发生的事件. 不可能事件:每次试验中一定不会发生的事件.二. 事件间的关系和运算事件B包含事件A 事件A发生必然导致事件B发生.∪B和事件事件A与B至少有一个发生.3. A∩B=AB积事件事件A与B同时发生.4. A-B 差事件事件A 发生而B 不发生.5. AB= A 与B 互不相容或互斥事件A 与B 不能同时发生.6. AB=且A ∪B=S A 与B 互为逆事件或对立事件表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B .运算规则 交换律 结合律 分配律 德摩根律 B A B A = B A B A =三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为PA,称为事件A 的概率.1非负性 PA ≥0 ; 2归一性或规范性 PS=1 ;3可列可加性 对于两两互不相容的事件A 1,A 2,…A i A j =φ, i ≠j, i,j=1,2,…,PA 1∪A 2∪…=P A 1+PA 2+…2.性质1 P = 0 , 注意: A 为不可能事件2有限可加性对于n个两两互不相容的事件A1,A2,…,An,PA1∪A2∪…∪An=PA1+PA2+…+PAn有限可加性与可列可加性合称加法定理3若A B, 则PA≤PB, PB-A=PB-PA .4对于任一事件A, PA≤1, PA=1-PA .5广义加法定理对于任意二事件A,B ,PA∪B=PA+PB-PAB .对于任意n个事件A1,A2,…,An…+-1n-1PA1A2…An四.等可能古典概型1.定义如果试验E满足:1样本空间的元素只有有限个,即S={e1,e2,…,en};2每一个基本事件的概率相等,即Pe1=Pe2=…= Pen.则称试验E所对应的概率模型为等可能古典概型.2.计算公式 PA=k / n 其中k是A中包含的基本事件数, n是S中包含的基本事件总数.五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率PB|A=PAB / PA PA>0.2.乘法定理 PAB=PA P B|A PA>0; PAB=PB P A|B PB>0.PA 1A 2…A n =PA 1PA 2|A 1PA 3|A 1A 2…PA n |A 1A 2…A n-1 n ≥2, PA 1A 2…A n-1 > 03. B 1,B 2,…,B n 是样本空间S 的一个划分B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S ,则当PB i >0时,有全概率公式 PA=()()i ni i B A P B P ∑=1当PA>0, PB i>0时,有贝叶斯公式P B i|A=()()()()()()∑==ni i i i i i B A P B P B A P B P A P AB P 1. 六.事件的独立性1.两个事件A,B,满足PAB = PA PB 时,称A,B 为相互独立的事件.1两个事件A,B 相互独立 PB= P B|A .2若A 与B,A 与B ,A 与B, ,A 与B 中有一对相互独立,则另外三对也相互独立.2.三个事件A,B,C 满足PAB =PA PB, PAC= PA PC, PBC= PB PC,称A,B,C 三事件两两相互独立. 若再满足PABC =PA PB PC,则称A,B,C 三事件相互独立.个事件A 1,A 2,…,A n ,如果对任意k 1<k ≤n,任意1≤i 1<i 2<…<i k ≤n.有()()()()kki i i i i i A P A P A P A A A P 2121=,则称这n 个事件A 1,A 2,…,A n 相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X e 称为随机变量.2.随机变量X 的分布函数Fx=P{X ≤x} , x 是任意实数. 其性质为:10≤Fx≤1 ,F -∞=0,F∞=1. 2Fx 单调不减,即若x 1<x 2 ,则 Fx 1≤Fx 2.3Fx 右连续,即Fx+0=Fx. 4P{x 1<X≤x 2}=Fx 2-Fx 1.二.离散型随机变量 只能取有限个或可列无限多个值的随机变量1.离散型随机变量的分布律 P{X= x k }= p k k=1,2,… 也可以列表表示. 其性质为:1非负性 0≤P k ≤1 ; 2归一性11=∑∞=k k p .2.离散型随机变量的分布函数 Fx=∑≤xX k k P 为阶梯函数,它在x=x kk=1,2,…处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布1X~0-1分布 P{X=1}= p ,P{X=0}=1–p 0<p<1 .2X~bn,p 参数为n,p 的二项分布P{X=k}=()kn k p p k n --⎪⎪⎭⎫ ⎝⎛1k=0,1,2,…,n 0<p<1 3X~参数为的泊松分布 P{X=k}=λλ-e k k !k=0,1,2,… >0 三.