概率论与数理统计 5.1 数学期望
概率论与数理统计 第五章

Xn ⎯ ⎯→ X 2. 依概率收敛与依分布收敛的关系
依概率收敛 ⇒ 依分布收敛
L
3. 定义:中心极限定理 设随机变量 X ~ N(0,1),{Xi },i = 1, 2, … 相互独 立,且数学期望和方差都存在, 若标准化随机变量序列
∑
n
i =1
Xi −
∑ E(X
i =1
n
i
)
∑
n
i =1
D(X i)
所以结论成立。 由此有,若X ~ B( n, p ),对于足够大的n,有 ⎧ m1 − np X − np m2 − np ⎫ ⎪ ⎪ < ≤ P{m1 < X ≤ m2 }= P ⎨ ⎬ np(1 − p) np(1 − p) ⎪ ⎪ np(1 − p) ⎩ ⎭
⎧ Yn − np ⎫ ⎪ ⎪ ≤ x ⎬ = Φ( x ) lim P ⎨ n →∞ ⎪ np(1 − p ) ⎪ ⎩ ⎭
证明:对于任意正整数n,随机变量Yn 可表示为 证明:对于任意正整数n Yn = X1+ X2+…+ Xn X1, X2,…, Xn 相互独立,Xi ~ B( 1, p ),且有 E( Xi ) = p , D( Xi ) = p(1-p) 所以随机变量序列{ Xi }, i =1,2,…满足独立同分布 中心极限定理条件。即有
切比雪夫不等式的应用 1)估计随机变量落在某个区间内的概率 (P125例5.5.2) 2)估计ε的值, 使 P(│X - E(X)│<ε) ≥ a (0<a<1) 3)证明大数定律。
二. 大数定律 定义: 依概率收敛 设{Xn}是一个随机变量序列,X 是一个随机变量 或常数,若对于任意的ε> 0,有 lim P{| X n − X |≥ ε } = 0
《概率论与数理统计》数学期望

§4.3 随机变量函数的数学期望 例题
§4.3 随机变量函数的数学期望 例题
§4.3 随机变量函数的数学期望 例题
概率论与数理统计
§4.4 协方差和相关系数
协方差 相关系数 授课内容 例题
§4.4 协方差和相关系数 协方差
1. 定义
§4.4 协方差和相关系数 协方差
2. 协方差的计算公式
概率论与数理统计
§4.1 数学期望
离散型随机变量的数学期望
连续型随机变量的数学期望
授课内容
数学期望的性质
§4.1 数学期望 离散型随机变量的数学期望
1. 定义
§4.1 数学期望 离散型随机变量的数学期望
关于定义的几点说明
(2) 级数的绝对收敛性保证了级数的和不随级数各项次序的改变 而改变 , 之所以这样要求是因为数学期望是反映随机变量X 取可能值 的平均值,它不应随可能值的排列次序而改变.
