第十九章--一次函数的复习

合集下载

八年级数学下册第十九章一次函数知识点总结归纳完整版(带答案)

八年级数学下册第十九章一次函数知识点总结归纳完整版(带答案)

八年级数学下册第十九章一次函数知识点总结归纳完整版单选题1、已知函数y=2x−1x+2,当x=a时的函数值为1,则a的值为()A.3B.-1C.-3D.1答案:A分析:当x=a时的函数值为1,把x=a代入函数式中,得2a−1a+2=1求解a=3.∵函数y=2x−1x+2中,当x=a时的函数值为1,∴2a−1a+2=1,∴2a−1=a+2,∴a=3.故答案为A小提示:此题考查函数值, 令y=1,解分式方程,即可求出2、在平面直角坐标系中,点A(3,0),B(0,4).以AB为一边在第一象限作正方形ABCD,则对角线BD所在直线的解析式为()A.y=−17x+4B.y=−14x+4C.y=−12x+4D.y=4答案:A分析:过点D作DE⊥x轴于点E,先证明△ABO≅△DAE(AAS),再由全等三角形对应边相等的性质解得D(7,3),最后由待定系数法求解即可.解:正方形ABCD中,过点D作DE⊥x轴于点E,∵∠ABO+∠BAO=∠BAO+∠DAE=90°∴∠ABO=∠DAE∵∠BOA=∠AED=90°,AB=AD∴△ABO≅△DAE(AAS)∴AO=DE=3,OB=AE=4∴D(7,3)设直线BD所在的直线解析式为y=kx+b(k≠0),代入B(0,4),D(7,3)得{b=47k+b=3∴{k=−1 7b=4∴y=−17x+4,故选:A.小提示:本题考查待定系数法求一次函数的解析式,涉及正方形性质、全等三角形的判定与性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.3、若x=2是关于x的方程mx+n=0(m≠0,n>0)的解,则一次函数y=−m(x−1)−n的图象与x轴的交点坐标是()A.(2,0)B.(3,0)C.(0,2)D.(0,3)答案:B分析:直线y=mx+n与x轴的交点的横坐标就是函数值为0时的方程的解,根据题意得到一次函数y=mx+n的图象与x轴的交点为(2,0),进而得到一次函数y=-mx-n的图象与x轴的交点为(2,0),由于一次函数y=-mx-n的图象向右平移一个单位得到y=-m(x-1)-n,即可求得一次函数y=-m(x-1)-n的图象与x轴的交点坐标.解:∵方程的解为x=2,∴当x=2时mx+n=0;∴一次函数y=mx+n的图象与x轴的交点为(2,0),∴一次函数y=-mx-n的图象与x轴的交点为(2,0),∵一次函数y=-mx-n的图象向右平移一个单位得到y=-m(x-1)-n,∴一次函数y=-m(x-1)-n的图象与x轴的交点坐标是(3,0),故选:B.小提示:本题主要考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.4、如图所示,一次函数y=kx+b(k≠0)的图象经过点P(3,2),则方程kx+b=2的解是()A.x=1B.x=2C.x=3D.无法确定答案:C分析:将点P(3,2)代入直线解析式,然后与方程对比即可得出方程的解.解:一次函数y=kx+b(k≠0)的图象经过点P(3,2),∴2=3k+b,∴x=3为方程2=kx+b的解,故选:C.小提示:题目主要考查一次函数与一元一次方程的联系,理解二者联系是解题关键.5、现有甲、乙两个长方体蓄水池,将甲池中的水匀速注入乙池,甲、乙两个蓄水池中水的深度y(米)(小时)之间的函数图象如图所示,当甲、乙两池中水的深度相同时,y的值为()A.3.2米B.4米C.4.2米D.4.8米答案:A分析:先利用待定系数法求出两个蓄水池的函数解析式,再联立求出交点坐标即可得.解:设甲蓄水池的函数解析式为y=kx+b,由题意,将点(3,0),(0,4)代入得:{3k+b=0b=4,解得{k=−43b=4,则甲蓄水池的函数解析式为y=−43x+4,同理可得:乙蓄水池的函数解析式为y=2x+2,联立{y=−43x+4y=2x+2,解得{x=0.6y=3.2,即当甲、乙两池中水的深度相同时,y的值为3.2米,故选:A.小提示:本题考查了一次函数的实际应用,熟练掌握待定系数法是解题关键.6、在函数y=2x−3中,当自变量x=5时,函数值等于()A.1B.4C.7D.13答案:C分析:把x=5代入y=2x−3求解即可.解:把x=5代入y=2x−3得y=2×5-3=7,故选:C.小提示:本题考查求函数值,属基础题目,难度不大.7、若y=(m﹣1)x+m2﹣1是y关于x的正比例函数,则该函数图象经过的象限是()A.第一、三象限B.第一、四象限C.第二、三象限D.第二、四象限答案:D分析:根据正比例函数的定义知,m2−1=0且m−1≠0,由此可求得m的值,从而可知正比例函数图象所经过的象限.由题意知:m2−1=0且m−1≠0由m2−1=0得:m=±1由m−1≠0得:m≠1∴m=-1此时正比例函数解析式为y=-2x∵-2<0∴函数图象经过第二、四象限故选:D.小提示:本题考查了正比例函数的概念,把形如y=kx(k≠0)的函数称为正比例函数,掌握正比例函数概念是解题关键.特别注意一次项系数不为零.8、在平面直角坐标系中,直线l1与l2关于直线y=1对称,若直线l1的表达式为y=−2x+3,则直线l2与y轴的交点坐标为()A.(0,12)B.(0,23)C.(0,0)D.(0,−1)答案:D分析:先求解y=−2x+3与x,y轴的交点B,A坐标,再求解A关于y=1的对称点A′的坐标即可得到答案.解:如图,∵y=−2x+3,令x=0,y=3,令y=0,x=32,∴A(0,3),B(3,0),2作A,B关于直线y=1对称的点A′,B′,∵直线l1与l2关于直线y=1对称,即上图中的直线AB与直线A′B′关于直线y=1对称,∴x A=x A′=0,y A−1=1−y A′,∴y A′=−1,∴A′(0,−1),所以直线l2与y轴的交点坐标为:(0,−1).故选:D.小提示:本题考查的是求解一次函数与坐标轴的交点的坐标,坐标与图形,轴对称的坐标变化,掌握数形结合的方法是解题的关键.9、直线y=kx+2过点(﹣1,4),则k的值是()A.﹣2B.﹣1C.﹣1D.24答案:A分析:由直线y=kx+2过点(﹣1,4),利用一次函数图象上点的坐标特征可得出关于k的一元一次方程,解之即可得出k值.解:∵直线y=kx+2过点(﹣1,4),∴4=﹣k+2,∴k=﹣2.故选:A.小提示:本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b 是解题的关键.10、如图,已知A(1,3),B(5,1),若直线y=kx+1与线段AB有公共点,则k的取值范围是()A.k≠0B.k>1C.0≤k≤1D.0≤k≤2答案:D分析:先求出直线过点A、B的k值,再结合图象即可求得k的取值范围.解:当直线y=kx+1过点A(1,3)时,则k+1=3,解得:k=2,当直线y=kx+1过点B(5,1)时,则5k+1=1,解得:k=0,当x=0时,y=1,则直线经过定点(0,1),∵直线y=kx+1与线段AB有公共点,∴0≤k≤2,故选:D.小提示:本题考查一次函数的图象与性质,熟练掌握一次函数的性质是解答的关键.填空题11、如图,A(−2,1),B(2,3)是平面直角坐标系中的两点,若一次函数y=kx−1的图象与线段AB有交点,则k 的取值范围是_______.答案:k<-1或k>2分析:将A、B点坐标分别代入计算出对应的k值,然后利用一次函数图象与系数的关系确定k的范围.解:当直线y=kx-1过点A时,得-2k-1=1,解得k=-1,当直线y=kx-1过点B时,得2k-1=3,解得k=2,∵一次函数y=kx−1的图象与线段AB有交点,∴k<-1或k>2,所以答案是:k<-1或k>2.小提示:此题考查了一次函数图象与系数的关系:当k>0时,图象过第一、三象限,y随x的增大而增大,越靠近y轴正半轴k值越大;当k<0时,图象过二、四象限,y随x的增大而减小越靠近y轴正半轴k值越小.12、某超市糯米的价格为5元/千克,端午节推出促销活动:一次购买的数量不超过2千克时,按原价售出,超过2千克时,超过的部分打8折.若某人付款14元,则他购买了_______千克糯米;设某人的付款金额为x 元,购买量为y千克,则购买量y关于付款金额x(x>10)的函数解析式为______.答案: 3 y=4x+2##y=2+4x分析:根据题意列出一元一次方程,函数解析式即可求解.解:∵14>10,∴超过2千克,设购买了a千克,则2×5+(a−2)×0.8×5=14,解得a=3,设某人的付款金额为x元,购买量为y千克,则购买量y关于付款金额x(x>10)的函数解析式为:y=2×5+(x−2)×5×0.8=10+4x−8=4x+2,所以答案是:3,y=4x+2.小提示:本题考查了一元一次方程的应用,列函数解析式,根据题意列出方程或函数关系式是解题的关键.13、张老师带领x名学生到某动物园参观,已知成人票每张10元,学生票每张5元,设门票的总费用为y元,则y=__________________,当学生有45人时,需要的总费用为________元.答案: 10+5x(x为正整数), 235分析:总费用=成人票用钱数+学生票用钱数,根据关系列式即可.根据题意可知y=5x+10.当x=45时,y=45×5+10=235元.故答案为5x+10;235.小提示:解决问题的关键是读懂题意,找到所求的量的等量关系.关系为:总费用=成人票用钱数+学生票用钱数.14、已知一次函数y =(2m +1)x +m ﹣3的图象不经过第二象限,则m 的取值范围为______.答案:−12<m ⩽3 分析:根据一次函数图象经过的象限可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围. 解:∵一次函数y =(2m +1)x +m −3的图象不经过第二象限,∴该图象经过第一、三象限或第一、三、四象限,{2m +1>0m −3≤0,解得:﹣12<m ≤3. 所以答案是:﹣12<m ≤3.小提示:本题考查了一次函数的性质及解不等式组,解题的关键是熟知一次函数的性质并正确的应用.15、正比例函数的图像过A 点,A 点的横坐标为3.且A 点到x 轴的距离为2,则此函数解析式是___________________ .答案:y =23x 或y =-23x分析:根据题意确定A 点纵坐标是2或者-2,设出正比例函数解析式,然后分情况将A 点坐标代入解析式即可求出.根据题意可得A 点坐标(3,2)或(3,-2),设正比例函数解析式为:y=kx ,代入解析式可得:k=23或-23,∴函数解析式是y =23x 或y =-23x .所以答案是:y =23x 或y =-23x .小提示:本题主要考查了正比例函数解析式,根据题意确定点A 的坐标是解题的关键.解答题16、已知函数y=(5m−3)x2−n+(m+n),(1)当m、n为何值时,此函数是一次函数?(2)当m、n为何值时,此函数是正比例函数?答案:(1)n=1,m≠35(2)n=1,m=-1分析:(1)根据一次函数的定义知2−n=1,且5m−3≠0,据此可以求得m、n的值;(2)根据正比例函数的定义知2−n=1,m+n=0,据此可以求得m、n的值.(1)解:当函数y=(5m−3)x2−n+(m+n)是一次函数时,2−n=1,且5m−3≠0,解得,n=1,m≠35;(2)解:当函数y=(5m−3)x2−n+(m+n)是正比例函数时,{2−n=1 m+n=05m−3≠0,解得,n=1,m=−1.小提示:本题考查了一次函数、正比例函数的定义,解题的关键是掌握正比例函数是一次函数的一种特殊形式.17、今年植树节期间,某景观园林公司购进一批成捆的A,B两种树苗,每捆A种树苗比每捆B种树苗多10棵,每捆A种树苗和每捆B种树苗的价格分别是630元和600元,而每棵A种树苗和每棵B种树苗的价格分别是这一批树苗平均每棵价格的0.9倍和1.2倍.(1)求这一批树苗平均每棵的价格是多少元?(2)如果购进的这批树苗共5500棵,A种树苗至多购进3500棵,为了使购进的这批树苗的费用最低,应购进A种树苗和B种树苗各多少棵?并求出最低费用.答案:(1)这一批树苗平均每棵的价格是20元;(2)购进A种树苗3500棵,B种树苗2000棵,能使得购进这批树苗的费用最低为111000元.分析:(1)设这一批树苗平均每棵的价格是x元,分别表示出两种树苗的数量,根据“每捆A种树苗比每捆B种树苗多10棵”列方程即可求解;(2)设购进A种树苗t棵,这批树苗的费用为w,得到w与t的关系式,根据题意得到t的取值范围,根据函数增减性即可求解.解:(1)设这一批树苗平均每棵的价格是x元,根据题意,得6300.9x −6001.2x=10,解之,得x=20.经检验知,x=20是原分式方程的根,并符合题意.答:这一批树苗平均每棵的价格是20元.(2)由(1)可知A种树苗每棵价格为20×0.9=18元,种树苗每棵价格为20×1.2=24元,设购进A种树苗t棵,这批树苗的费用为w,则w=18t+24(5500−t)=−6t+132000.∵w是t的一次函数,k=−6<0,w随着t的增大而减小,t≤3500,∴当t=3500棵时,w最小.此时,B种树苗有5500−3500=2000棵,w=−6×3500+132000=111000.答:购进A种树苗3500棵,B种树苗2000棵,能使得购进这批树苗的费用最低为111000元.小提示:本题考查了分式方程的实际应用,一次函数实际应用,不等式应用等问题,根据题意得到相关“数量关系”,根据数量关系得到方程或函数解析式是解题关键.18、某市出租车的计费标准如下:行驶路程不超过5 km时,收费8元,行驶路程超过5 km的部分,按每千米1.5元计费.(1)求出租车收费y(元)与行驶路程x(km)之间的函数关系式;(2)若某人一次乘出租车付出了车费11元,求他这次乘坐了多少千米的路程?答案:(1)y={8(0<x≤5)1.5x+0.5(x>5);(2)若某人一次乘出租车付出了车费11元,则这次乘坐了7km的路程.分析:(1)要先根据行驶路程的距离是否超出5千米来进行分类讨论,然后分别列出函数解析式即可;(2)先根据车费判断出此人的大概行驶路程,然后根据(1)中得出的不同的函数,看符合哪种情况,然后代入其中求出此人乘坐的路程.解:(1)由题意得:当0<x≤5时,y=8当x>5时,y=8+1.5(x-5)=1.5x+0.5∴出租车收费y元与行驶路程x(km)之间的函数关系式为y={8(0<x≤5)1.5x+0.5(x>5)(2) ∵11元>8元.∴y=11时,1.5x+0.5=11,解得x=7,∴若某人一次乘出租车付出了车费11元,则这次乘坐了7km的路程..小提示:本题主要考查一次函数关系式的应用问题.注意自变量的取值范围不能遗漏,不同的取值要进行分类讨论.。