连续型随机变量1.定义 如果随机变量X 的分布函数Fx 可以表示成某一非负函数fx 的积分Fx=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f x 称为X 的概率密度函数.2.概率密度的性质1非负性 fx ≥0 ; 2归一性 ⎰∞∞-dx x f )(=1 ;3 P{x 1<X ≤x 2}=⎰21)(xx dx x f ; 4若f x 在点x 处连续,则f x=F/x .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 .3.三种重要的连续型随机变量的分布1X ~U a,b 区间a,b 上的均匀分布⎩⎨⎧=-0)(1a b x f其它b x a << . 2X 服从参数为的指数分布.()⎩⎨⎧=-0/1θθx ex f 00≤>x x 若若 >0.3X~N ,2参数为,的正态分布222)(21)(σμσπ--=x e x f -<x<, >0.特别, =0, 2=1时,称X 服从标准正态分布,记为X~N 0,1,其概率密度2221)(x e x -=πϕ , 标准正态分布函数 ⎰=Φ∞--xt dt e x 2221)(π, -x=1-Φx .若X ~N ,2, 则Z=σμ-X ~N 0,1, P{x 1<X ≤x 2}=Φσμ-2x-Φσμ-1x .若P{Z>z }= P{Z<-z }= P{|Z|>z /2}= ,则点z ,-z , z / 2分别称为标准正态分布的上,下,双侧分位点. 注意:z =1- , z 1- = -z .四.随机变量X 的函数Y= g X 的分布1.离散型随机变量的函数若gx k k=1,2,…的值全不相等,则由上表立得Y=gX 的分布律.若gx k k=1,2,…的值有相等的,则应将相等的值的概率相加,才能得到Y=gX 的分布律.2.连续型随机变量的函数若X 的概率密度为f X x,则求其函数Y=gX 的概率密度f Y y 常用两种方法:1分布函数法 先求Y 的分布函数F Y y=P{Y ≤y}=P{gX ≤y}=()()dx x f ky Xk∑⎰∆其中Δk y 是与gX ≤y 对应的X 的可能值x 所在的区间可能不只一个,然后对y 求导即得f Y y=F Y/y .2公式法 若gx 处处可导,且恒有g /x>0 或g / x<0 ,则Y=g X 是连续型随机变量,其概率密度为()()()()⎩⎨⎧'=yhyhfyf XY其它βα<<y其中hy是gx的反函数 , = min g -,g = max g -,g .如果f x在有限区间a,b以外等于零,则 = min g a,g b = max g a,g b .第三章二维随机变量及其概率分布一.二维随机变量与联合分布函数1.定义若X和Y是定义在样本空间S上的两个随机变量,则由它们所组成的向量X,Y称为二维随机向量或二维随机变量.对任意实数x,y,二元函数Fx,y=P{X≤x,Y≤y}称为X,Y的X和Y的联合分布函数.2.分布函数的性质1Fx,y分别关于x和y单调不减.20≤Fx,y≤1 , Fx,- =0, F-,y=0, F-,-=0, F,=1 .3 Fx,y关于每个变量都是右连续的,即 Fx+0,y= Fx,y, Fx,y+0= Fx,y .4对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= Fx 2,y 2- Fx 2,y 1- Fx 1,y 2+ Fx 1,y 1二.二维离散型随机变量及其联合分布律1.定义 若随机变量X,Y 只能取有限对或可列无限多对值x i ,y j i ,j =1,2,… 称X,Y 为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为X,Y 的联合分布律.也可列表表示.2.性质 1非负性 0≤p i j ≤1 .2归一性 ∑∑=i jijp 1 .3. X,Y 的X 和Y 的联合分布函数Fx,y=∑∑≤≤x x yy ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f x,y,使对任意的x 和y,有Fx,y=⎰⎰∞-∞-y xdudv v u f ),(则称X,Y 为二维连续型随机变量,称fx,y 为X,Y 的X 和Y 的联合概率密度.2.性质 1非负性 f x,y ≥0 . 