§4.4 协方差和相关系数 相关系数
3. 不相关的定义
§4.4 协方差和相关系数 相关系数
4. 不相关性的判定
以下四个条件等价 (1) ρ 0; (2)Cov( X ,Y ) 0; (3) D( X Y ) DX DY;
(4)3 随机变量函数的数学期望 二维随机变量函数的数学期望
§4.3 随机变量函数的数学期望 二维随机变量函数的数学期望
一维随机变量函数的数学期望 二维随机变量函数的数学期望 授课内容 例题
§4.3 随机变量函数的数学期望 例题
§4.3 随机变量函数的数学期望 例题
§4.3 随机变量函数的数学期望 例题
5 .不相关与相互独立的关系
协方差 相关系数 授课内容 例题
§4.4 协方差和相关系数 例题
14级--GZ《概率与统计》_第12讲_5.1大数定律_5.2中心极限定理

§2 中心极限定理
5.2 中心极限定理
简介
中心极限定理是研究在什么条件下,独立随机变 量序列部分和的极限分布为正态分布的一系列定理 的总称。 在自然界与生产中,一些现象受到许多相互独立 的随机因素的影响,如果每个因素所产生的影响都 很微小时,总的影响可以看作是服从正态分布的。 中心极限定理就是从数学上证明了这一现象 。 它是近两个世纪概率论研究的中心问题,因此这 些定理称为中心极限定理。
P(120000 aX 60000 ) 0.9,即 P( X
由棣莫弗 - 拉普拉斯定理知,
60000 ) 0.9. a
60000 X 60 60000 a 60 P( X ) P( ) 0 . 9. a 60 9.4% 60 9.4%
5.2 中心极限定理
定理1:独立同分布中心极限定理 (变形)
P( k 1
n
X
n
k
n
当n 时 x) ( x)
n
k
X
式中
k 1
n
n
X n n 1 X X
分子分母同时除以n n k 1
k
X 近似 ~ N (0,1) 故: n
或
X ~ N (,
为什么会有这种规律性?这是由于大量试验过程中,随
机因素相互抵消、相互补偿的结果。
用极限方法来研究大量独立(包括微弱相关)随机试验
的规律性的一系列定律称为大数定律。
5.1 大数定律
弱大数定理(辛钦大数定理)
设随机变量序列 X1, X2, … 独立同分布,具有有限的 数学期望 E(Xk)=μ, k=1, 2, …,则对任给 ε >0 ,有
棣莫弗 – 拉普拉斯定理 (针对二项分布)
概率论与数理统计(英文) 第五章

5. Random vectors and Joint Probability Distribution s随机向量与联合概率分布5.1 Concept of Joint Probability Distributions(1) Discrete Variables Case 离散型Often, trials are conducted where two random variables are observed simultaneously in order to determine not only their individual behavior but also the degree of relationship between them.( X, Y)For two discrete random variables X and Y, we write the probability that X will take the value x and Y will take the value y as P(X=x, Y=y). Consequently, P(X=x, Y=y) is the probability of the intersection of the events X=x and Y=y.(X=x, Y=y) ------ (X=x)∩(Y=y)The distribution of probability is specified by listing the probabilities associated with all possible pairs of values x and y, either by formula or in a table. We refer to the function p(x, y)=P(X=x, Y=y) and the corresponding possible values (X, Y) as the j oint probability distribution (联合分布)of X and Y.They satisfy(,)0, (,)1xyp x y p x y ≥=∑∑,where the sum is over all possible values of the variable.Example 5.1.1 Calculating probabilities from a discrete joint probability distributionLet X and Y have the joint probability distribution.(a) Find (1)P X Y +>;(b) Find the probability distribution ()()X p x P X x == of the individualrandom variable X . Solution(a) The event 1X Y +>is composed of the pairs of values (l,1), (2,0), and (2,l). Adding their corresponding probabilities(1)(1,1)(2,0)(2,1)0.20.100.3.P X Y p p p +>=++=++=(b) Since the event X =0 is composed of the two pairs of values (0,0) and (0,1), we add their corresponding probabilities to obtain(0)(0,0)(0,1)0.10.20.3P X p p ==+=+=.Continuing, we obtain (1)(1,0)(1,1)0.40.20.6P X p p ==+=+= and(2)(2,0)(2,1)0.100.1P X p p ==+=+=.In summary, (0)0.3X p =, (1)0.6X p = and (2)0.1X p =is the probabilitydistribution of X . Note that the probability distribution ()X p x of appears in the lower margin of this enlarged table. The probability distribution ()Y p y of Y appears in the right-hand margin of the table. Consequently, the individual distributions are called marginal probability distributions .