人教八年级数学下册-第十九章一次函数章末复习

人教八年级数学下册-第十九章一次函数章末复习

得:
92k+b=40,
解得:
k= 1 ,
4
100k+b=42,
b=17,
∴y与x之间的函数关系式为y= 1 x+17;
4
号/型 … 170/84 170/88 175/92 175/96 180/100 …
码数 … 38
39
40
41
42

(2)若某人的净胸围为108厘米,则该人应买
多大码数的衬衫?
1.一次函数y=(m-2)x+3m-3的图象经过第 一、二、四象限, 求m得取值范围.
∵一次函数y=(m-2)x+3m-3的图象经过第一、 二、四象限,
m-2<0, ∴ 3m-3>0, 解得: 1 <m< 2, ∴m的取值范围是1 <m< 2.
2.直线y=-2x+a经过(3, y1)和(-2, y2)两点, 则y1和y2的大小关系是( )
∴点B的坐标为(0,±2),
设直线解析式为y=kx±2,
∵直线经过点(-4,0),
B.
∴0=-4k±2,解得k=±
1 2

.
2
A(-4,0) O
x
∴直线的解析式为y=
1 2
x+2或y=-
1 2
x-2.
2.把直线y=2x-1向上平移2各单位,所得
直线的解析式是:
.
分析: 由“上加下减”的原则可知,直线 y=2x-1向上平移2个单位,所得直线解析 式为y=2x-1+2,即y=2x+1.
y=kx+b
b>0 k>0 b=0
b<0 b>0 k<0 b=0 b<0
图象经过的象限

八年级数学下册第十九章一次函数知识点题库(带答案)

八年级数学下册第十九章一次函数知识点题库(带答案)