2归一性 1),(=⎰⎰∞∞-∞∞-dxdy y x f .3若f x,y 在点x,y 连续,则yx y x F y x f ∂∂∂=),(),(2 4若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. X,Y 关于X 的边缘分布函数 F X x = P{X ≤x , Y<}= F x , .X,Y 关于Y 的边缘分布函数 F Y y = P{X<, Y ≤y}= F ,y2.二维离散型随机变量X,Y关于X 的边缘分布律 P{X= x i }=∑∞=1j ij p = p i · i =1,2,… 归一性 11=∑∞=•i i p .关于Y 的边缘分布律 P{Y= y j }=∑∞=1i ij p = p·jj =1,2,… 归一性11=∑∞=•j j p .3.二维连续型随机变量X,Y关于X 的边缘概率密度f X x=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X关于Y 的边缘概率密度f Y y=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dyy f Y五.相互独立的随机变量1.定义若对一切实数x,y,均有Fx,y= FX x FYy ,则称X和Y相互独立.2.离散型随机变量X和Y相互独立⇔p i j= p i··p·j i ,j =1,2,…对一切x i,y j成立.3.连续型随机变量X和Y相互独立⇔f x,y=f X xf Y y对X,Y所有可能取值x,y都成立.六.条件分布1.二维离散型随机变量的条件分布定义设X,Y是二维离散型随机变量,对于固定的j,若P{Y=yj}>0,则称P{X=xi |Y=yj}为在Y= yj条件下随机变量X的条件分布律.同样,对于固定的i,若P{X=xi}>0,则称P{Y=yj |X=xi}为在X=xi 条件下随机变量Y 的条件分布律.,}{},{jj ijjippyYPyYxXP•=====,}{},{•=====ij iijippxXPyYxXP第四章 随机变量的数字特征一.数学期望和方差的定义随机变量X 离散型随机变量连续型随机变量分布律P{X=x i }= p i i =1,2,… 概率密度f x数学期望均值EX∑∞=1i i i p x 级数绝对收敛⎰∞∞-dx x xf )(积分绝对收敛方差DX=E{X-EX 2}[]∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2=EX 2-EX 2 级数绝对收敛 积分绝对收敛函数数学期望EY=EgXi i i p x g ∑∞=1)(级数绝对收敛 ⎰∞∞-dx x f x g )()(积分绝对收敛标准差X=√DX .二.数学期望与方差的性质1. c 为为任意常数时, Ec = c , EcX = cEX , Dc = 0 , D cX = c 2 DX .,Y为任意随机变量时, E X±Y=EX±EY .3. X与Y相互独立时, EXY=EXEY , DX±Y=DX+DY .4. DX = 0 P{X = C}=1 ,C为常数.三.六种重要分布的数学期望和方差 EX DX~ 0-1分布P{X=1}= p 0<p<1 p p 1- p ~ b n,p 0<p<1 n p n p 1- p ~~ Ua,b a+b/2 b-a 2/12服从参数为的指数分布2~ N ,22四.矩的概念随机变量X的k阶原点矩EX k k=1,2,…随机变量X 的k 阶中心矩E{X-EX k}随机变量X 和Y 的k+l 阶混合矩EX k Y l l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{X-EX k Y-EY l }第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如:样本均值∑==n i i X n X 11 样本方差()∑--==n i i X X n S 12211 样本标准差S样本k 阶矩∑==n i k i k X n A 11 k=1,2,… 样本k 阶中心矩∑-==n i ki k X X n B 1)(1k=1,2,…二.抽样分布 即统计量的分布1.X 的分布 不论总体X 服从什么分布, E X = EX , D X = DX / n .特别,若X~ N ,2 ,则 X ~ N , 2 /n .分布 1定义 若X ~N 0,1,则Y =∑=ni i X 12~ 2n 自由度为n 的2分布.2性质 ①若Y~ 2n,则EY = n , DY = 2n .②若Y 1~ 2n 1 Y 2~ 2n 2 ,则Y 1+Y 2~ 2n 1 + n 2.