(边缘分布)From the example, we see that for each fixed value of x , the marginalprobability distribution is obtained as()()(,)X yP X x p x p x y ===∑,where the sum is over all possible values of the second variable. Continuing, we obtain()()(,)Y xP Y y p y p x y ===∑.Example 3.5.3Suppose the number X of patent applications (专利申请)submitted by a company during a 1-year period is a random variable having thePoisson distribution with mean λ, (()!n e P X n n λλ-==)and the variousapplications independently have probability (0,1)p ∈ of eventually being approved.Determine the distribution of the number of patent applications during the 1-year period that are eventually approved.先求联合分布密度,再求边缘分布Solution Let Y be the number of patent application being eventually approved during 1-year period. Then the event {}Y k = is the union of mutually exclusive events {,}X n Y k == ()n k ≥.If X n =, then the random variable S has the binomial distribution with parameter n and p :(|)(1)k k n k n P Y k X n C p p -===-. (0)n k ≥≥ Thus(,)()(|)P X n Y k P X n P Y k X n ====== (1)!nk kn k n e C p p n λλ--=⋅⋅-when k>n, P(X=n, Y=k)=0,Hence the distribution of Y is()(,)(,)n n kP Y k P X n Y k P X n Y k ∞∞=========∑∑(1)!nk kn k n n ke C p p n λλ∞--==⋅⋅-∑!(1)!!()!nk n k n k n e p p n k n k λλ∞--==⋅⋅--∑(1)!()!kn kkn k n ke p p k n k λλλ-∞--==⋅⋅--∑()(1)(1)()()!!!mk k p m p p p e e ek m k λλλλλλ∞---=-==∑ ()!k pp e k λλ-= Thus, Y has the Poisson distribution of mean p λ. exercise从1,2,3,4,5五个数中不放回随机的接连地取3个,然后按大小排成123X X X <<,试求13(,)X X 的联合分布,x1,x3 独立吗?Homework Chap 5 1,(2) Continuous Variables Case 连续型随机向量There are many situations in which we describe an outcome by giving the values of several continuous random variables. For instance, we may measure the weight and the hardness of a rock, the pressure and the temperature of a gas. Suppose that X and Y are two continuous random variables. A function (,)f x y is called the joint probability density of these random variables, if the probability that , a X b c Y d ≤≤≤≤ is given by the multiple integral(, )(,)b da cP a X b c Y d f x y dxdy ≤≤≤≤=⎰⎰Thus, a function (,)f x y can serve as a joint probability density if all of the following hold:for all values of x and y , f is integrable on R 2 andTo extend the concept of a cumulative distribution function to the two variables case, we can define F (x , y )(, )(, )F x y P X x Y y =≤≤,and we refer to the corresponding function F