八年级数学下册第十九章一次函数知识点题库单选题1、已知:将直线y=x﹣1向上平移2个单位长度后得到直线y=kx+b,则下列关于直线y=kx+b的说法正确的是()A.经过第一、二、四象限B.与x轴交于(1,0)C.与y轴交于(0,1)D.y随x的增大而减小答案:C分析:利用一次函数图象的平移规律,左加右减,上加下减,得出即可.将直线y=x﹣1向上平移2个单位长度后得到直线y=x﹣1+2=x+1,A、直线y=x+1经过第一、二、三象限,错误;B、直线y=x+1与x轴交于(﹣1,0),错误;C、直线y=x+1与y轴交于(0,1),正确;D、直线y=x+1,y随x的增大而增大,错误,故选:C.小提示:本题主要考查了一次函数图象与几何变换,正确把握变换规律以及一次函数的图象和性质是解题的关键.2、下列函数中,自变量x的取值范围是x>1的函数是()C.y=√2x−1D.y=√x−2A.y=2√x−1B.y=√x−1答案:B分析:根据被开方数大于等于0,分母不等于0对各选项分别列式计算即可得解.解:A.y=2√x−1中x≥1,此选项不符合题意;中x>1,此选项符合题意;B.y=√x−1C.y=√2x−1中x≥1,此选项不符合题意;2D.y=√x−2中x≥2,此选项不符合题意;故答案选:B.小提示:本题考查了函数自变量的范围,一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.3、一个蓄水池有水50m 3,打开放水闸门放水,水池里的水和放水时间的关系如表,下面说法不正确的是( )B .每分钟放水2m 3C .放水10分钟后,水池里还有水30m 3D .放水25分钟,水池里的水全部放完答案:A分析:根据题意可得蓄水量y =50﹣2t ,从而进行各选项的判断即可.解:设蓄水量为y ,时间为t ,y =kt +b∴{k +b =482k +b =46解得:{k =−2b =50则可得y =﹣2t +50,A 、放水时间是自变量,水池里面的水量是因变量,故本选项符合题意;B 、蓄水池每分钟放水2m 3,故本选项不合题意;C 、放水10分钟后水池还剩50-20=30m 3,故本选项不合题意;D 、蓄水池一共可以放水50÷2=25分钟,故本选项不合题意;故选A .小提示:本题主要考查了一次函数的性质,自变量和因变量,解题的关键在于能够准确求出一次函数解析式.4、某次物理实验中,测得变量V 和m 的对应数据如下表,则这两个变量之间的关系最接近下列函数中的( )A .V =m +1B .V =2mC .V =3m −1D .V =m .答案:A分析:观察这几组数据,找到其中的规律,然后再答案中找出与之相近的关系式.解:有四组数据可找出规律,2.41-1=1.41,接近12;4 .9-1=3.9,接近22;10 .33-1=9.33,接近32;17 .21-1=16.21,接近42;25 .93−1=24.93,接近52;37 .02−1=36.02,接近62;故m 与v 之间的关系最接近于v=m 2+1.故选:A .小提示:本题是开放性题目,需要找出题目中的两未知数的律,然后再答案中找出与之相近的关系式.5、函数y =√x+2x−1中,自变量x 的取值范围是( )A .x >﹣2B .x ≥﹣2C .x >﹣2且x ≠1D .x ≥﹣2且x ≠1答案:D分析:根据二次根式的性质和分式的意义,被开方数大于等于0,分母不为0,列不等式组可求得自变量x 的取值范围.根据题意得:{x +2≥0x −1≠0, 解得:x ≥﹣2且x ≠1.故选:D .小提示:本题考查了函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.6、图是某人骑自行车出行的图象,从图象中可以得到的信息是( )A.从起点到终点共用了50min B.20~30min时速度为0C.前20min速度为4km/ℎD.40min与50min时速度是不相同的答案:B分析:分别根据函数图象的实际意义可依次判断各个选项是否正确.A、从起点到终点共用了60min,故本选项错误;B、20~30min时速度为0,故本选项正确;C、前20min的速度是5km/ℎ,故本选项错误;D、40min与50min时速度是相同的,故本选项错误.故选:B.小提示:本题考查了函数图象的读图能力.要理解函数图象所代表的实际意义是什么才能从中获取准确的信息.7、在平面直角坐标系中,点A(−5,−1)关于原点对称的点的坐标为A′(a,b),关于x轴对称的点的坐标为B(c,d),则一次函数y=(a−c)x−(b+d)的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限答案:B分析:根据已知条件分别求出a,b,c,d,再根据一次函数的图像性质判断即可.∵A(−5,−1),∴关于原点对称的点的坐标为A′(5,1),关于x轴对称的点的坐标为B(−5,1),∴a=5,b=1,c=−5,d=1,∴a−c=10,b+d=2,∴一次函数为y=10x−2,∴一次函数图像经过一、三、四象限,∴不经过第二象限;故选B.小提示:本题主要考查了平面直角坐标系中,对称点的坐标特征和一次函数的图像性质,熟练掌握一次函数的性质是解题的关键.8、已知一次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是()A.B.C.D.答案:A分析:根据一次函数图形的性质,结合题意y1=ax+b和y2=bx+a(a≠b),即可得到答案.①当a>0,b>0,y1、y2的图象都经过一、二、三象限②当a<0,b<0,y1、y2的图象都经过二、三、四象限③当a>0,b<0,y1的图象都经过一、三、四象限,y2的图象都经过一、二、四象限④当a<0,b>0,y1的图象都经过一、二、四象限,y2的图象都经过一、三、四象限满足题意的只有A.故选A.小提示:本题考查一次函数图像,解题的关键是熟练掌握一次函数图像的性质.9、根据以下程序,当输入x=﹣7时,输出的y值为()A .√6B .4√3C .﹣2D .5答案:D分析:由x =−7<1,确定要使用的函数解析式为:y =−x+32,再代入求值即可. 解:当x =−7<1,∴y =−x +32=−(−7)+32=5, 故选:D.小提示:本题考查的是程序框图,求解函数的函数值,理解程序框图的含义,再求解函数值是解题的关键.10、汽车由A 地驶往相距120km 的B 地,它的平均速度是60km/h ,则汽车距B 地路程s (km )与行驶时间t (h )的关系式为( ).A .s =120−60tB .s =120+60tC .s =60tD .s =120t答案:A分析:根据路程等于速度乘以时间,注意s 表示的是距离B 地路程,则s =120−60t .解:∵汽车由A 地驶往相距120km 的B 地,它的平均速度是60km/h ,∴汽车距B 地路程s (km )与行驶时间t (h )的关系式为s =120−60t .故选A .小提示:本题考查了列函数关系式,理解题意是解题的关键.填空题11、已知a ,b ,c 分别是Rt △ABC 的三条边长,c 为斜边长,∠C =90°,我们把关于x 的形如y =a c x +b c 的一次函数称为“勾股一次函数”.若点P (−1,√33)在“勾股一次函数”的图象上,且Rt △ABC 的面积是4,则c 的值是__________.答案:2√6分析:依据题意得到三个关系式:a −b =−√33c,ab =8,a 2+b 2=c 2,运用完全平方公式即可得到c 的值. 解:∵点P (−1,√33)在“勾股一次函数”y =a c x +b c 的图象上, ∴√33=−a c +b c ,即a −b =−√33c ,又∵a,b,c分别是Rt△ABC的三条边长,∠C=90°,Rt△ABC的面积是4,∴12ab=4,即ab=8,又∵a2+b2=c2,∴(a−b)2+2ab=c2,即∴(−√33c)2+2×8=c2,解得c=2√6(负值舍去),所以答案是:2√6.小提示:考查了一次函数图象上点的坐标特征以及勾股定理的应用,根据题目中所给的材料结合勾股定理和乘法公式是解答此题的关键.12、甲、乙两队参加了“端午情,龙舟韵”赛龙舟比赛,两队在比赛时的路程s(米)与时间t(秒)之间的函数图象如图所示,根据图象有以下四个判断:①乙队率先到达终点;②甲队比乙队多走了126米;③在47.8秒时,两队所走路程相等;④从出发到13.7秒的时间段内,甲队的速度比乙队的慢.所有正确判断的序号是_____.答案:③④分析:根据函数图象所给的信息,逐一判断.由函数图象可知,甲走完全程需要82.3秒,乙走完全程需要90.2秒,甲队率先到达终点,故①错误;由函数图象可知,甲、乙两队都走了300米,路程相同,故②错误;由函数图象可知,在47.8秒时,两队所走路程相等,均为174米,故③正确;由函数图象可知,从出发到13.7秒的时间段内,甲队的速度慢,故④正确.∴正确判断的有:③④.所以答案是:③④.