八年级下册数学特殊平行四边形培优试题

合集下载

初二数学培优卷―特殊的平行四边形(知识点+例题+练习)

初二数学培优卷―特殊的平行四边形(知识点+例题+练习)

B CE D AF A BCD E F G H ABCDE初二数学培优卷―特殊的平行四边形一、知识点(1)矩形:有一个角是直角的平行四边形 菱形:有一组邻边相等的平行四边形正方形:有一个角是直角并且有一组邻边相等的平行四边形(注:矩形、菱形、正方形的定义既是性质又是判定) (2)矩形的性质:矩形的四个角都是直角;矩形的对角线相等;矩形是轴对称图形菱形的性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角正方形的性质:正方形既是矩形又是菱形,它具有矩形和菱形的全部性质(3)矩形的判定:有三个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形菱形的判定:四边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形正方形的判定:先判定是矩形,再判定是菱形;或者先判定是菱形,再判定是矩形(4)直角三角形斜边上的中线等于斜边的一半;菱形的面积等于对角线乘积的半—二、例题:例1、如图,矩形ABCD 中,E 为AD 上一点,EF ⊥CE 交AB 于F ,若DE=2,矩形的周长为16,且CE=EF ,求AE 的长。

·例2、如图,E 是菱形ABCD 边AD 的中点,EF ⊥AC 于H ,交CB 的延长线于F ,交AB 于G ,求证:AB 与EF 互相平分。

例3、如图,以正方形ABCD 的DC 边为一边向外作一个等边三角形,①求证:△ABE 是等腰三角形②求∠BAE 的度数 三、训练题: 1、选择题(1) 平行四边形的周长等于56cm ,两邻边长的比是31,那么这平行四边形的较长的边长为( )。

(A )10.5cm (B )21cm—(C )42cm (D )14cm(2) 平行四边形两邻角的平分线交成的角为( )。

(A )锐角 (B )直角(C )钝角 (D )不确定(3) 能够判定一个四边形是平行四边形的条件是( )。

(A )一组对角相等 (B )两条对角线互相垂直(C )两条对角线互相平分(D )一对邻角的和为180° (4) 下面性质中菱形有而矩形没有的是( ) |(A )邻角互补(B )内角和为360(C )对角线相等(D )对角线互相垂直 (5) 在矩形ABCD 中,对角线AC 、BD 相交于O ,OF AB,若AC=2AD ,OF=9cm ,那么BD 的长为( )(A )180cm (B )9 3 cm (C )36cm (D)18 3 cm (6) 在菱形ABCD 中,D A=51,若菱形的周长为80cm,则菱形的高DE=( ) (A)20cm (B)10cm (C)10 3 cm (D)20 3 cm (7) ? (8) 菱形ABCD 中,AC 、BD 交于O 点,AM AB 交BD于M 点,且DAM=14 BAD 则四个内角的度数分别为( )。