as the joint cumulative distribution function of the two random variables.Example 5.1.2If the joint probability density of two random variables is given by236 for 0,0(,)0 elsewherex y e x y f x y --⎧>>=⎨⎩ Find the joint distribution function, and use it to find the probability(2,4)P X Y ≤≤.Solution By definition,23006 for 0, 0(,)(,)0 elsewhere y x yu vxe du e dv x y F x yf u v dudv ---∞-∞⎧>>⎪==⎨⎪⎩⎰⎰⎰⎰Thus,23(1)(1) for >0, >0(,)0 elsewhere x y e e x y F x y --⎧--=⎨⎩.Hence,412(2, 4)(2, 4)(1)(1)0.9817P X Y F e e --≤≤==--=.ExampleIf the joint probability density of two random variables is given by2,1,01(,)0,kxy x y x f x y ⎧≤≤≤≤=⎨⎩其他(a)find the k; (b)find the probability2((,)),{(,)|,01}P X Y D D x y x y x x ∈=≤≤≤≤solutionsince(,)1f x y dxdy ∞∞-∞-∞=⎰⎰24111001(,)()226x x kf x y dxdy dx kxydy k x dx ∞∞-∞-∞==-=⎰⎰⎰⎰⎰ hence k=6.21124001((,))663()4xx DP X Y D xydxdy dx xydy x x x dx ∈===-=⎰⎰⎰⎰⎰joint marginal densities 边缘密度Given the joint probability density of two random variables, the probability density of the X or Y can be obtained by integrating out another variable,The functions f X and f Y respectively are called the marginal density (边缘密度)of X and Y .,ExampleThe joint probability density of two random variables is given by26,1,01(,)0,xy x y x f x y ⎧≤≤≤≤=⎨⎩其他find the marginal density from the joint density when [0,1]x ∈,215()(,)633X xf x f x v dv xydy x x +∞-∞====-⎰⎰[0,1]x ∉,()0X f x =,hence 533,01()0,X x x x f x elsewhere ⎧-≤≤=⎨⎩23,01()0,Y y y f x elsewhere ⎧≤≤=⎨⎩exercises求服从B 上均匀分布的随机向量(X,Y )的分布密度及分布函数。
概率论与数理统计 第五章 大数定律与中心极限定理

的概率很小” ,用数学语言表达,就是要证明: 0 ,有
nA nA lim P p 0 lim P p 1 n ,或 n n . n
另一种提法是:研究随机变量 n A 的分布的极限行为,即讨 论分布函数
nA lim P p 0 lim P n n 或 n
nA p 1 . n
证 引入
1 , 第i次试验中事件A发生 Xi ,i 1 , 2 , , n , 0 , 第i次试验中事件A不发生
下面我们进一步来讨论贝努利试验.若记 n A 为 n 次贝努利试
nA 验中事件 A 发生的次数, 则事件 A 发生的频率为 n . 所谓 “频 率的稳定性” ,无非是指当试验次数 n 无限增大(即 n )时,
nA 频率 n 无限接近于某个固定常数.这个固定的常数就是“事 件 A 在一次试验中发生的的概率 p” . nA 由此可见,讨论频率 n 的极限行为,是理解概率论中最基本
2019年1月14日星期一
11 / 102
§5.1
大数定律
作为预备知识,我们先明确随机变量序列收敛的
相关概念,同时给出一个重要的不等式,它是以下理 论证明所用的主要工具之一.
定 义 1.1 设 a 是常数,对于随机变量序列 ,如果 0 ,有
X1 , X 2 ,
, Xn ,
lim P
n
个常数,即在这个常数的附近摆动,这就是所谓的“频
率稳定性”.但对这一点,至今为止我们尚未给予理论 上的说明.另外,在第二章我们给出了二项分布的泊松 逼近,那么更一般的近似计算方案又是怎样呢?
概率论与数理统计魏宗舒第二章(4)

若
i , j =1
∑ g( x , y ) p
i j
∞
ij
绝对收敛,则有
i , j =1
E (Z ) =
∑ g(x , y ) p .
i j ij
∞
数学期望的性质 则有 (1)设 C 为常数,
E(C) = C
(2)设 C 为常数,X 是一个随机变量,则有
E(CX ) = CE( X )
则有 (3)设 a , b 为常数,X ,Y 是随机变量,
E( XY ) = E( X )E(Y )
推广 设 X i ( i = 1 , 2 ,L , n) 是相互独立的 随机变量, 则有
E( X1 X2 LXn ) = E( X1 )E( X2 )LE( Xn )
§2.5 方差的定义和性质
方差( 方差(Variance) ) 前面我们介绍了随机变量的数学期望,它 体现了随机变量取值的平均水平,是随机变量 的一个重要的数字特征。 但对有些实际问题,仅仅知道平均值是不 够的。
k
k
这就是通常所说的加权平均(概率为权数)。 加权平均(概率为权数) 加权平均
他们的射击水平 例2 甲、乙两人射击, 由下表给出 X :甲击中的环数 Y :乙击中的环数
X P
8 9 10 0.1 0.3 0.6
Y P
8 9 10 0.2 0.5 0.3
试问哪个人的射击水平较高?