小提示:本题考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.13、请写出一个函数的表达式,使其图像分别与x轴的负半轴、y轴的正半轴相交:________.答案:y=x+5分析:结合题意,根据一次函数图像的性质分析,即可得到答案.函数y=x+5的图像如下,函数分别于x轴相交于点B、和y轴相交于点A,当x=0时,y=5,即A(0,5)当y=0时,x=−5,即B(−5,0)∴函数图像分别与x轴的负半轴、y轴的正半轴相交所以答案是:y=x+5.小提示:本题考查了一次函数的知识;解题的关键是熟练掌握一次函数图像的性质,从而完成求解.14、如图,已知直线l:y=x,过点A(1,0)作x轴的垂线交直线l于点B,过点B作直线l的垂线交x轴于点A1;过点A1作x轴的垂线交直线l于点B1,过点B1作直线l的垂线交x轴于点A2;…;按此作法继续下去,则点A n的坐标为_____.答案:(2n,0)分析:依据直线l的解析式为y=x,即可得到∠AOB=45°,即△AOB,△A1OB,△A1OB1,△A2OB1,…,△A n OB n−1为等腰直角三角形.根据等腰三角形“三线合一的性质”可得出OA1=2OA=2,OA2=2OA1,…,OA n=2OA n−1,从而得到A n(2n,0).解:∵直线l的解析式为y=x,∴∠AOB=45°,∴△AOB,△A1OB,△A1OB1,△A2OB1,…,△A n OB n−1为等腰直角三角形.∴OA1=2OA,OA2=2OA1,…,OA n=2OA n−1.∵A(1,0),∴OA=1,∴OA1=2OA=21=2,OA2=2OA1=22=4,OA3=2OA2=23=8,…OA n=2OA n−1=2n.∴A n(2n,0).所以答案是:(2n,0).小提示:本题考查点坐标规律探索,一次函数的图象和性质,等腰直角三角形的判定和性质.根据一次函数解析式得出∠AOB=45°,从而判断各个三角形为等腰直角三角形是解题关键.15、已知点A(x1,y1)、B(x1―3,y2)在直线y=―2x+3上,则y1_____y2(用“>”、“<”或“=”填空)答案:<分析:由k=-2<0根据一次函数的性质可得出该一次函数单调递减,再根据x1>x1-3,即可得出结论.解:∵直线y=―2x+3中,k=-2<0,∴该一次函数随x的增大而减小,∵x1>x1―3,∴y1<y2.小提示:本题考查了一次函数的性质,解题的关键是根据k=-2<0得出该一次函数y随x的增大而减小本题属于基础题,难度不大,解决该题型题目时,根据一次项系数的正负得出该函数的增减性是关键.解答题16、在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知学生公寓、阅览室、超市依次在同一条直线上,阅览室离学生公寓1.2km,超市离学生公寓2km,小琪从学生公寓出发,匀速步行了12min到阅览室;在阅览室停留70min后,匀速步行了10min到超市;在超市停留20min后,匀速骑行了8min返回学生公寓.给出的图象反映了这个过程中小琪离学生公寓的距离y km与离开学生公寓的时间xmin之间的对应关系.请根据相关信息,解答下列问题:(1)填表:①阅览室到超市的距离为___________km;⁄;②小琪从超市返回学生公寓的速度为___________km min③当小琪离学生公寓的距离为1km时,他离开学生公寓的时间为___________min.(3)当0≤x≤92时,请直接写出y关于x的函数解析式.答案:(1)0.8,1.2,2(2)①0.8;②0.25;③10或116(3)当0≤x≤12时,y=0.1x;当12<x≤82时,y=1.2;当82<x≤92时,y=0.08x−5.36分析:(1)根据题意和函数图象,可以将表格补充完整;(2)根据函数图象中的数据,可以将各个小题中的空补充完整;(3)根据(2)中的结果和函数图象中的数据,可以写出当0≤x≤92时,y关于x的函数解析式.(1)由图象可得,在前12分钟的速度为:1.2÷12=0.1km/min,故当x=8时,离学生公寓的距离为8×0.1=0.8;在12≤x≤82时,离学生公寓的距离不变,都是1.2km故当x=50时,距离不变,都是1.2km;在92≤x≤112时,离学生公寓的距离不变,都是2km,所以,当x=112时,离学生公寓的距离为2km故填表为:①阅览室到超市的距离为2-1.2=0.8km;②小琪从超市返回学生公寓的速度为:⁄;2÷(120-112)=0.25km min③分两种情形:当小琪离开学生公寓,与学生公寓的距离为1km时,他离开学生公寓的时间为:1÷0.1=10min;当小琪返回与学生公寓的距离为1km时,他离开学生公寓的时间为:112+(2-1)÷{2÷(120-112)}=112+4=116min ;所以答案是:①0.8;②0.25;③10或116(3)当0≤x ≤12时,设直线解析式为y =kx ,把(12,1.2)代入得,12k =1.2,解得,k =0.1∴y =0.1x ;当12<x ≤82时,y =1.2;当82<x ≤92时,设直线解析式为y =mx +n ,把(82,1.2),(92,2)代入得,{82m +n =1.292m +n =2解得,{m =0.08n =−5.36∴y =0.08x −5.36,由上可得,当0≤x ≤92时,y 关于x 的函数解析式为{y =0.1x (0≤x ≤12)y =1.2(12<x ≤82)y =0.08x −5.36(82<x ≤92). 小提示:本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.17、“五一”假期,小明一家将随团到某风景区旅游,集体门票的收费标准是:25人以内(含25人),每人30元;超过25人时,超过部分每人20元.(1)写出应收门票费y (元)与游览人数x (人)之间的关系式;(2)若小明一家所在的旅游团购门票花了1250元,则该旅游团共有多少人.答案:(1){y =30x (0≤x ≤25)y =20x +250(x >25)(x 为整数) (2)旅游团共有50人分析:(1)当0≤x ≤25时,票价是每人30元,则y =30x ,当x >25时,超过部分每人20元,则此时的门票费为:y =30×25+(x −25)×20=20x +250;(2)根据花费为1250元,1250÷30≈41.7>25,据此可以判断人数超过25人,即可得到y =20x +250=1250,解方程即可得到答案.(1)解:(1)由题意得:当0≤x≤25时,票价是每人30元∴y=30x;当x>25时,超过部分每人20元,∴y=30×25+(x−25)×20=20x+250,∴综上所述:{y=30x(0≤x≤25)(x为整数);y=20x+250(x>25)(2)解:∵小明一家所在的旅游团购门票花了1250元,∴1250÷30≈41.7>25,∴旅游团购门票的张数超过25张,∴20x+250=1250,解得x=50,∴该旅游团共有50人.答:该旅游团共有50人.小提示:本题主要考查了一次函数的实际应用,解题的关键在于能够熟练掌握相关知识进行求解.18、如图,自行车每节链条的长度为2.5cm,交叉重叠部分的圆的直径为0.8cm.(1)观察图形,填写下表:y与x之间的关系式是什么?(3)如果一辆某种型号自行车的链条(安装前)由60节这样的链条组成,那么这辆自行车上的链条(安装后)总长度是多少?答案:(1)4.2;5.9;7.6;(2)y=1.7x+0.8;(3)102cm分析:(1)首先根据题意并结合1节链条的图形可得每节链条两个圆之间的距离为(2.5-0.8×2)cm;接下来再结合图形可得到2节链条的长度为2.5+0.9+0.8,按此规律,自己写出3节链条、4节链条的长度,再进行填表即可;(2)结合(1)中各节链条长度的表达式,则不难得到y与x之间的关系式了;(3)将x=60代入(2)中的关系式中,可求得y值,此时,注意:自行车上的链条为环形,在展直的基础上还要缩短0.8cm.解:(1)每节链条两个圆之间的距离为:2.5-0.8×2=0.9,观察图形可得,2节链条的长度为2.5+0.9+0.8=4.2;3节链条的长度为4.2+0.9+0.8=5.9;4节链条的长度为5.9+0.9+0.8=7.6;故答案是:4.2,5.9,7.6.(2)1节链条、2节链条、3节链条、4节链条的长度分别可表示为:2 .5=0.8+1.7×1,4.2=0.8+1.7×2,5.9=0.8+1.7×3,7.6=0.8+1.7×4=7.6,故y与x之间的关系为:y=1.7x+0.8;(3)当x=60时,y=1.7×60+0.8=102.8,因为自行车上的链条为环形,在展直的基础上还要缩短0.8cm,故自行车60节链条的长度为102.8-0.8=102(cm),所以这辆自行车上的链条(安装后)总长度是102cm.小提示:本题主要考查了函数关系式,解题的关键是根据题意得出n节链条的长度与每节长度之间的关系.。