部编数学八年级下册考前必做30题之特殊的平行四边形小题培优提升(压轴篇八下册人教)2023复习含答案

部编数学八年级下册考前必做30题之特殊的平行四边形小题培优提升(压轴篇八下册人教)2023复习含答案

2022-2023学年八年级数学下学期复习备考高分秘籍【人教版】专题6.4考前必做30题之特殊的平行四边形小题培优提升(压轴篇,八下人教)一、单选题1.(2022春·广东河源·八年级校考期末)已知菱形的周长等于40cm,两对角线的比为3:4,则对角线的长分别是()A.12cm,16cm B.6cm,8cmC.3cm,4cm D.24cm,32cm【答案】A【分析】根据菱形的周长可以计算菱形的边长,因为菱形的对角线互相垂直,所以△ABO为直角三角形,设菱形的对角线长为2x、2y,则x:y=3:4,且在Rt△ABO中,x2+y2=102,求得x、y即可解题.【详解】解:如下图所示,菱形的周长为40cm,则菱形的边长为10cm,菱形的对角线互相垂直,所以△ABO为直角三角形,设菱形的对角线长为2x、2y,则x:y=3:4,在Rt△ABO中,x2+y2=102解得x=6cm,y=8cm,故对角线长为12cm,16cm.故选:A.【点睛】本题考查了勾股定理在直角三角形中的运用,菱形各边长相等的性质,菱形对角线互相垂直平分的性质,本题中根据x、y的关系式求x、y的值是解题的关键.2.(2023春·江苏·八年级专题练习)如图,在菱形ABCD中,对角线AC与BD相交于点O,且AC=6,DB=8,AE⊥BC于点E,则AE=()A.6B.8C.245D.485【答案】C3.(2023春·江苏·八年级专题练习)已知:如图,矩形ABCD中,AB=5,BC=12,对角线AC、BD相交于点O,点P是线段AD上任意一点,且PE⊥AC于点E,PF⊥BD于点F,则PE+PF等于( )A.6B.5C.6013D.6012在矩形ABCD中,AB=5,BC4.(2023春·八年级单元测试)如图,正方形ABCD的边长为8,在各边上顺次截取AE=BF=CG=DH=6,则四边形EFGH的面积是()A.34B.36C.40D.1005.(2022秋·山东聊城·八年级校联考阶段练习)如图,已知正方形ABCD的边长为4,点M在DC上,DM=1,点N是AC上的一个动点,那么DN+MN的最小值是( )A.3B.4C.5D.6则BM的长即为DN+∵四边形ABCD是正方形,∴AC是线段BD的垂直平分线,6.(2023春·全国·八年级专题练习)如图,在△ABC中,点E、D、F分别在边AB、BC、CA上,且DE∥CA,DF∥BA,下列四个判断中,不正确的是()A.四边形AEDF是平行四边形B.如果AD平分∠EAF,那么四边形AEDF是菱形C.如果AD=EF,那么四边形AEDF是矩形D.如果AD⊥BC且AB=AC,那么四边形AEDF是正方形7.(2023春·八年级单元测试)如图,E、F、H分别为正方形ABCD的边AB、BC、CD上的点,连接DF,HE,且HE=DF,DG平分∠ADF交AB于点G.若∠BEH=52°,则∠AGD的度数为()A.26°B.38°C.52°D.64°【答案】D【分析】过点H作HM⊥AB,由正方形的性质BC=CD,∠A=∠C=∠ADC=90°,AD∥BC,四边形BCHM为矩形,利用HL易证得△HEM≌△DFC,可得∠BEH=∠DFC=52°,进而可得∠ADF=∠DFC=52°,由角平分线可得的∠ADG度数,即可求得得∠AGD度数.【详解】解:过点H作HM⊥AB,∵四边形ABCD是正方形,∴BC=CD,∠A=∠C=∠ADC=90°,AD∥BC∵HM⊥AB,则四边形BCHM为矩形,∴MH=BC=DC,∵HE=DF,∴△HEM≌△DFC(HL),∴∠BEH=∠DFC=52°,∵AD∥BC,∴∠ADF=∠DFC=52°,又∵DG平分∠ADF,8.(2023春·八年级单元测试)将图1中两个三角形按图2所示的方式摆放,其中四边形ABCD为矩形,连接PQ,甲、乙两人有如下结论:甲:若四边形ABCD是边长为1的正方形,则四边形PQMN必是正方形;乙:若四边形PQMN为正方形,则四边形ABCD必是边长为1的正方形.下列判断正确的是()A.甲正确,乙不正确B.甲不正确,乙正确C.甲、乙都不正确D.甲、乙都正确【答案】D【分析】根据AB=BC=CD=AD=1,求出AQ和AP的值,根据勾股定理求出PQ的值,即可判断甲是否正确,若平行四边形PQMN为正方形,根据边的关系可以求出AB=CD=AD=BC=1且四个角都是直角,即可判断乙是否正确.【详解】解:∵四边形ABCD是边长为1的正方形,∴AB=BC=CD=AD=1,∠BAD=90°,∴AQ=4−1=3,AP=3+1=4,∠PAQ=90°,∴P Q2=A Q2+A P2=25,∴PQ=5,同理MN=5,∴四边形PQMN是菱形,在△QMD和△PQA中,MQ=QPMD=QA,DQ=AP∴△QMD≌△PQA(SSS),∴∠MQD=∠APQ,∵∠AQP+∠QPA=90°,∴∠AQP+∠MQD=90°,∴∠MQP=90°,则四边形PQMN必是正方形;∴甲正确;若四边形PQMN为正方形,则PQ=PN=MN=MQ=5,且∠QMD+∠MQD=∠QAP=∠AQP+∠QPA=90°,在△QMD和△PQA中,∠QMD=∠AQPMQ=PQ,∠MQD=∠QPA∴△QMD≌△PQA(ASA),∴QD=AP=4,同理QD=AP=MC=BN=4,又∵BP=MD=AQ=3,∴QD−AD=PA−AB,∴AB=AD=1,同理AB=CD=AD=BC=1,即四边形ABCD为菱形,∵∠DAB=180°−∠QAP=90°,则四边形ABCD必是边长为1的正方形,∴乙正确,故选:D.【点睛】本题考查了正方形的判定和性质,菱形的性质,全等三角形的判定和性质,熟练掌握知识点是解题的关键.9.(2023春·广东深圳·八年级校考期中)如图,矩形ABCD中,AB=4,BC=8,E为CD边的中点,点P、Q为BC边上的两个动点,且PQ=2,当BP=()时,四边形APQE的周长最小.A.3B.4C.5D.