③若X~ N ,2 , 则22)1(σS n -~ 2n-1,且X 与S 2相互独立.3分位点 若Y~ 2n,0< <1 ,则满足的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为2分布的上、下、双侧分位点.3. t 分布1定义 若X~N 0,1 ,Y~ 2 n,且X,Y 相互独立,则t=nY X~tn 自由度为n 的t 分布. 2性质①n →∞时,t 分布的极限为标准正态分布.②X ~N ,2 时,nS X μ-~ t n-1 . ③两个正态总体相互独立的样本 样本均值 样本方差X~ N 1,12 且12=22=2 X 1 ,X 2 ,…,X n1 X S 12Y~ N 2,22 Y 1 ,Y 2 ,…,Y n2 Y S 22则 212111)()(n n S Y X w +---μμ~ t n 1+n 2-2 , 其中 2)1()1(212222112-+-+-=n n S n S n S w3分位点 若t ~ t n ,0 < <1 , 则满足的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧分位点.注意: t 1- n = - t n.分布 1定义 若U~2n 1, V~ 2n 2, 且U,V 相互独立,则F =21n V n U ~Fn 1,n 2自由度为n 1,n 2的F 分布.2性质条件同3.2③22212221σσS S ~Fn 1-1,n 2-13分位点 若F~ Fn 1,n 2 ,0< <1,则满足的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧分位点. 注意: .).(1),(12211n n F n n F αα=- 第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数1, 2,…, k .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμ 解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111kk k k k μμμθθμμμθθμμμθθ ,以样本矩A l 取代总体矩 ll=1,2,…,k 得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A θθθθθθ,若代入样本值则得到矩估计值.2.最大似然估计法若总体分布形式可以是分布律或概率密度为px, 1, 2,…, k ,称样本X 1 ,X 2 ,…,X n 的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθ 为似然函数.取使似然函数达到最大值的∧∧∧k θθθ,,,21 ,称为参数1, 2,…,k 的最大似然估计值,代入样本得到最大似然估计量.若L 1, 2,…, k 关于1, 2,…, k 可微,则一般可由似然方程组 0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iLθ i =1,2,…,k 求出最大似然估计. 3.估计量的标准(1)无偏性 若E ∧θ=,则估计量∧θ称为参数的无偏估计量.不论总体X 服从什么分布, E X = EX , ES 2=DX, EA k =k =EX k ,即样本均值X , 样本方差S 2,样本k 阶矩A k 分别是总体均值EX,方差DX,总体k 阶矩k 的无偏估计,2有效性 若E ∧θ1 =E ∧θ2= , 而D ∧θ1< D ∧θ2, 则称估计量∧θ1比∧θ2有效.3一致性相合性 若n →∞时,θθP →∧,则称估计量∧θ是参数的相合估计量.二.区间估计1.求参数的置信水平为1-的双侧置信区间的步骤1寻找样本函数W=WX 1 ,X 2 ,…,X n ,,其中只有一个待估参数未知,且其分布完全确定.2利用双侧分位点找出W 的区间a,b,使P{a<W <b}=1-.3由不等式a<W<b 解出θθθ<<则区间θθ,为所求.2.单个正态总体待估参数 其它参数 W 及其分布 置信区间2已知 nX σμ-~N 0,1 2/ασz n X ±2未知 nS X μ-~ t n-1 )1((2/-±n t n S X α 2未知22)1(σS n -~ 2n-1 ))1()1(,)1()1((22/1222/2-----n S n n S n ααχχ 3.两个正态总体1均值差 1- 2其它参数 W 及其分布 置信区间已知2221,σσ22212121)(n n Y X σσμμ+--- ~ N0,1 )(2221212n n z Y Xσσα+±-未知22221σσσ==212111)(n n S Y X w +---μμ~tn 1+n 2-2)11)2((21212n n S n n t Y X w+-+±-α 其中S w 等符号的意义见第六章二. 3 2③.2 1, 2未知, W=22212221σσS S ~ Fn 1-1,n 2-1,方差比12/22的置信区间为注意:对于单侧置信区间,只需将以上所列的双侧置信区间中的上下限中的下标/2改为,另外的下上限取为- 即可.。