(必考题)初中八年级数学下册第十九章《一次函数》复习题(答案解析)

(必考题)初中八年级数学下册第十九章《一次函数》复习题(答案解析)

一、选择题1.若正比例函数y=(m﹣2)x的图象经过点A(x1,y1)和点B(x2,y2),当x1<x2时,y1>y2,则m的取值范围是()A.m>0 B.m<0 C.m>2 D.m<22.如图,在平面直角坐标系中,点A的坐标为(﹣2,3),AB⊥x轴,AC⊥y轴,D是OB的中点.E是OC上的一点,当△ADE的周长最小时,点E的坐标是()A.(0,43)B.(0,1)C.(0,103)D.(0,2)3.已知A B,两地相距240千米.早上9点甲车从A地出发去B地,20分钟后,乙车从B地出发去A地.两车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图所示,则下列描述不正确的是()A.甲车的速度是60千米/小时B.乙车的速度是90千米/小时C.甲车与乙车在早上10点相遇D.乙车在12:00到达A地4.下列图形中,表示一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0)的图象的是()A.B.C .D .5.若关于x 、y 的二元一次方程组42313312x y a x y a +=+⎧⎪⎨-=+⎪⎩的解为非负数,且a 使得一次函数(1)3y a x a =++-图象不过第四象限,那么所有符合条件的整数a 的个数是( ) A .2 B .3 C .4 D .56.对于函数31y x =-+,下列结论正确的是( )A .y 随x 的增大而增大B .它的图象经过第一、二、三象限C .它的图象必经过点()0,1D .当1x >时,0y >7.已知直线()1:0l y kx b k =+≠与直线()2:30l y mx m =-<在第三象限交于点M ,若直线1l 与x 轴的交点为()10B ,,则k 的取值范围是( ) A .33k -<< B .03k <<C .04k <<D .30k -<< 8.已知关于x ,y 的二元一次方程组(7)2(31)5y k x y k x =--⎧⎨=-+⎩无解,则一次函数32y kx =-的图象不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 9.圆的周长公式是2C r π=,那么在这个公式中,关于变量和常量的说法正确的是( ) A .2是常量,C 、π、r 是变量B .2、π是常量,C 、r 是变量 C .2是常量,r 是变量D .2是常量,C 、r 是变量 10.如图,直线y =kx (k≠0)与y =23x+2在第二象限交于A ,y =23x+2交x 轴,y 轴分别于B 、C 两点.3S △ABO =S △BOC ,则方程组0236kx y x y -=⎧⎨-=-⎩的解为( )A .143x y =-⎧⎪⎨=⎪⎩B .321x y ⎧=-⎪⎨⎪=⎩C .223x y =-⎧⎪⎨=⎪⎩D .3432x y ⎧=-⎪⎪⎨⎪=⎪⎩11.甲、乙两人从公司去健身房,甲先步行前往,几分钟后乙乘出租车追赶,出租车的速度是甲步行速度的5倍,乙追上甲后,立刻带上甲一同前往,结果甲比预计早到4分钟,他们距公司的路程y (米)与时间x (分)间的函数关系如图所示,则下列结论中正确的个数为( )①甲步行的速度为100米/分;②乙比甲晚出发7分钟;③公司距离健身房1500米;④乙追上甲时距健身房500米.A .1个B .2个C .3个D .4个12.对函数22y x =-+的描述错误是( )A .y 随x 的增大而减小B .图象经过第一、三、四象限C .图象与x 轴的交点坐标为(1,0)D .图象与坐标轴交点的连线段长度等于5 13.在某大国的技术封锁下,华为公司凭借自身强大的创造力和凝聚力,华为概念指数从年初至今涨幅连连翻倍,比如硕贝德股票涨幅接近200%(如图AB 段),小丽在图片中建立了坐标系,将AB 段看作一次函数y kx b =+图象的一部分,则k ,b 的取值范围是( )A .0k >,0b <B .0k >,0b >C .0k <,0b <D .0k <,0b > 14.直线1y x 42=-与x 轴、y 轴分别相交于A ,B 两点,若点()1,2M m m +-在AOB 内部,则m 的取值范围为( )A .1433m <<B .17m -<<C .703m <<D .1123m << 15.若函数y =(k ﹣3)x+k 2﹣9是正比例函数,则( ) A .k≠3 B .k =±3 C .k =3 D .k =﹣3二、填空题16.如图,已知直线l:y =12x ,点A 1(2,0),过点A 1作x 轴的垂线交直线l 于点B 1,以A 1B 1为边,向右侧作正方形A 1B 1C 1A 2,延长A 2C 1交直线l 于点B 2;以A 2B 2为边,向右侧作正方形A 2B 2C 2A 3,延长A 3C 2交直线l 于点B 3;……;按照这个规律进行下去,点B n 的横坐标为______.(结果用含正整数n 的代数式表示)17.直线1:l y kx =与直线2:l y ax b =+在同一平面直角坐标系中的图形如图所示,两条直线相交于点A ,直线x m =分别与两条直线交于M ,N 两点,若AMN 的面积不小于12时,则m 的取值范围是_______.18.如果一次函数(2)1y m x m =-+-的图像经过第一、二、四象限,那么常数m 的取值范围为____.19.如图,已知A(8,0),点P 为y 轴上的一动点,线段PA 绕着点P 按逆时针方向旋转90°至线段PB 位置,连接AB 、OB ,则OB +BA 的最小值是__________.20.如图,直线22y x =-+与两坐标轴分别交于A 、B 两点,将线段OA 分成n 等份,分点分别为1231,,,,n P P P P -,过每个分点作x 轴的垂线分别交直线AB 于点1231,,,,n T T T T -,用1231,,,,n S S S S -分别表示11212121Rt ,Rt ,,Rt n n n T OP T PP T P P ---△△△的面积,则当n=4时,121n S S S -+++=_______;当n=2020时,1231n S S S S -++++=______.21.如图,已知一次函数y mx n =-的图像,则关于x 的不等式1mx n ->的解集是__________.22.如图,平面直角坐标系中,点A 在直线333y x =+上,点C 在直线142y x =-+上,点A ,C 都在第一象限内,点B ,D 在x 轴上,若AOB 是等边三角形,BCD △是以BD 为底边的等腰直角三角形,则点D 的坐标为____________.23.如图,平面直角坐标系xOy 中,()0,2A ,()2,0B ,C 为AB 的中点,P 是OB 上的一个动点,ACP ∆周长最小时,点P 的横坐标是______.24.已知一次函数3y x 的图像经过点(,)P a b 和(,)Q c d ,那么()()b c d a c d ---的值为____________. 25.在计算机编程中有这样一个数字程序:对于二个数a ,b 用min{,}a b 表示这两个数中较小的数.例如:min{1,2}1-=-,则min{1,22}x x +-+的最大值为________. 26.若()11,A x y ,()22,B x y 是一次函数(1)2y a x =-+图像上的不同的两个点,当12x x >时,12y y <,则a 的取值范围是_________.三、解答题27.如图,在平面直角坐标系中,过点()0,6C 的直线AC 与直线OA 相交于点()4,2A . (1)求直线AC 和OA 的函数解析式;(2)动点M 在直线AO 上运动,是否存在点M ,使OMC 的面积是OAC 的面积的14?若存在,求出此时点M 的坐标;若不存在,请说明理由.28.如图,在平面直角坐标系中,O 为坐标原点,一次函数y kx b =+与x 轴交于点A ,与y 轴交于点(0,4)B ,与正比例函数3y x =-交于点(1,)C m -.(1)求直线AB 的函数表达式.(2)在y 轴上找点P ,使OCP △为等腰三角形,直接写出所有满足条件的P 点坐标.(3)在直线AB 上找点Q ,使得78COQ APB S S =,求点Q 的坐标.29.如图,已知一次函数43y x m =+的图象与x 轴交于点(6,0)A -,与y 轴交于点B .(1)求m 的值和点B 的坐标;(2)在x 轴上是否存在点C ,使得ABC 的面积为16?若存在,求出点C 的坐标;若不存在,请说明理由.30.如图,一次函数y kx b =+的图象与x 轴、y 轴分别相交于E ,F 两点,点E 的坐标为()6,0-,3OF =,其中P 是直线EF 上的一个动点.(1)求k 与b 的值;(2)若POE △的面积为6,求点P 的坐标.。