【答案】B【分析】在AD上截取线段AF=PQ=2,作F点关于BC的对称点G,连接EG与BC交于一点即为Q点,过F 点作FQ的平行线交BC于一点,即为P点,此时四边形APQE的周长最小,过G点作BC的平行线交DC的延长线于H点,先求出∠CEQ=45°,得出CE=CQ=2,设BP=x,则CQ=BC−BP−PQ=8−x−2=6−x,列出关于x的方程,解方程即可.【详解】解:如图,在AD上截取线段AF=PQ=2,作F点关于BC的对称点G,连接EG与BC交于一点即为Q点,过F点作FQ的平行线交BC于一点,即为P点,此时四边形APQE的周长最小,过G点作BC的平行线交DC的延长线于H点,∵四边形ABCD为矩形,∴AD=BC=8,DC=AB=4,∠ADC=∠DCB=∠B=∠BAD=90°,∴DF=AD−AF=8−2=6,∵E为CD边的中点,∴CE=DE=2,∵GH=DF=6,EH=2+4=6,∴GH=EH,∵∠H=90°,∴∠GEH=45°,∴∠CEQ=45°,∵在△CQE中,∠QCE=90°,∴∠QEC=90°−45°=45°,∴∠EQC=∠CEQ,∴CE=CQ=2,设BP=x,则CQ=BC−BP−PQ=8−x−2=6−x,∴6−x=2,解得:x=4,即BP=4时,四边形APQE的周长最小,故B正确.故选:B.【点睛】本题主要考查了矩形的性质,等腰三角形的判定和性质,轴对称的性质,解题的关键是作出辅助线,找出使四边形APQE的周长最小时,点P的位置.10.(2023春·全国·八年级阶段练习)如图,在正方形ABCD中,AB=4,E为对角线AC上与A,C不重合的一个动点,过点E作EF⊥AB于点F,EG⊥BC于点G,连接DE,FG,下列结论:①DE=FG;②DE⊥FG;③∠BFG=∠ADE;④FG的最小值为2.其中正确结论的序号为()A.①②B.②③C.①②③D.①②③④∵EF ⊥AB ,EG⊥BC ,∴∠EFB =∠EGB =90°.∵∠ABC =90°,∴四边形EFBG 为矩形.∴FG =BE ,OB =OF =OE =OG .∵四边形ABCD 为正方形,∴AB =AD ,∠BAC =∠DAC =45°.在△ABE 和△ADE 中,AE =AE ∠BAC =∠DAC AB =AD,∴△ABE≅△ADE .∴BE =DE .∴DE =FG .∴①正确;②延长DE ,交FG 于M ,交FB 于点H ,∵△ABE≅△ADE ,∴∠ABE =∠ADE .由①知:OB =OF ,∴∠OFB =∠ABE .∴∠OFB =∠ADE .∵∠BAD =90°,∴∠ADE +∠AHD =90°.∴∠OFB +∠AHD =90°.即:∠FMH =90°,11.(2022春·江苏无锡·八年级校考阶段练习)如图,矩形ABCD 的对角线AC ,BD 交于点O ,AB =6,BC =8,过点O 作OE ⊥AC ,交AD 于点E ,过点E 作EF ⊥BD ,垂足为F ,则OE +EF 的值为( )A .485B .325C .245D .125【答案】C【分析】依据矩形的性质即可得到△AOD 的面积为12,再根据S △AOD =S △AOE +S △DOE ,即可得到EO +EF 的值.12.(2023春·福建福州·八年级校考阶段练习)如图,E,F,G,H分别是BD,BC,AC,AD的中点,且AB=CD,下列结论:①四边形EFGH是菱形;②EG⊥FH;③若∠BAD+∠ADC=245°,则∠EFH=27.5°;④EG=1(BC−AD);其中正确的个数是()2A.1个B.2个C.3个D.4个∴EF =FG =GH =HE ,∴四边形EFGH 是菱形,∴四边形EFGH 是菱形,故①正确;∴EG ⊥FH ,故②正确;∵∠BAD +∠ADC =245°,∴∠ABC +∠DCB =115°,∵AB∥FG ,CD∥EF ,∴∠CFG =∠ABC ,∠EFB =∠DCB ,∴∠CFG +∠EFB =115°,∴∠EFG =180°−(∠CFG +∠EFB )=65°,∴∠EFH =12∠EFG =32.5°,故③错误;当AD∥BC ,如图所示:E ,G 分别为BD ,AC 中点,∴连接CD ,延长EG 到CD 上一点N ,∴EN =12BC ,GN =12AD ,∴EG =12(BC−AD),只有AD∥BC 时才可以成立,而本题AD 与BC 很显然不平行,故④错误.综上所述,①②共2个正确.故选:B .【点睛】本题考查了三角形中位线定理与菱形的判定与菱形的性质,根据三角形的中位线定理与AB =CD 判定四边形EFGH 是菱形是解答本题的关键.13.(2023春·全国·八年级专题练习)如图所示,把矩形纸条ABCD 沿EF ,GH 同时折叠,B ,C 两点恰好落在AD 边的P 点处,若∠FPH 的度数恰好为90°,PF =4,PH =3,则矩形ABCD 的边BC 的长为( )A.10B.11C.12D.1514.(2023春·重庆南岸·八年级重庆市珊瑚初级中学校校考开学考试)如图,在长方形ABCD中,点E是CD 上一点,连接AE,沿直线AE把△ADE折叠,使点D恰好落在边BC上的点F处.若AB=9,CE=4,则折痕AE的长度为()A.B.C.D.15.(2022春·江苏无锡·八年级校考阶段练习)如图:E 是边长为1的正方形ABCD 的对角线BD 上一点,且BE =BC ,P 为CE 上任意一点,PQ ⊥BC 于点Q ,PR ⊥BE 于点R ,则PQ +PR 的值是( )A B .12C D .2316.(2023秋·湖南永州·八年级统考期末)如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:①AE=BF;②AE⊥BF;③AO=OE;④S△AOB=S四边形DEOF,其中正确的有()A.①②③B.②③④C.①③④D.