概率论与数理统计公式整理(超全免费版)

P( B | A)
P( AB) P( A) P( B) P( B) P( A) P( A)
(14)独立 性
若事件 A 、 B 相互独立,则可得到 A 与 B 、 A 与 B 、 A 与 B 也都相互独 立。 必然事件 和不可能事件 Ø 与任何事件都相互独立。 Ø 与任何事件都互斥。 ②多个事件的独立性 设 ABC 是三个事件,如果满足两两独立的条件, P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A) 并且同时满足 P(ABC)=P(A)P(B)P(C) 那么 A、B、C 相互独立。 对于 n 个事件类似。 设事件 B1, B 2,, Bn 满足 1° B1, B 2,, Bn 两两互不相容, P( Bi ) 0(i 1,2,, n) ,
F ( ) lim F ( x) 0 ,
x
F ( ) lim F ( x) 1 ;
x
F ( x 0) F ( x) ,即 F ( x) 是右连续的; P( X x) F ( x) F ( x 0) 。
xk x
x
对于离散型随机变量, F ( x)
P(a X b) F (b) F (a)
可以得到 X 落入区间 ( a, b] 的概率。分布
函数 F ( x) 表示随机变量落入区间(– ∞,x]内的概率。 分布函数具有如下性质: 1° 2° 3° 4° 5°
0 F ( x) 1,
x ;
F ( x) 是单调不减的函数,即 x1 x2 时,有 F ( x1) F ( x2) ;
A、B 同时发生:A B,或者 AB。A B=Ø,则表示 A 与 B 不可能同时发生,
概率论与数理统计复习4-5章

∑ g ( x ) p 绝对收敛,则Y的期望为 ∞
k =1 k k
∑ g(x
k =1
k
) pk
(2) 设X是连续型随机变量,概率密度为 f ( x) , 如果积分 ∫−∞ g ( x) f ( x)dx 绝对收敛,则Y的期望为
E (Y ) = E[ g ( X )] = ∫ g ( x ) f ( x )dx
例 设X的概率分布律为
X −1
0 12
1
2
p 1 3 1 6 1 6 1 12 1 4
试求Y=-X+1及 Z = X 2 的期望和方差。 X -1 0 1/2 解 由于 P 1/3 1/6 1/6 Y =-X+1 2 1 1/2 Z = X2 1 0 1/4
1 1 1 1 1 1 2 E (Y ) = ( −1) ⋅ + 0 ⋅ + ⋅ + 1⋅ + 2 ⋅ = 4 12 2 6 6 3 3
2 2
D( Z ) = E ( Z 2 ) + [ E ( Z )]2 = 2.23264
1 + x − 1 < x < 0 例 设随机变量X的概率密度为 f ( x ) = 1 − x 0 ≤ x < 1 1)求D(X), 2)求 D ( X 2 )
解 (1) E ( X ) = ∫ x(1 + x)dx + ∫ x(1 − x)dx
第四章 随机变量的数字特征
离散型随机变量的数学期望 连续型随机变量的数学期望 数学期望的性质及随机变量函数的期望 方差及其性质
4.1数学期望 数学期望
数学期望——描述随机变量取值的平均特征 数学期望——描述随机变量取值的平均特征 一、离散型随机变量的数学期望 定义 设离散型随机变量X的概率分布为
4-1 数学期望 概率论与数理统计课件

则有
E(X) x(px)dx
x
1 e(x2σμ2)2dx
2σ
令x μ t x μ σ t, σ
所以 E (X )x 1e(x 2 σ μ 2)2dx
2 σ
1
t2
(μσ)te 2dt
2
μ1
et2 2dtσ
t2
te2dt
2
2
μ.
可 见 ,N (,2 ) 中 的 正 是 它 的 数 学 期 望 .
又 E (X 3 ) ( 2 ) 3 1 0 3 1 1 3 1 3 3 1 1 , 3 2 1212 3
故 E (2 X 3 5 ) 2 E (X 3 ) 5 2 1 5 1.3 3 3
例3 商店的销售策略 某商店对某种的 家销 用售 电采 器用先使
付款的,方 记式 使用寿 X(以 命年 为)计 ,规定 :
证明 例如
E(C)X Ckx pkC xkpkCE (X).
k
k
E(X)5, 则 E (3X )3 E (X )3 5 1.5
3. 设 X、Y 是两个随机变量, 则有
E (X Y ) E (X ) E (Y ).