义务教育教科书八年级数学下册第十九章《一次函数复习》课件ppt

义务教育教科书八年级数学下册第十九章《一次函数复习》课件ppt

问题10:
已知x点A(-4,0),B(2,0),若点C在一次函数y 1 x 2 2
的图象上,且△ABC是直角三角形,则满足条件点C
有(
)
A.1个 B.2个 C.3个 D.4个
C
C
x
2C C
A
OB4
y
问题11: 如图,直线AB与y轴,x轴交点分别为A(0,2) B(4,0),以坐标轴上有一点C,使△ACB为等腰三角形
45x 30(6 x) 240
120x
1680
2300
解得xx3641
∵x是整数,∴x 取4,5 ∵k=120>O ∴y 随x的增大而增
∴当x=4时,Y的最小值=2160元
2.(9分)5月12日,我国四川省汶川县等地发生强烈地震,在抗
震救灾中得知,甲、乙两个重灾区急需一种大型挖掘机,甲地
需要25台,乙地需要23台;A、B两省获知情况后慷慨相助,分
3.某蓄水池的横断面示意图如右图,分深 水区和浅水区,如果这个注满水的蓄水池 以固定的流量把水全部放出.下面的图象 能大致表示水的深度h和放水t时间之间的
关系的是( A )
h
h
h
h
h
O tO
tO t O
t
A
B
C
D
1.已知y+1与x-2成正比例,当x=3时,y=-3, (1)求y与x的函数关系式; (2)画出这个函数图象; (3)求图象与坐标轴围成的三角形面积; (4)当-1≤x≤4时,求y的取值范围;
v y
v
v
0
x
x O
A B
函数的定义要点:
0
x
C
0
x
D
(1)在一个变化过程中有两个变量x,y

第十九章一次函数单元复习之中点坐标公式在一次函数中的应用课件-2024-2025学年八年级下册

第十九章一次函数单元复习之中点坐标公式在一次函数中的应用课件-2024-2025学年八年级下册

2
解题方法小结:
中点坐标在平行四边形存在性问题的应用:
第一步:按 定线段为边或对角线 分类讨论;
第二步:根据
中点坐标公式 列方程(组);
第三步:根据 方程(组)的解 确定动点的坐标.
动手练习
如图,平面直角坐标系中,直线 =
4

3
+ 4与x、y 轴分别相
交于点A、B.点C 的坐标为(0,-2),经过A、C 作直线.
以O、A、B、D为顶点的四边形是平行四边形,试求D 的坐标.
D
y
(-3,
3)
3)
BB(-3,
B (-3,3)
A (1,2)
D
O
x
已知在平面直角坐标系中,A为(1,2),B 为(-3,3),要使得以O、A、
B、D 为顶点的四边形是平行四边形,试求D 的坐标.
D
解:设D 的坐标为(a,b).
当以AB为对角线时,则AB、OD的中点重合
的坐标为(xP, yP),则B 的坐标为 (2xP- x1 ,2yP- y1 )
平行四边形中各顶点的坐标间的关系
1、 ABCD 的顶点坐标分别为A(xA,yA)、B(xB,yB)、C(xC,yC)、
D(xD,yD),求证:xA+xC=xB+xD;yA+yC=yB+yD.
证明:
在平行四边形ABCD中
中点坐标公式在一
次函数中的应用
目 录
CONTENTS
01
中点坐标公式
02
中点坐标公式的逆用
03
平行四边形中各顶点
的坐标间的关系
04
三定一动问题
05
两定两动问题