①②④【答案】D【分析】根据正方形的性质可得∠BAF=∠D=90°,AB=AD=CD,然后求出AF=DE,再利用“边角边”证明△ABF和△DAE全等,根据全等三角形对应边相等可得AE=BF,从而判定出①正确;再根据全等三角形对应角相等可得∠ABF=∠DAE,然后证明∠ABF+∠BAO=90°,再得到∠AOB=90°,从而得出AE⊥BF,判断②正确;假设AO=OE,根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AB=BE,再根据直角三角形斜边大于直角边可得BE>BC,即BE>AB,从而判断③错误;根据全等三角形的面积相等可得S△ABF=S△ADE,然后都减去△AOF的面积,即可得解,从而判断④正确.【详解】解:在正方形ABCD中,∠BAF=∠D=90°,AB=AD=CD,∵CE=DF,∴AD−DF=CD−CE,即AF=DE,在△ABF和△DAE中,AB=AD∠BAF=∠D=90°,AF=DE∴△ABF≅△DAE(SAS),∴AE=BF,故①正确;∵∠DAE+∠BAO=90°,∠ABF+∠BAO=90°,∴∠ABF=∠DAE,在△ABO中,∠AOB=180°−(∠ABF+∠BAO)=180°−90°=90°,∴AE⊥BF,故②正确;假设AO=OE,∵AE⊥BF(已证),∴AB=BE(线段垂直平分线上的点到线段两端点的距离相等),∵在Rt△BCE中,BE>BC,∴AB>BC,这与正方形的边长AB=BC相矛盾,所以,假设不成立,AO≠OE,故③错误;∵△ABF≅△DAE,∴S△ABF=S△DAE,∴S△ABF−S△AOF=S△DAE−S△AOF,即S△AOB=S四边形DEOF,故④正确;综上所述,正确的结论是①②④.故选:D.【点睛】本题考查了正方形的四条边都相等,每一个角都是直角的性质,全等三角形的判定与性质,求出△ABF≅△DAE全等是解题的关键,也是本题的突破口.17.(2022秋·浙江宁波·八年级校联考期末)如图,A,B,C,D四个点顺次在直线l上,AC=a,BD=b.以AC为底向下作等腰直角三角形ACE,以BD为底向上作等腰三角形BDF,且FB=FD=5BD.连接AF,DE,当6BC的长度变化时,△ABF与△CDE的面积之差保持不变,则a与b需满足()A .a =43bB .a =65bC .a =53bD .a =∵△ACE 是等腰直角三角形,且∴EM =12AC =a 2,∵△BDF 是等腰三角形,且18.(2022春·湖北武汉·八年级校联考期中)如图,正方形ABCD中,P为CD上一点,线段AP的垂直平分线MN交BD于N,M为垂足,交正方形的两边于E、F,连接PN,则下列结论:①∠APN=45°;②PC=;③∠DNF=∠DAP;④MN=MF+NE,其中正确的是()A.①②③B.①②④C.②③④D.①②③④∵∠KGN=∠NHE=90°,∴△KGN≌△NHE(AAS),∴NE=NK,∴MN=MF+NE,故④正确;故选:B.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、线段垂直平分线的性质、等腰直角三角形的判定与性质;本题难度较大,综合性强,特别是需要通过作辅助线证明三角形全等.19.(2022秋·浙江宁波·八年级校考期末)如图,边长为5的大正方形ABCD是由四个全等的直角三角形和一个小正方形EFGH组成,连结AF并延长交CD于点M.若AH=GH,则CM的长为( )A.12B.34C.1D.54【答案】D【分析】过点M作MN⊥FC于点N,设FA与GH交与点K,利用已知条件和正方形的性质得到△ABF为等腰三角形,利用等腰三角形的三线合一性质,平行线的性质,对顶角相等和等量代换得到△MCF为等腰三角形,再利用等腰三角形的三线合一的性质和平行线分线段成比例定理解答即可得出结论.【详解】解:过点M作MN⊥FC于点N,设FA与GH交与点K,如图,20.(2023春·全国·八年级专题练习)如图,四边形ABCD中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2,如此进行下去,得到四边形A n B n C n D n.下列结论正确的是().①四边形A4B4C4D4是菱形;②四边形A3B3C3D3是矩形;③四边形A7B7C7D7.④四边形A n B n C n D n面积为a2−b2nA.①②③B.②③④C.①③④D.①②③④【答案】A【分析】根据题意,找出变化后的四边形的边长与四边形ABCD中各边长的长度关系规律,然后对选项作出分析判断:①②根据三角形的中位线定理、平行四边形的判定定理、菱形和矩形的判定与性质作出判断;③根据三角形的中位线定理和四边形周长公式作出判断;④找到每得到的四边形与原四边形面积关系规律,即可求得四边形A n B n C n D n的面积.【详解】解:①连接A1C1,B1D1,∵在四边形ABCD中,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,∴A1D1∥BD,B1C1∥BD,C1D1∥AC,A1B1∥AC,∴A1D1∥B1C1,A1B1∥C1D1,∴四边形A1B1C1D1是平行四边形;∵AC⊥BD,∴A1B1⊥A1D1,∴四边形A1B1C1D1是矩形,∴B1D1=A1C1(矩形的两条对角线相等);∴A2D2=C2D2=C2B2=B2A2(三角形的中位线定理),∴四边形A2B2C2D2是菱形;∴四边形A3B3C3D3是矩形;【点睛】本题是一道规律题,考查了中点四边形、平行四边形的判定、三角形的中位线定理、菱形和矩形的判定与性质,解题的关键是理清题意,熟练并灵活运用所学知识点解题.二、填空题21.(2023秋·山东烟台·八年级统考期末)如图,矩形ABCD中,AC、BD交于点O,AE平分∠BAD交BC于E,∠CAE=15°,连接OE.下列结论:①△ODC是等边三角形;②CD=BE;③BC=2AB;④S△AOE=S△COE.其中正确的有______(填序号).∴S△AOE=S△COE,故④正确;综上所述,正确的结论是①②④,故答案为:①②④.【点睛】本题考查了矩形的性质,等边三角形的判定与性质,等腰三角形的判定与性质,等底等高的三角形的面积相等,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.22.