证明 E (X Y ) (x ky k)p k
k
推广
xkpk ykpkE (X )E (Y ).
n
n ( n p 1 )! p k 1 ( 1 p ) (n 1 ) (k 1 )
k 1 ( k 1 )[n !( 1 ) ( k 1 )]!
n
np
( n 1 )!
p k 1 ( 1 p ) ( n 1 ) ( k 1 )
k 1 ( k 1 )[n !( 1 ) ( k 1 )]!
定 义 设离散型随机变量X 的分布律为
概率论与数理统计浙江大学第四版盛骤概率论部分

浙江大学 盛骤
2019/3/16
1
概率论与数理统计是研究随机现象 数量规律的一门学科。
2
第一章
• • • • • • 1.1 1.2 1.3 1.4 1.5 1.6
概率论的基本概念
随机试验 样本空间 概率和频率 等可能概型(古典概型) 条件概率 独立性
第二章
• • • • • 2.1 2.2 2.3 2.4 2.5
第九章 方差分析及回归分析
• • • • 9.1 9.2 9.3 9.4 单因素试验的方差分析 双因素试验的方差分析 一元线性回归 多元线性回归
5
第十章 随机过程及其统计描述
• 10.1 随机过程的概念 • 10.2 随机过程的统计描述 • 10.3 泊松过程及维纳过程
第十一章 马尔可夫链
15
§3 频率与概率
(一)频率 n A; f ( A ) 定义:记 n n 其中 nA—A发生的次数(频数);n—总试验次 数。称fn ( A)为A在这n次试验中发生的频率。 例:
中国国家足球队,“冲击亚洲”共进行了n次,其中成功了
1 n; 一次,则在这n次试验中“冲击亚洲”这事件发生的频率为
nH
251 249 256 253 251 246 244 258 262 247
fn(H)
0.502 0.498 0.512 0.506 0.502 0.492 0.488 0.516 0.524 0.494
表 2
实验者
德·摩根 蒲丰
K·皮尔逊 K·皮尔逊
n
nH
fn(H)
2048 4040
12000 24000
关键词: 样本空间 随机事件 频率和概率 条件概率 事件的独立性
概率论与数理统计总结

第一章 随机事件与概率第一节 随机事件及其运算1、 随机现象:在一定条件下,并不总是出现相同结果的现象2、3、4、样本空间:随机现象的一切可能基本结果组成的集合,记为Ω={ω},其中ω 表示基本结果,又称为样本点。
5、随机事件:随机现象的某些样本点组成的集合常用大写字母A 、B 、C 等表示,Ω表示必然事件,∅表示不可能事件。
6、随机变量:用来表示随机现象结果的变量,常用大写字母X 、Y 、Z 等表示。
7、时间的表示有多种:(1) 用集合表示,这是最基本形式 (2) 用准确的语言表示(3) 用等号或不等号把随机变量于某些实属联结起来表示6、事件的关系(1)包含关系:如果属于A 的样本点必属于事件B ,即事件 A 发生必然导致事件B 发生,则称A 被包含于B ,记为A ⊂B;(2)相等关系:若A ⊂B 且B ⊃ A ,则称事件A 与事件B 相等,记为A =B 。
(3)互不相容:如果A ∩B=∅,即A 与B 不能同时发生,则称A 与B 互不相容7、事件运算(1)事件A 与B 的并:事件A 与事件B 至少有一个发生,记为 A ∪B 。
(2)事件A 与B 的交:事件A 与事件B 同时发生,记为A ∩ B 或AB 。
(3)事件A 对B 的差:事件A 发生而事件B 不发生,记为 A -B 。
用交并补可以表示为B A B A =-。
(4)对立事件:事件A 的对立事件(逆事件),即 “A 不发生”,记为A 。
对立事件的性质:Ω=⋃Φ=⋂B A B A ,。
8、事件运算性质:设A ,B ,C 为事件,则有 (1)交换律:A ∪B=B ∪A ,AB=BA(2)结合律:A ∪(B ∪C)=(A ∪B)∪C=A ∪B ∪C A(BC)=(AB)C=ABC(3)分配律:A ∪(B ∩C)=(A ∪B)∩(A ∪C)、 A(B ∪C)=(A ∩B)∪(A ∩C)= AB ∪AC(4)棣莫弗公式(对偶法则):B A B A ⋂=⋃ B A B A ⋃=⋂9、事件域:含有必然事件Ω ,并关于对立运算和可列并运算都封闭的事件类ξ称为事件域,又称为σ代数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2). 若( X , Y ) 的概率密度为f ( x, y) ,
且
g ( x, y) f ( x, y)dxdy 绝对收敛,
则:EZ=