第十九章 一次函数 单元复习题 (含详解) 人教版八年级数学下册

人教版八年级数学下册第十九章一次函数单元复习题一、选择题1.在圆的面积公式中,变量是( )A .B .S ,rC .D .只有2.下列图象中,不能表示y 是x 的函数的是( )A .B .C .D .3.已知正比例函数,若随的增大而减小,则的取值范围是( )A .B .C .D .4.如图,函数和的图象交于点,则不等式的解集为( )A .B .C .D .5.如图,直线经过点A 和点B ,直线过点A ,则不等式的解集为( )2πS r =πS ,πr ,r()1y k x =-y x k 1k <1k >0k <0k >2y x =4y ax =+()3A m ,24x ax <+32x >32x <3x >3x <1y kx b =+22y x =2x kx b <+A .B .C .D .6.函数x 的取值范围是( )A .x≠0B .x≥且x≠0C .x >D.x≥7.正比例函数y =(k ﹣2)x 的图象经过一、三象限,那么k 的取值范围是( )A .k >0B .k >2C .k <0D .k <28.如图,直线 y =﹣x+2 与 x 轴交于点 A ,与 y 轴交于点 B ,以点 A 为圆心,AB 长为半径画弧,交 x 轴于点 C ,则点 C 的坐标为( )A .(﹣1,0)B .(,0)C .(-2,0)D .(,0)9.在平面直角坐标系中,将函数的图象向下平移2个单位长度,所得函数图象的表达式是( )A .B .C .D .10.如图是甲、乙两家商店销售同一种产品的销售价 (元)关于销售量 (件)的函数图象.给出下列说法,其中说法不正确的是( )A .售2件时,甲、乙两家的售价相同B .买1件时,买乙家的合算C .买3件时,买甲家的合算12-12-21y x =-+y x 2x <-1x <-20x -<<10x -<<y =12-21y x =-+21y x =--23y x =--23y x =-+D .乙家的1件售价约为3元二、填空题11.函数x 的取值范围是 12.已知函数是关于的一次函数,则的值为  .13.已知一次函数的图象经过点,且与直线的图象平行,则一次函数表达式为 .14.市场上一种豆子的单价是2元/千克,豆子总的售价 (元)与所售豆子的重量 (千克)之间的函数关系式为 .(不需要写出自变量取值范围)三、解答题15.某天早晨,王老师从家出发,骑摩托车前往学校,途中在路旁一家饭店吃早餐,如图所示的是王老师从家到学校这一过程中行驶路程s (千米)与时间t (分)之间的关系.(1)学校离他家多远?从出发到学校,用了多少时间?(2)王老师吃早餐用了多少时间?(3)王老师吃早餐以前的速度快还是吃完早餐以后的速度快?最快时速达到多少?16.一次函数的自变量x 的取值范围是,相应函数值的取值范围是,求这个函数的解析式.17.已知一次函数y =kx +b 的图象由直线y =﹣2x 平移得到,且过点(﹣2,5).求该一次函数的解析式.18.暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价均为每人1000元的两家旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折收费;乙旅行社的优惠条件是家长、学生都按八折收费.假设这两位家长带领x 名学生去旅游,他们应该选择哪家旅行社?四、综合题19.已知矩形 的周长为 , AB 的长为 , 的长为 .(1)写出 关于 的函数解析式( 为自变量);(2)当 时,求 的值.x y x y x y x x y y =||(1)3m y m x =--m y kx b =+()05-,1y x 2=y =y kx b =+42x -≤≤14y ≤≤ABCD 20BC 3x =20.如图,在平面直角坐标系中,一次函数y =kx+b 的图象经过点A (﹣2,4),且与正比例函数y=﹣x 的图象交于点B (m ,2).(1)求一次函数y =kx+b 的解析式;(2)若直线AB 与x 轴交于点C ,若连接AO 后,则△OAB 的面积是  .21.综合与探究如图,在平面直角坐标系中,函数的图象分别交轴、轴于两点.点在上,且,作直线.(1)A 点坐标为 ,B 点坐标为 ;(2)求直线的解析式;(3)在直线上找一点,使得,请直接写出点的坐标;(4)在坐标平面内是否存在这样的点,使得以点为顶点的四边形为平行四边形?若存在,请你直接写出点的坐标;若不存在,请说明理由.22.李明驾车以千米小时的速度从甲地匀速开往乙地,行驶到服务区休息了一段时间后以另一速度继续匀速行驶,直至到达乙地.李明与乙地的距离千米与时间小时之间的函数关系图象如图所示.x y AM AM P N )23212y x =+A B 、M OB 12OM MB =::AM P ABP AOB S S =V V N A B M N 、、、100/y()x((1)求的值;(2)求李明从服务区到乙地与之间的函数关系式;(3)求时李明驾车行驶的路程.a y x x 5答案解析部分1.【答案】B【解析】【解答】解:中的变量是、,故答案为:B.【分析】在一个过程中,固定不变的量称为常量,可以取不同数值的量称为变量.2.【答案】B【解析】【解答】解:A 、满足对于x 的每一个取值,y 都有唯一确定的值与之对应关系,故不符合题意;B 、不满足对于x 的每一个取值,y 都有唯一确定的值与之对应关系,故符合题意;C 、满足对于x 的每一个取值,y 都有唯一确定的值与之对应关系,故不符合题意;D 、满足对于x 的每一个取值,y 都有唯一确定的值与之对应关系,故不符合题意;故答案为:B .【分析】根据函数的定义逐项判断即可。

八年级数学《一次函数-复习课》课件


这小堂 课结
归纳小结 反馈升华
正比例函数与一次函数有何 异同? 一次函数与方程(组)、不 等式之间的关系
一次函数的图象和性质及应用
学习了哪些数学思想方法?
分层作业 自我评价
A组为必做题, B组为选作题.
A组:1.弹簧的长度y(cm)与所挂物体的质量x(kg)关系如右图所示,
则弹簧不挂重物时的长度是
解:∵ y=2x-1;
∴k=2>0; ∴y随x的增大而增大.
∵-1 < 2 ; ∴ y1 < y2 .
一题多解 合作探究
例3.已知,点(-1,y1),(2,y2)在
< 一次函数y=2x-1的图象上,则y1
y2.
解法三 图象法:
y
4
画出函数y=2x-1的图象:
3
x… 0 1… y … -1 1 …
2
问题4:该函数有哪些性质?
B
A
一次函数与正比例函数的图象与性质
一次
函数
y=kx+b
(k≠0,
b≠0)
图象
k,b的 符号 经过象
限 增减性
y
y
y
y
(0,b) ox
ox (0,b)
(0,b) ox
(o 0,bx)
k >0 k >0 k< 0 k< 0 b >0 b< 0 b >0 b< 0
一、 二 、三一、三、四 .一、二、四 二、三、四
问题1:分别求出y1,y2关于x的函数关系式;
解决问题 巩固知识
活动一:自主复习,板书展演 问题1:分别求出y1,y2关于x的函数关系式;
甲公司:y1=30x(x≥0) 乙公司:y2=15x+80(x≥0)

人教版八年级下册数学《正比例函数》一次函数说课教学课件复习


课件
课件
课件
课件
课件
课件
课件
个人简历:课件/jianli/
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
从函数关系看,关键是比例系数k,比例系数k一确定,正比
例函数就确定了;只需知道两个变量x、y的一对对应值即可确
定k的值.
从方程角度看,如果三个量x、y、k中已知其中两个量,则
课堂练习
2.下列问题中的y与x成正比例函数关系的是( D ).
A.圆的半径为x,面积为y ;
课件
课件
课件
课件
课件
课件
课件
个人简历:课件/jianli/
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
B.某地手机月租为10元,通话收费标准为0.1元/min, 课件课件
课件 课件
课件 课件
y 2x2 ;不是
(3) y2 4x ;不是 (4)
y x ;是
2
1
k= 2
1
(5)y=-4x+3; 不是 (6) y 2(x x2 ) 2x2. 是 k= 2
例题解析
2.列式表示下列问题中y与x的函数关系,并指出哪些是正比例函数.

课件
课件
1)







x
cm,周长为y
课件
课件
课件
第十九章 一次函数
正比例函数
第1课时
课件
情境导入
2011年开始运营的京沪高速铁路全长1 318 km.设列车的

第十九章 一次函数 小结与复习-天津市2020年空中课堂人教版八年级数学下册课件(共30张PPT)


图象:一条直线
性质: k > 0,y 随 x 的增大而增大; k < 0,y 随 x 的增大而减小.
三、重要知识点的应用
应用1 正比例函数、一次函数的定义.
例1 下列变量之间关系中,一个变量是另一个变量的正比例函数 的是( B ).
(A)正方形的面积 S 随着边长 x 的变化而变化
S=x2
(B)正方形的周长 C 随着边长 x 的变化而变化
常量:100 和 10 ;变量:x 和 y ; 自变量:x ; 函数:y 是 x 的函数 .
问题3 函数有几种表示方法?各有哪些特点?画函数图象分几步?
(1) y = x2
解析式法
描述变量之间的对应关系
x
(2)
… -3 -2 -1 0
1
2
3

y=x2 … 9 4 1 0 1 4 9 …
列表法
直接给出 部分对应值
函数
字母系数取值 ( k>0)
y=kx+b (k ≠ 0)
b >0 b=0
b<0
图象
y Ox y
Ox y Ox
经过的象限 变化趋势
一、二、三 一、三
y 随x 的增大 而增大
一、三、四
问题7 一次函数图象的特征?一次函数的性质?
函数
字母系数取值 ( k<0)
b>0
y=kx+b (k ≠ 0) b = 0
一次函数的小结与复习 八年级 数学
学习目标:
1. 经历回顾与思考,整理本章学习内容. 2. 建立相关知识之间的联系,优化知识结构. 3. 理解一次函数在解决实际问题中的作用. 4. 进一步体会函数模型思想、数形结合思想及变化对应的思想.
二、本章主要知识点回顾
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