(2023秋·山东烟台·八年级统考期末)如图,菱形ABCD的对角线AC,BD相交于点O,点P为AB边上一动点(不与点A,B重合),PE⊥OA于点E,PF⊥OB于点F,若AB=2,∠BAD=60°,则EF的最小值为_______.∵四边形ABCD是菱形,∠DAB=30°,∴AC⊥BD,∠CAB=12∵PE⊥OA于点E,PF⊥OB于点F,∴∠EOF=∠OEP=∠OFP=90°,23.(2023春·八年级单元测试)菱形ABCD的边长为2,∠DAB=30°,点P、Q分别是AC、AB上的动点,BP+PQ的最小值为______【答案】1【分析】连接AB,作DE⊥AB于E,利用SAS证明△ADP≌△ABP,得DP=BP,当点D、P、Q共线,BP+PQ 的最小值为DE的长,再求出DE的长即可.【详解】解:连接AB,作DE⊥AB于E,∵四边形ABCD是菱形,∴AB=AD=2,∠DAP=∠BAP,∵AP=AP,∴△ADP≌△ABP(SAS)∴DP=BP,则:BP+PQ=DP+PQ,24.(2023春·江苏南京·八年级南京外国语学校仙林分校校考开学考试)如图,长方形ABCD中,AB=3,BC=4,点E是BC边上任一点,连接AE,把∠B沿AE折叠,使点B落在点B′处,当CE的长为___________时,△CE B′恰好为直角三角形.连接AC,在Rt△ABC中,AB=3,∴AC=AB2+BC2=5∵∠B沿AE折叠,使点B落在点此时四边形ABEB′为正方形,∴BE=AB=3,∴CE=BC−BE=4−3=1,综上所述:CE=1或52故答案为:1或5.25.(2021春·浙江杭州·八年级期中)如图,在正方形ABCD中,点E在边CD上(不与点C,D重合),AE 交对角线BD于点G,GF⊥AE交AE于点G.(1)若AB=10,BF=4,线段AF的长度为___________.(2)连接AF,EF,若AF=AE,正方形ABCD与△CEF的面积之比___________.∵四边形ABCD是正方形,∴∠ABF=90°,∵AB=10,BF=4,∵四边形ABCD是正方形,∵AG=GF,AG⊥GF,∴∠EAF=45°,∵AE=AF,AB=AD,26.(2022春·江苏南京·八年级校考期中)如图,在一张矩形纸片ABCD中,AB=4,BC=8,点F分别在AD,BC上,将矩形ABCD沿直线EF折叠,点C落在AD边上的一点H处,点D落在点G处,有以下四个结论:①四边形CFHE是菱形;②线段BF的取值范为3≤BF≤4;③EF=2DE;④当点H与点A重合时,EF=________.【答案】①②④【分析】①先判断出四边形CFHE是平行四边形,再根据翻折的性质可得CF=FH,然后根据邻边相等的平行四边形是菱形证明,判断出①正确;②点H与点A重合时,设BF=x,表示出AF=FC=8−x,利用勾股定理列出方程求解得到BF的最小值,点G与点D重合时,CF=CD,求出BF=4,然后写出BF的取值范围,判断出②正确;③假设EF=2DE,根据菱形的对角线平分一组对角线可得∠BCH=∠ECH,然后求出只有∠DCE=30°时EC 平分∠DCH,判断出③错误;④过点F作FM⊥AD于M,求出ME,再利用勾股定理列式求解得到EF,判断出④正确.【详解】解:①∵FH与EG,EH与CF都是原来矩形ABCD的对边AD、BC的一部分,∴FH∥CG,EH∥CF,∴四边形CFHE是平行四边形,由翻折的性质得,CF=FH,∴四边形CFHE是菱形,故①正确;则ME=(8−3)−3=2,27.(2023春·江苏·八年级专题练习)如图,四边形ABCD是正方形,点E是边BC上一点,且∠AEF=90°,且EF交正方形外角平分线CF于点F.若正方形边长是8,EC=2,则FC的长为____.28.(2021春·江苏南京·八年级校考期中)如图,在四边形ABCD中,E、F分别是AD、BC的中点,G、H分别是BD、AC的中点,依次连接E、G、F、H得到四边形EGFH,要使四边形EGFH是菱形,可添如条件__________.29.(2023秋·江苏泰州·八年级统考期末)已知,如图,四边形ABCD中,AD=6,CD=8,∠ADC=90°,AC,∠BAD+∠BDC=180°,则B C2的值为__.点M是AC的中点,连接BM,若BM=12∵∠ADC=90°,AD=6,∴AC=62+82=10,∵点M是AC的中点,∴MD=MC=5,30.(2022春·北京朝阳·八年级北京市陈经纶中学校考期中)为庆祝建党90周年,美化社区环境,某小区要修建一块艺术草坪.如图,该草坪依次由部分互相重叠的一些全等的菱形组成,且所有菱形的较长的对角线在同一条直线上,前一个菱形对角线的交点是后一个菱形的一个顶点,如菱形ABCD、EFGH、CIJK…,要求每个菱形的两条对角线长分别为4m和6m.(1)若使这块草坪的总面积是39m2,则需要___个这样的菱形;(2)若有n个这样的菱形(n≥2,且n为整数),则这块草坪的总面积是___m2.【答案】 4 (9n+3)【分析】(1)利用菱形的对角线互相垂直平分,可分别作出四个满足条件的菱形,另外菱形重合的部分也是菱形,并且这些小菱形的对角线分别为2,3,结合菱形的面积=对角线×另一条对角线÷2,即可求出图形的面积和需要的菱形个数;(2)由(1)可知若有n个这样的菱形(n≥2,且n为整数),则这块草坪的总面积.【详解】解:(1)∵每个菱形的两条对角线长分别为4和6.∴小菱形的对角线分别为2,3,∵菱形的面积=对角线×另一条对角线÷2,∴占地面积为4×6÷2×n−3×2÷2×(n−1)=39,∴n=4,∴则需要4个这样的菱形;(2)当有一个这样的菱形,则草坪的面积为4×6÷2=12=9×1+3,当有2个这样的菱形,则草坪的面积为4×6×2÷2−2×3÷2=21=9×2+3,…依此类推若有n个这样的菱形(n≥2,且n为整数),则这块草坪的总面积是(9n+3).故答案为:4;(9n+3).【点睛】本题考查了菱形的性质和菱形的面积公式,掌握菱形的性质和菱形的面积公式是解题的关键.。