g ( x, y) f ( x, y)dxdy 。
返回主目录
第四章
随机变量的数字特征
§1 数学期望 例6 设风速 V 在(0,a)上服从均匀分布,又设飞机机 2 W kV 翼受到的正压力 W 是 V 的函数: ,(k>0); 求 EW。
第四章
随机变量的数字特征
§1 数学期望
例8
设在国际市场上每年对我国某种出口商品的 需求量是随机变量 X(吨) ,它在 [2000,4000] 上服从均匀分布,又设每售出这种商品一吨, 可为国家挣得外汇 3 万元,但假如销售不出而 囤积在仓库,则每吨需浪费保养费 1 万元。 问需要组织多少货源,才能使国家收益最大。
甲、乙的平均环数可写为
EX 8 0.1 9 0.3 10 0.6 9.5
EY 8 0.2 9 0.5 10 0.3 9.1
因此,从平均环数上看 ,甲的射击水平要比乙 的好.
返回主目录
第四章
随机变量的数字特征
§1 数学期望
例3
设随机变量X 服从Cauchy分布,其密度函数为 1 x2 f x x 1 1
;
N 1 k 所以 EX (k 1 kq ) N (1 q k ) k k
只要选 k 使 1 1/ k q k 1 ,即 1 / k q k ,就可使第 二个方案减少化验次数;当 q 已知时,若选 k 使 f (k ) 1 1 / k q k 取最小值,就可使化验次数最少。
数学期望也称为均值。
返回主目录
第四章
随机变量的数字特征
§1 数学期望
说 明
的求和顺序无关.
(1) X 的数学期望刻划了X 变化的平均值.
时,才能保证级数 xn pn 的和与其级数 xn pn
n 1 n 1 n 1
变化的平均值,因此, 只有当级数 xn pn 绝对收敛 ( 2)由于随机变量 X 的数学期望表示的是随 机变量 X
试说明适当选取 k 可使第二个方案减少化验次数。
返回主目录
第四章
随机变量的数字特征
§1 数学期望 (例 9续) 解:设X表示第二个方案下的总化验次数, X i 表 示第i个组的化验次数,则
X
X
i 1
N
k
i
, 且 EX
EX
i 1
N
k
i
EX表示第二种方案下总的 平均化验次数,EX i 表示 第i个组的平均化验次数。 下面求 EXi :
k 1
数学期望也称为均值。
返回主目录
第四章
随机变量的数字特征
§1 数学期望
(2)、连续型
f ( x) , 设连续型随机变量 X 的概率密度为
若积分 xf ( x)dx 绝对收敛,则称积分 xf ( x)dx
的值为 X 的数学期望。记为 EX= xf ( x)dx ,
定理 2:
Z g ( x, y )
若 ( X , Y ) 是二维随机变量,g ( x, y ) 是二元连续函数,
(1). 若( X , Y ) 的分布律为P{ X
i , j 1
xi , Y y j } Pij
i , j 1
,
且 g ( xi , y j ) Pij 绝对收敛;则 EZ= g ( xi , y j ) Pij 。
Xi 只可能取两个值 1 或 k+1,
P{ X i 1} q
k
,
q 1 p
k
;
返回主目录
P{ X i k 1} 1 q
;
第四章
随机变量的数字特征
§1 数学期望
(例 9续) EX i q k (k 1)(1 q k ) k 1 kq k
,
i 1,2,, N / k
2, ( x, y ) A 解: f ( x, y ) 0, 其它;
0 0
0
x
x y 1 0
1 EX= xf ( x, y)dxdy dx x 2dy 3 1 1 x 0 0 1 E(-3X+2Y)= dx 2(3x 2 y )dy 3 1 x 1 0 0 1 EXY= xyf ( x, y)dxdy dx x 2 ydy 12 1 1 x
0, 第i站没人下车 解:设 X i , i 1,2, ,10 , 1, 第i站有人下车
易见 X X 1 X 10 , EX EX i ,
P{X i 0} (9 / 10)
20
i 1
10
20 P { X 1 } 1 ( 9 / 10 ) , i ,i 1,,10 ,
(1) 旅客 8:00 到站,求他侯车时间的数学期望。 (2) 旅客 8:20 到站,求他侯车时间的数学期望。
解:设旅客的候车时间为 X(以分记)
(1) X 的分布律: X 10 30 50 P 1/6 3/6 2/6 EX=10*(1/6)+30*(3/6)+50*(2/6)=33.33(分)
返回主目录
例如:当p=0.1,q=0.9时,可证明k=4可使最小; 这时, EX N (1 1 / 4 0.9 4 ) 0.5939N 工作量将减少40%.