种表示函数关系的方法叫做

(二)一次函数 1.一次函数的概念:一般地,形如
数.
的函数,叫做一次函
特别地,当
时,即为 y kx ,称 y 是 x 的
函数.
2.一次函数的图象和性质
(1)正比例函数的图象是一条经过
;一次函数 y kx b 的图象
是一条经过点(0, )和点(
,0)的直线,一次函数 y kx b 的
(1)求点 B 的坐标;
{
(2)设 OC 长为 m,△BOD 的面积为 S,求 S 与 m 的函数关系式,并写出自变 量 m 的取值范围.
例y8.求x:自3 变量x的y 取值1 范围
y x 3 y x1 3
y x3 x2
y (x3)
x3
y
2x x2 16
y (5x3)2
例 9. 我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水 公司对居民用水采用以户为单位分段计费办法收费.即一月用水 10 吨以内(包 括 10 吨)的用户,每吨收水费 a 元;一月用水超过 10 吨的用户,10 吨水仍按每 吨 a 元收费,超过 10 吨的部分,按每吨 b 元( b a )收费.设一户居民月用水 x 吨,应收水费 y 元, y 与 x 之间的函数关系如图所示. (1)求 a 的值;某户居民上月用水 8 吨,应收水费多少元 (2)求 b 的值,并写出当 x 10 时, y 与 x 之间的函数关系式; (3)已知居民甲上月比居民乙多用水 4 吨,两家共收水费 46 元,求他们上月分 别用水多少吨
请写出一个满足上述两个条件的函数的解析式

4.一次函数与一次方程(组)、一次不等式 (1)解一元一次方程 kx b 0(k 0) 可以转化为:求直线 y kx b 与 x 轴(直
线 y 0)交点的 坐标.
(2)解二元一次方程组
y y
k1x k2 x
b1 b2
可以转化为:求直线
y k1x b1
例题 8. 已知直线
与两坐标轴所围成的三角形面积等于 4,则直线解析
式为__________.

拓展:直线关于某坐标轴对称型
若直线 与直线
关于
(1)x 轴对称,则直线 l 的解析式为__________(

(2)y 轴对称,则直线 l 的解析式为__________(

(3)原点对称,则直线 l 的解析式为____________(
例 10..一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发, 设慢车行驶的时间为 x(h) ,两.车.之.间.的.距.离.为 y(km) ,图中的折线表示 y 与 x 之
间的函数关系.
y/km
根据图象进行以下探究:
900 >
D
信息读取:(1)甲、乙两地之间的距离为 km;
A
(2)请解释图中点 B 的实际意义;
变式问法:已知一次函数
,当 时,y=-1,求解析式.
例题 3.已知某个一次函数的图象与 x 轴、y 轴的交点坐标分别是(-2,0)、 (0,4),则这个函数的解析式为______.
\
例题 4. 已知一次函数的图象如图所示,则该函数的解析式为_
____.
例题 5. 已知直线
与直线
பைடு நூலகம்
平行,且它与 y 轴的
交点到原点的 距离为 2, 则此直线的解析式为_______.
例题 6. 把直线
向下平移 2 个单位得到的图象解析式为__________.
把直线
向左平移 2 个单位得到的图象解析式为__________.
例题 7. 某油箱中存油 20 升,油从管道中匀速流出,流速为 0.2 升/分钟,则油 箱中剩油量 y(升)与流出时间 t(分钟)的函数关系式为__________.

的交点的坐标.
( 3 ) 解 不 等 式 k1x b1 k2x b2 可 以 转 化 为 : 观 察 直 线 y k1x b1 在 直 线
y k2x b2 的
上方部分所对应的
的取值范围;或者观察直线
y (k1 k2 )x (b1 b2 ) 在
上方部分所对应的 的取值范围.
;
一.典型例题

(你可以证明这些结论吗如果可以你就是高手了)
例题 9. 若直线 l 与直线
关于 y 轴对称,则直线 l 的解析式为______.
}
例题 10. 已知函数的图象过点 A(1,4),请写出满足条件的一个函数解析式. 例题 11.如果某函数具有下列两条性质:
(1)它的图象是经过原点的一条直线;(2) y 值随 x 值的增大而增大.
C
B
O
4
12 ,
x/h
图象理解:(3)求慢车和快车的速度; (4)求线段 BC 所表示的 y 与 x 之间的函数关系式并写出自变量 x 的
取值范围; 问题解决:(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在 第一列快车与慢车相遇 30 分钟后,第二列快车与慢车相遇.求第二列快车比第 一列快车晚出发多少小时
y=x+c
1
x
y=ax+b
A.①②
B.①③
C.①④
D.③④
例 7.已知:在平面直角坐标系 xoy 中,点 A(0,4)、点 B 和点 C 在 x 轴上(点
B 在点 C 的左边),点 C 在原点的右边,作 BE⊥AC,垂足为 E(点 E 在线段
AC 上,且点 E 与点 A 不重合),直线 BE 与 y 轴交于点 D,若 BD = AC.
例 11. 某一次函数的图象经过点 A(5,1),且与直线 y=2x-3 平行, (1)求此一次函数表达式; (2)求此一次函数与 x 轴、y 轴的交点坐标; (3)求此一次函数的图象与两坐标轴所围
成的三角形的面积。
例 12. 一次函数 y=k x-4 与正比例函数 y=k x 的图象经过点(2,-1),
图象也称为

(2)对于一次函数 y kx b 及其图象:

一次函数 y kx b (k 0)
k 0 b0 k 0 b0
示意图
#
函数和图象的性质
图象经过第
象限,y 随 x 的增大


图象经过第
象限,y 随 x 的增大


%
k0 b0
k0 b0
k 0 b0 k 0
"
b0 (3)平移关系:
图象经过第一、二、四象限,y 随 x 的增大
当直线 l1 / /l2 时, k1 k2 , b1 b2 ; 当直线 l1 与 l2 相交于 y 轴同一点时, k1
]
※当直线 l1 l2 时, k1 k2 ;
k2 , b1
b2 .
3.关于确定一次函数解析式的类型
例题 1. 已知函数
是一次函数,求其解析式.
例题 2. 已知一次函数
的图象过点(2,-1),求这个函数的解析式.

,那么我们就说 x 是自变量,y


2.函数的三种表示方法
(1)用数学式子表示函数关系的方法叫做

;
(2)通过列出自变量的值与对应的函数值的表格来表示函数关系的方法叫


(3)一般地,对于一个函数,如果把自变量与函数的
分别作为点

,那么坐标平面内由_____________,叫做这个函数的图象.这

3.分段函数的问题,要特别注意相应的自变量变化区间,画图时要特别关注 自变量的取值范围.
4.注意数形结合思想,通过练习关注知识之间的内在联系,用一次函数把一 元一次方程、一元一次不等式和二元一次方程组统一起来认识.
五.基础知识回顾
(一)变量和函数
1.函数的概念
一般地,在一个
过程中,如果有两个变量 x 和 y,并
1
2
(1)分别求出这两个函数的表达式; (2)求这两个函数的图象与 x 轴围成的三角形的面积。
(3)x 为何值时, k1x-4 <k2x


~
图象经过第一、三、四象限,y 随 x 的增大


图象经过第
象限,y 随 x 的增大


图象经过第


象限,y 随 x 的增大
当 b 0 时,直线 y kx b 可以通过直线 y kx 向 平移 个单位长度得到;
当 b 0 时,直线 y kx b 可以通过直线 y kx 向 平移 个单位长度得到.
与饭碗
例 3. 用长为 4cm 的 n 根火柴可以拼成如图 1 所示的 x 个边长都为 4cm 的平行四 边形,还可以拼成如图 2 所示的 2 y 个边长都为 4cm 的平行四边形,那么用
含 x 的代数式表示 y ,得到______________________.


… …
图1
图2
例 4. 一次函数 y (3k 1)x k 中,函数值 y 随 x 的增大而减小,且其图象不经过
一.复习内容:常量和变量的概念,函数的概念; 函数的三种表示方法,自变量取值范围的确定,函数值; 函数图象及画法,函数图象的应用; 正比例函数图象及性质;

一次函数图象及性质,一次函数解析式的确定,一次函数的应用; 用函数观点看方程、方程组、不等式. 二.复习重点:函数的概念;自变量取值范围的确定;函数图象的应用; 一次函数图象及性质;一次函数解析式的确定;一次函数的应用. 三.复习难点:一次函数的综合应用;用函数观点看方程、方程组、不等式. 四.需要注意的几个问题: 1.关注实际问题背景,能够找出问题中相关变量之间的关系,并且能根据实 际确定自变量取值范围. 2.用函数分析解决实际问题,能借助函数图象、表格、式子等寻找变量之间 的关系.
相关文档
最新文档