浙教版2022-2023学年八下数学第四章 平行四边形 培优测试卷1(解析版)

浙教版2022-2023学年八下数学第四章 平行四边形 培优测试卷1(解析版)

浙教版2022-2023学年八下数学第四章平行四边形培优测试卷1(解析版)一、选择题(本大题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1.一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.4B.8C.10D.12【答案】B【解析】设这个多边形的边数是n,则有(n﹣2)×180°=360°×3,解得n=8.故答案为:B.2.在同一平面内,设a、b、c是三条互相平行的直线,已知a与b间的距离为5cm,b与c间的距离为2cm,则a与c间的距离为()cm.A.3B.7C.3或7D.2或3【答案】C【解析】①当直线c在直线a、b外时,∵a与b间的距离为5cm,b与c间的距离为2cm,∴a与c间的距离为5+2=7(cm);②直线c在直线a、b之间时,∵a与b间的距离为5cm,b与c间的距离为2cm,∴a与c间的距离为5−2=3(cm);综上,a与c间的距离为3cm或7cm,故答案为:C.3.将一张正方形纸片,按如图①,②的步骤,沿虚线对折两次,然后沿图③中的虚线剪去一个角得到图④,将图④展开铺平后的图形()A.是轴对称图形,但不是中心对称图形B.是中心对称图形,但不是轴对称图形C.不是轴对称图形,也不是中心对称图形D.是中心对称图形,也是轴对称图形【答案】D【解析】将图④展开铺平后的图形如图所示:该图形是中心对称图形,也是轴对称图形.故答案为:D.4.如图,在四边形ABCD中,AC、BD相交于点O,下列条件不能判定四边形ABCD为平行四边形的是()A.AD∥BC,OA=OC B.OB=OD,∠ABD=∠CDBC.AD∥BC,AB=CD D.AB∥CD,∠ABC=∠ADC【答案】C【解析】A项,∵AD∥BC,∴∠ADB=∠DBC,∠DAC=∠ACB,又∵∠AOD=∠BOC,AO=CO,∴∠AOD∠∠COB,∴AD=BC,∴结合AD∥BC有四边形ABCD是平行四边形;B.∵∠ABD=∠CDB,∴AB∥CD又∵∠AOB=∠DOC,BO=DO,∴∠AOB∠∠COD,∴AB=CD,∴结合AB∥CD有四边形ABCD是平行四边形;C.等腰梯形ABCD满足AD∥BC,AB=CD,但四边形ABCD不是平行四边形,故C项不能判定四边形ABCD是平行四边形;D.∵AB∥CD,∴∠ABD=∠CDB,又∵∠ABC=∠ADC,∴∠CBD=∠ABC-∠ABD=∠ADC-∠CDB=∠ADB,∴AD∥BC,∴结合AB∥CD有四边形ABCD是平行四边形;故答案为:C.5.用反证法证明:a,b,c至少有一个为0,应该假设()A.a,b,c没有一个为0B.a,b,c只有一个为0C.a,b,c至多一个为0D.a,b,c三个都为0【答案】A【解析】根据反证法证明:a,b,c至少有一个为0,应该假设a,b,c没有一个为0;故答案为:A.6.如图,四边形ABCD中.AC∠BC,AD//BC,BD为∠ABC的平分线,BC=6,AC=8.E、F分别是BD、AC的中点,则EF的长为()A.2B.3C.4D.5【答案】A【解析】∵AC∠BC,∴∠ACB=90°,∵BC=6,AC=8.∴AB =√62+82=10, ∵AD ∥BC ,∴∠ADB=∠DBC ,∵BD 为∠ABC 的平分线, ∴∠ABD=∠CBD , ∴∠ABD=∠ADB , ∴AB=AD=10,连接BF 并延长交AD 于G ,∵AD ∥BC ,∴∠GAC=∠BCA , ∵F 是AC 的中点, ∴AF=CF ,在∠AFG 和∠CFB 中,{∠AFG =∠CFB∠GAC =∠BCA AF =CF,∴∠AFG∠∠CFB (AAS ), ∴BF=FG ,AG=BC=6, ∴DG=10-6=4, ∵E 是BD 的中点, ∴EF= 12DG=2.故答案为:A .7.如图,在▱ABCD 中,BE∠CD ,BF∠AD ,∠EBF=45°,CE=3,DF=1,则AF=( )A .3√2−1B .3√2+1C .3√2−2D .3√2+2【答案】A【解析】由题意,如图:在▱ABCD 中,有AD =BC ,AD//BC ,∠A =∠C , ∵BE ⊥CD ,BF ⊥AD ,∠EBF =45∘, ∴∠BFD =∠BED =90∘,∴∠D =360∘−45∘−90∘−90∘=135∘,∴∠A =∠C =45∘,∴∠ABF 和∠BCE 是等腰直角三角形, ∴BE=CE=3,AF=BF ,∴BC =√BE 2+CE 2=√32+32=3√2, ∴AD =3√2,∴AF=BF=AD −DF =3√2−1, 故答案为:A .8.如图,在平行四边形ABCD 中,AB =5,BC =8,∠ABC 和∠BCD 的角平分线分别交AD 于点E 和F ,若BE =6,则CF =( )A .6B .8C .10D .13 【答案】B【解析】如图,设BE 与FC 的交点为H ,过点A 作AM∠FC ,交BE 与点O ,∵四边形ABCD 是平行四边形, ∴AD∠BC ,AB∠CD , ∴∠ABC+∠DCB=180°,∵BE 平分∠ABC ,CF 平分∠BCD , ∴∠ABE =∠EBC ,∠BCF =∠DCF , ∴∠CBE+∠BCF =90°, ∴∠BHC =90°, ∵AM∠CF ,∴∠AOE =∠BHC =90°, ∵AD∠BC ,∴∠AEB =∠EBC =∠ABE , ∴AB =AE =5, 又∵∠AOE =90°, ∴BO =OE =3,∴AO =√AE 2−EO 2=√52−32=4, 在∠ABO 和∠MBO 中,{∠ABO =∠CBO BO =BO∠AOB =∠MOB =90°, ∴∠ABO∠∠MBO (ASA ), ∴AO =OM =4, ∴AM =8,∵AD∠BC ,AM∠CF ,∴四边形AMCF 是平行四边形, ∴CF =AM =8. 故答案为:B.9.如图,平行四边形ABCD 中,对角线AC 、BD 相交于O ,BD=2AD ,E ,F ,G 分别是OC ,OD ,AB 的中点,下列结论:①四边形BEFG 是平行四边形;②BE∠AC ;③EG=FG ;④EA 平分∠GEF 。

初二数学平行四边形和特殊四边形提高练习与常考题和培优题(含解析)

初二数学平行四边形和特殊四边形提高练习与常考题和培优题(含解析)