返回主 数学期望 例 10 一民航送客载有 20 位旅客自机场开出,旅客有 10 个车站可以下车,如到达一个车站没有旅客下车就不 停车。以 X 表示停车的次数。 求 EX(设每个旅客在各个车站下车是等可能的,并 设各旅客是否下车相互独立) 。
i i i i 1 i 1
n
n
i
IV)
若x , y独立,则 EXY=EXEY
返回主目录
第四章
随机变量的数字特征
§1 数学期望
例 9 对N个人进行验血,有两种方案:
(1)对每人的血液逐个化验,共需N次化验; (2)将采集的每个人的血分成两份,然后取 其中的一份,按 k 个人一组混合后进行化验 (设N是k的倍数),若呈阴性反应,则认为 k 个人的血都是阴性反应,这时 k 个人的血只 要化验一次;如果混合血液呈阳性反应,则 需对k个人的另一份血液逐一进行化验,这时 k个人的血要化验k+1次; 假设所有人的血液呈阳性反应的概率都是 P,且各次 化验结果是相互独立的。
且
P g( x
k 1 k
k
) 绝对收敛, 则
EY= Pk g ( xk )
k 1
(2).若 X 的概率密度为f ( x) ,且 g ( x) f ( x)dx 绝对收敛,
则 EY= g ( x) f ( x)dx 。
返回主目录
第四章
随机变量的数字特征
§1 数学期望
到站时间 8:10,9:10 概率 1/6 8:30,9:30 8:50,9:50 3/6 2/6
返回主目录
第四章
随机变量的数字特征
§1 数学期望
2、随机变量函数的数学期望
定理 1:
设 Y=g(X), g(x) 是连续函数,
(1)若 X 的分布率为 Pk P{X xk } k 1,2,
返回主目录
第四章
随机变量的数字特征
§1 数学期望
例2
甲、乙两人射击,他们 的射击水平由下表给出 : X:甲击中的环数;
Y:乙击中的环数;
X P
Y
8 0.1
8
9 0.3
9
10 0.6
10 0.3
P 0.2 0.5 试问哪一个人的射击水 平较高?
返回主目录
第四章
随机变量的数字特征
§1 数学期望
解:
例2(续)
此时, i 1,2, ,10 EX i 1 (9 / 10) 20 ,i 1, , ,10X i 不是相互独立的 EX 10[1 (9 / 10) 20 ] 8.784(次 )。 返回主目录
第四章
随机变量的数字特征
例 11 §1 数学期望 用某台机器生产某种产品,已知正品率随着该机器
由于
x f xdx
1 x2
1
x
dx
0 1 x2
2
x
dx
1
ln 1 x 2
0
这表明积分 xf x dx 不绝对收敛,因而 EX 不存在.
返回主目录
第四章
随机变量的数字特征
§1 数学期望
例4
设离散型随机变量 X 的分布律为: X 0 1 2 P 0.1 0.2 0.7
解:设 y 为预备出口的该商品的数量,这个数 量可只 介于 2000 与 4000 之间, 用 Z 表示国家的收益(万元)
3 y, Z 3 X ( y X ),
X y X y
返回主目录
第四章
随机变量的数字特征
(例8续)
3 y, z g ( x) 3x ( y x),
x y x y
§1 数学期望
2000 y 4000
下面求 EZ,并求使 EZ 达到最大的 y 值, y 4000 3x ( y x) 3y EZ g ( x) f ( x)dx dx dx 2000 2000