解:甲、乙二人的平均射击环数为
我们讨论了随机变量 在前面的课程中, 如果知道了随机变量 X 的概率分 及其分布, 布,那么 X 的全部概率特征也就知道了。 在实际问题中,概率分布一般是 然而, 而在一些实际应用中,人们并 较难确定的。 只要 不需要知道随机变量的一切概率性质, 知道它的某些数字特征就够了。 在对随机变量的研究中,确定某 因此, 些数字特征 数字特征是非常重要的。 数字特征
第五章 中心极限及大数定理《概率论与数理统计》西南交大峨眉校区剖析

A 在每次试验中发生的概率为 p ,则对任意正数 ,有
lim
n
P(
fn (A)
p
)
1,
即 fn ( A) P p P(A) ( n )。
(5.3)
伯努利大数定理说明,在 n 时,随机事件 A 发 生 的 频 率 fn ( A) 依 概 率 收 敛 于 事 件 A 发 生 的 概 率
P(8 Y
2) P( Y EY
5) P( Y EY
5)
1
DY 52
1 8 17 25 25
例 3:进行 100 次重复独立试验,事件 A 在每次试验中发生的概率为 0.5 ,试利用切比雪夫 不等式估计 100 次试验中事件 A 发生的次数在 40 至 60 次之间的概率。
解:设随机变量 X 表示 100 次重复独立试验中事件 A 发生的次数,则 X ~ B(100, 0.5) ,
2.依概率收敛
定义 1:设 X1, , Xn, 是一个随机变量序列,如果对于任意的正数 ,
事件 Xn a 的概率当 n 时趋于 1,即
lim P
n
Xn a
1
则称随机变量序列Xn 当 n 时依概率收敛于数 a ,
记为 X n P a ( n )。
二、大数定理
大数定理是由“频率稳定于概率”这个概率的统计定义引申而来, 它叙述在什么条件下随机变量序列的算术平均值收敛于其均值的 算术平均值。 所谓“大数”,就是指涉及大量数目的观测,它表明定理中所指 的现象,只有在大量次数的试验和观测之下才能成立
,试验证随机变量序列 X1,
, Xn,
满足
(精品) 概率论与数理统计课件:随机变量的数字特征

D( ) E E 2 E E 2
D D
性质4可以推广到如下情形。
当1,
2
,,
两两独立时,有
n
n
D(1 2 n ) Di i 1
一般地,对n个随机变量1、
随机变量的数字特征
▪数学期望 ▪方差 ▪协方差与相关系数 ▪矩 ▪条件数学期望
§5.1 数学期望
离散型随机变量的数学期望
设随机变量的分布律为 P( xk ) pk
则当
k
xk
pk
时,称
xk pk 为随机变
k
量的数学期望或均值,记作E ,即有
E xk pk xk P( xk )
k
k
例1 甲、乙两射手的稳定成绩分别为
并且有 Ei 0 1 p 1 p p
设 1 2 n
则 E E1 2 n
E1 E2 En
np
此外,我们可以推导出 η~B(n,p)
超几何分布
在一箱N件装的产品中混进了M件次品,今从中抽 取n 件 (n≤M) ,求从中查出次品的件数的概率分布.
解
P(
k)
C C k nk M NM CNn
p p2 p1 p
p 1 p 2 1 24
例5 设随机变量ξ服从[a,b]上的均匀分布,
求Dξ。
解:(x)
1 ba
0
a xb 其他
E 2 b x2 dx 1 (a2 ab b2 )
a ba 3
而E a b
2
D E 2 (E )2 1 (b a)2
12
例6
设随机变量ξ服从正态分布N(a,σ2),求Dξ。
指数分布 (参数为a)
np
λ
1 p
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(k 0,常数),求W的数学期望.