初二数学平行四边形和特殊四边形提高练习常考题和培优题一.选择题(共5小题)1.如图,把大小相同的两个矩形拼成如下形状,则△FBD是()A.等边三角形B.等腰直角三角形C.一般三角形D.等腰三角形2.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=,CE=3,H 是AF的中点,那么CH的长是()A.3.5 B.C. D.23.如图,在矩形ABCD中,AB=4,BC=8,对角线AC、BD相交于点O,过点O 作OE垂直AC交AD于点E,则AE的长是()A.3 B.5 C.2.4 D.2.54.如图,在△ABC中,CF⊥AB于F,BE⊥AC于E,M为BC的中点,EF=7,BC=10,则△EFM的周长是()A.17 B.21 C.24 D.275.如图,在矩形ABCD中,AB=6,AD=8,P是AD上不与A和D重合的一个动点,过点P分别作AC和BD的垂线,垂足为E、F,则PE+PF的值为()A.10 B.4.8 C.6 D.5二.填空题(共4小题)6.如图,在矩形ABCD中,对角线AC与BD相交于点O,AE平分∠BAD交BC 于点E,若∠CAE=15°,则∠BOE的度数等于.7.如图,将平行四边形ABCD的边DC延长到E,使CE=CD,连接AE交BC于F,∠AFC=n∠D,当n=时,四边形ABEC是矩形.8.如图,在正五边形ABCDE中,连接AC、AD、CE,CE交AD于点F,连接BF,则线段AC、BF、CD之间的关系式是.9.如图,在平面直角坐标系中,O为原点,四边形OABC是矩形,A(﹣10,0),C(0,3),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标是.三.解答题(共31小题)10.如图,正方形ABCD中,AE=AB,直线DE交BC于点F,求∠BEF的度数.11.如图,梯形ABCD中,AD∥BC,AB=CD,对角线AC、BD交于点O,AC⊥BD,E、F、G、H分别为AB、BC、CD、DA的中点.(1)求证:四边形EFGH为正方形;(2)若AD=1,BC=3,求正方形EFGH的边长.12.如图,点E、F分别是正方形ABCD的边CD和AD的中点,BE和CF交于点P.求证:AP=AB.13.如图,点P为正方形ABCD对角线BD上一点,PE⊥BC于E,PF⊥DC于F.(1)求证:PA=EF;(2)若正方形ABCD的边长为a,求四边形PFCE的周长.14.如图1,在正方形ABCD中,点E为BC上一点,连接DE,把△DEC沿DE折叠得到△DEF,延长EF交AB于G,连接DG.(1)求∠EDG的度数.(2)如图2,E为BC的中点,连接BF.①求证:BF∥DE;②若正方形边长为6,求线段AG的长.15.如图①,在正方形ABCD中,F是对角线AC上的一点,点E在BC的延长线上,且BF=EF.(1)求证:BF=DF;(2)求证:∠DFE=90°;(3)如果把正方形ABCD改为菱形,其他条件不变(如图②),当∠ABC=50°时,∠DFE=度.16.已知正方形ABCD中,对角线AC、BD相交于O.①如图1,若E是AC上的点,过A 作AG⊥BE于G,AG、BD交于F,求证:OE=OF②如图2,若点E在AC的延长线上,AG⊥EB交EB的延长线于G,AG延长DB 延长线于点F,其它条件不变,OE=OF还成立吗?17.如图,点P是菱形ABCD中对角线AC上的一点,且PE=PB.(1)求证:PE=PD;(2)求证:∠PDC=∠PEB;(3)若∠BAD=80°,连接DE,试求∠PDE的度数,并说明理由.18.如图,正方形ABCD中,AB=1,点P是BC边上的任意一点(异于端点B、C),连接AP,过B、D两点作BE⊥AP于点E,DF⊥AP于点F.(1)求证:EF=DF﹣BE;(2)若△ADF的周长为,求EF的长.19.如图,正方形ABCD的对角线AC、BD的交点为O,以O为端点引两条互相垂直的射线OM、ON,分别交边AB、BC于点E、F.(1)求证:0E=OF;(2)若正方形的边长为4,求EF的最小值.20.如图,在正方形ABCD中,点E是边AD上任意一点,BE的垂直平分线FG 交对角AC于点F.求证:(1)BF=DF;(2)BF⊥FE.21.已知:如图所示,四边形ABCD中,∠ABC=∠ADC=90°,M是AC上任一点,O是BD的中点,连接MO,并延长MO到N,使NO=MO,连接BN与ND.(1)判断四边形BNDM的形状,并证明;(2)若M是AC的中点,则四边形BNDM的形状又如何?说明理由.22.如图,在△ABC中,O是边AC上的一动点,过点O作直线MN∥BC,设MN 交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)求证:OE=OF;(2)当点O运动到何处时,四边形AECF是矩形?23.(1)如图矩形ABCD的对角线AC、BD交于点O,过点D作DP∥OC,且DP=OC,连接CP,判断四边形CODP的形状并说明理由.(2)如果题目中的矩形变为菱形,结论应变为什么?说明理由.(3)如果题目中的矩形变为正方形,结论又应变为什么?说明理由.24.如图1,已知AB∥CD,AB=CD,∠A=∠D.(1)求证:四边形ABCD为矩形;(2)E是AB边的中点,F为AD边上一点,∠DFC=2∠BCE.①如图2,若F为AD中点,DF=1.6,求CF的长度:②如图2,若CE=4,CF=5,则AF+BC=,AF=.25.如图,直线a、b相交于点A,C、E分别是直线b、a上两点且BC⊥a,DE ⊥b,点M、N是EC、DB的中点.求证:MN⊥BD.26.如图所示,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,动点P从点A出发沿AD方向向点D以1cm/s的速度运动,动点Q从点C开始沿着CB方向向点B以3cm/s的速度运动.点P、Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动.(1)经过多长时间,四边形PQCD是平行四边形?(2)经过多长时间,四边形PQBA是矩形?(3)经过多长时间,当PQ不平行于CD时,有PQ=CD.27.如图,E、F是正方形ABCD的边AD上的两个动点,满足AE=DF.连接CF 交BD于G,连接BE交AG于H.已知正方形ABCD的边长为4cm,解决下列问题:(1)求证:BE⊥AG;(2)求线段DH的长度的最小值.28.如图,点M是矩形ABCD的边AD的中点,点P是BC边上一动点,PE⊥MC,PF⊥BM,垂足为E、F.