解:由上面的公式
E(W )
g(v) f
(v)dv
a
g(v)
1
dv
a
kv 2
1
dv
1
ka 2
0
a
0
a
3
概率论
上述定理还可以推广到两个或两个以上随机变量的函数 的情况。
定理: 设Z=g(X,Y) 是随机向量(X,Y)的二元函数,EZ存在,
(1) 若(X,Y)为d.r.v., P( X xi ,Y y j ) pij ,
(X,Y ) ~
1
f
(
x,
y)
a
2
,
0 x a,0 y a
0,
else
aa
E X Y
x y f ( x, y)dxdy
x y 1 dxdy a
00
x y a
O
a
1
x y
a2
[(
x y
y
x)dxdy
y x
(x
y)dxdy]
1 a2
a
[
0
a
dx
x
(
y
x)dy
a 0
EZ E[g( X ,Y )] g( xi , y j ) pij
ij
(2) 若(X,Y)为c.r.v., ( X ,Y ) ~ f ( x, y),
EZ E[g(X ,Y )]
g( x, y) f ( x, y)dydx
若令g(X,Y)=X, 同样地,
EX
xf ( x, y)dydx
1
dx a b
ba
2
a
即数学期望位于区间(a , b)的中点.
概率论
例4 有2个相互独立工作的电子装置,它们的寿命Xk
(k 1,2)服从同一指数分布,其概率密度为
f
(
x)
e
x
x 0,
0
0 x 0,
若将这两个电子装置串联连接组成整机,求整机
寿命(以小时计) N 的数学期望. 解:先计算 Xk 的期望
(2) 当X为连续型时,它的密度函数为f(x).若
g( x) f ( x)dx绝对收敛,则有
E(Y ) E[g( X )] g( x) f ( x)dx
概率论
E
(Y
)
E[
g(
X
)]
g( xk ) pk ,
k 1
X离散型
g(x)
f
( x)dx,
X连续型
该公式的重要性在于: 当我们求E[g(X)]时, 不必 知道g(X)的分布,而只需知道X的分布就可以了. 这给求随机变量函数的期望带来很大方便.
xf X ( x)dx yfY ( y)dy
EXEY
概率论
例9: 求二项分布的数学期望
概率论
若 X~B(n,p), 则X表示n重贝努里试验中的“成功” 次数.
现在我们来求X的数学期望 .
概率论
X~B(n,p), 则X表示n重贝努里试验中的“成功” 次数.
若设
1 X i 0
如第i次试验成功 如第i次试验失败
1. 问题的提出:
设已知随机变量X的分布,我们需要计算X的某个 函数的期望,比如说g(X)的期望. 应该如何计算呢?
一种方法是,因为g(X)也是随机变量,故应有概 率分布,它的分布可以由已知的X的分布求出来. 一旦 我们知道了g(X)的分布,就可以按照期望的定义把 E[g(X)]计算出来.
概率论
使用这种方法必须先求出随机变量函数g(X)的 分布,一般是比较复杂的 .
概率论
5.1 数学期望
d.r.v.的数学期望 c.r.v.的数学期望 r.v.函数的数学期望 数学期望的性质 小结
分赌本问题: 17司机中叶,一位赌徒向法国数学家
Pascal提出一个使他苦恼许久的问题:甲,乙两赌徒赌技 相同,各出50法朗,每局中无平局.他们约定, 谁先赢三局,则
得全部赌本。 当甲赢两局, 乙赢一局时, 赌博被迫中断 。 现问100法朗 如何分配才算公平 ?
若级数 xk pk 绝对收敛,则称级数的和为
k 1
d.r.v.X的数学期望,记为 E( X ) ,
即
E( X ) xk pk
k 1
请注意 : d.r.v.X数学期望是一个绝对收敛的级 数的和. 数学期望简称期望,又称为均值。
概率论
例1 甲、乙二人进行打靶,所得分数分别记为X1, X2, 它们的分布率分别为
xf X ( x)dx
EY
yf ( x, y)dxdy
yfY ( y)dy
可以由联合密度直接求出X, Y的期望
例7: 设X ,Y的联合分布为
Y X
1
1
1 0.25 0 0.25
1
0.5 0.25 0.75
0.75 0.25
求EX , EY , E( XY ), E[min( X ,Y )]. 解 EX (1) 0.25 1 0.75 0.5,
这不仅考虑了已赌的局 数, 还包含了对再赌下去的 一种
“期望” (Expectation),它比(1)的分法更为合理。 这就是数学期望这个名 称的由来, 也称为均值。 就上例
而言, 再赌下去的话 , 甲“平均”可以赢75法朗。
一、d.r.v.的数学期望
概率论
定义5.1 设d.r.v.X的分布率是
P{X=xk}=pk , k=1,2,…
i 1
i 1
不一定能推出X,Y 独立
4. 设X、Y 相互独立,则 E(XY)=E(X)E(Y);
n
n
推广 : E[ Xi ] E( Xi ) (诸Xi相互独立时)
i1
i 1
概率论
性质1,2请同学自己证明,我们来证性质3和4。
证 设二维随机变量(X ,Y)的概率密度f ( x, y).其边缘
概率密度为fX ( x), fY ( y),于是有
记住:指数分 布的期望
EXk
xf ( x)dx
x e xdx 1
0
N min( X1, X2 ) 的分布函数为
Fmin (
x)
1
[1
F(
x)]2
1
e2
x
x0
0
x0
于是N的概率密度为
fmin
(
x)
2e
2
x
x0
0 x 0
E(N) 1
2
概率论
概率论
三、r.v.函数的数学期望
dx
x 0
(x
y)dy]
a 3
四、数学期望的性质
概率论
1. 设C是常数,则E(C)=C;
2. 若k是常数,则E(kX)=kE(X); 请注意:
3. E(X+Y) = E(X)+E(Y);
由E(XY)=E(X)E(Y)
特别地, E(X+c) = E(X)+c
n
n
推广 : E[ Xi ] E( Xi )
概率论
例5 设随机变量 X 的概率分布为
X -2 -1 0 1 2 P 0.2 0.1 0.1 0.3 0.3 求 E(X-1), E(X2+1).
概率论
例6 设风速V在(0,a)上服从均匀分布,即具有概率
密度
f (v) a1 0 v a 0 其它
又设飞机机翼受到的正压力W是V的函数 :W kV 2
i=1,2,…,n
则 X= X1+X2+…+Xn
因为 P(Xi =1)= p,
P(Xi =0)= 1-p
记住:两点 分布的期望
E(Xi)= 1 p 0 (1 p)= p
n
所以 E(X)= E( Xi ) = np
i 1
可见,服从参数为n和p的二项分布的随机变量X
的数学期望是 n p.
数轴上取很密的分点x0 <x1<x2< …,则X落在小区 间[xi, xi+1)的概率是
xi1 f ( x)dx xi
阴影面积近似为
f ( xi )xi
f ( xi )( xi1 xi )
f ( xi )xi
小区间[xi, xi+1)
概率论
由于xi与xi+1很接近, 所以区间[xi, xi+1)中的值 可以用xi来近似代替.
例2 设 X ~ P(),求E( X ).
概率论
解 : X的分布率为
P{ X k} k e , k 0,1,2, , 0
k!
EX
k
k0
P(X
k)
k 1
k e
(k 1)!
e
k1
k10 (k 1)!
记住:泊松 分布的期望
概率论
二、c.r.v.的数学期望
设X是连续型随机变量,其密度函数为f (x),在
EY 0.5,
E( XY ) (1) (1) 0.25 (1) 1 0 1 (1) 0.5 11 0.25 0
E[min( X ,Y )] (1) 0.25 (1) 0
(1) 0.5 1 0.25 0.5
例8:在长为a的线段上任取两点,求此两点间的平均长度.
X
Y
O
a
解: X ~ U[0,a] Y ~ U[0,a] X ,Y相互独立
那么是否可以不先求g(X)的分布而只根据X的 分布求得E[g(X)]呢?
下面的定理指出,答案是肯定的.
概率论
定理 设Y是r.v.X的函数,Y=g (X) (g是连续函数)
(1) 当X为离散型时,它的分布率为P(X= xk)=pk ;
(k 1,2, ),若 g( xk ) pk绝对收敛,则有