(1)当矩形ABCD的长与宽满足什么条件时,四边形PEMF为矩形?猜想并证明你的结论.(2)在(1)中,当点P运动到什么位置时,矩形PEMF变为正方形,为什么?29.某校数学兴趣小组开展了一次课外活动,过程如下:如图①,正方形ABCD 中,AB=4,将三角板放在正方形ABCD上,使三角板的直角顶点与D点重合.三角板的一边交AB于点P,另一边交BC的延长线于点Q.(1)求证:AP=CQ;(2)如图②,小明在图1的基础上作∠PDQ的平分线DE交BC于点E,连接PE,他发现PE和QE存在一定的数量关系,请猜测他的结论并予以证明;(3)在(2)的条件下,若AP=1,求PE的长.30.如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,求t的值.31.如图,在Rt△ABC中,∠ABC=90°,点D是AC的中点,作∠ADB的角平分线DE交AB于点E,(1)求证:DE∥BC;(2)若AE=3,AD=5,点P为BC上的一动点,当BP为何值时,△DEP为等腰三角形.请直接写出所有BP的值.32.已知:如图,BF、BE分别是∠ABC及其邻补角的角平分线,AE⊥BE,垂足为点E,AF⊥BF,垂足为点F.EF分别交边AB、AC于点M、N.求证:(1)四边形AFBE是矩形;(2)BC=2MN.33.如图,在边长为5的菱形ABCD中,对角线BD=8,点O是直线BD上的动点,OE⊥AB于E,OF⊥AD于F.(1)对角线AC的长是,菱形ABCD的面积是;(2)如图1,当点O在对角线BD上运动时,OE+OF的值是否发生变化?请说明理由;(3)如图2,当点O在对角线BD的延长线上时,OE+OF的值是否发生变化?若不变请说明理由,若变化,请直接写出OE、OF之间的数量关系,不用明理由.34.如图,已知Rt△ABD≌Rt△FEC,且B、D、C、E在同一直线上,连接BF、AE.(1)求证:四边形ABFE是平行四边形.(2)若∠ABD=60°,AB=2cm,DC=4cm,将△ABD沿着BE方向以1cm/s的速度运动,设△ABD运动的时间为t,在△ABD运动过程中,试解决以下问题:(1)当四边形ABEF是菱形时,求t的值;(2)是否存在四边形ABFE是矩形的情形?如果存在,求出t的值,如果不存在,请说明理由.35.已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图1,连接AF、CE.求证:四边形AFCE为菱形.(2)如图1,求AF的长.(3)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,点P的速度为每秒1cm,设运动时间为t秒.①问在运动的过程中,以A、P、C、Q四点为顶点的四边形有可能是矩形吗?若有可能,请求出运动时间t和点Q的速度;若不可能,请说明理由.②若点Q的速度为每秒0.8cm,当A、P、C、Q四点为顶点的四边形是平行四边形时,求t的值.36.如图1,E,F是正方形ABCD的边上两个动点,满足AE=DF,连接CF交BD 于G,连接BE交AG于点H(1)求证:AG⊥BE;(2)如图2,连DH,若正方形的边长为4,则线段DH长度的最小值是.37.如图,在菱形ABCD中,AB=2,∠DAB=60°,点E时AD边的中点,点M时AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形.(2)填空:①当AM的值为时,四边形AMDN是矩形;②当AM的值为时,四边形AMDN是菱形.38.如图,已知正方形OABC的边长为4,顶点A、C分别在x、y轴的正半轴上,M是BC的中点,点P(0,m)是线段oc上的一动点9点P不与点O、C重合0,直线PM交AB的延长线于点D.(1)求点D的坐标;(用含m的代数式表示)(2)若△APD是以AP边为一腰的等腰三角形,求m的值.39.如图,在△ABC中,∠ABC=90°,点D为AC的中点,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(1)证明:四边形BDFG是菱形;(2)若AC=10,CF=6,求线段AG的长度.40.如图,在正方形ABCD中,点E在边AD上,点F在边BC的延长线上,连接EF与边CD相交于点G,连接BE与对角线AC相交于点H,AE=CF,BE=EG.(1)求证:EF∥AC;(2)求∠BEF大小;(3)若EB=4,则△BAE的面积为.初二数学平行四边形和特殊四边形提高练习常考题和培优题参考答案与试题解析一.选择题(共5小题)1.(2012春•炎陵县校级期中)如图,把大小相同的两个矩形拼成如下形状,则△FBD是()A.等边三角形B.等腰直角三角形C.一般三角形D.等腰三角形【分析】根据正方形性质得出FG=BC,∠G=∠C=90°,GB=CD,根据SAS证△FGB ≌△BCD,推出∠FBG=∠BDC,BF=BD,求出∠DBC+∠FBG=90°,求出∠FBD的度数即可.【解答】解:∵大小相同的两个矩形GFEB、ABCD,∴FG=BE=AD=BC,GB=EF=AB=CD,∠G=∠C=∠ABG=∠ABC=90°,∵在△FGB和△BCD中,∴△FGB≌△BCD,∴∠FBG=∠BDC,BF=BD,∵∠BDC+∠DBC=90°,∴∠DBC+∠FBG=90°,∴∠FBD=180°﹣90°=90°,即△FBD是等腰直角三角形,故选B.【点评】本题考查了等腰直角三角形,全等三角形的性质和判定,正方形性质的应用,关键是证出△FGB≌△BCD,主要考查学生运用性质进行推理的能力.2.(2015春•江阴市期中)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=,CE=3,H是AF的中点,那么CH的长是()A.3.5 B.C. D.2【分析】根据正方形的性质求出AB=BC=,CE=EF=3,∠E=90°,延长AD交EF于M,连接AC、CF,求出AM=4,FM=2,∠AMF=90°,根据正方形性质求出∠ACF=90°,根据直角三角形斜边上的中线性质求出CH=AF,根据勾股定理求出AF即可.【解答】解:∵正方形ABCD和正方形CEFG中,点D在CG上,BC=,CE=3,∴AB=BC=,CE=EF=3,∠E=90°,延长AD交EF于M,连接AC、CF,则AM=BC+CE=4,FM=EF﹣AB=2,∠AMF=90°,∵四边形ABCD和四边形GCEF是正方形,∴∠ACD=∠GCF=45°,∴∠ACF=90°,∵H为AF的中点,∴CH=AF,在Rt△AMF中,由勾股定理得:AF==2,∴CH=,故选:C.【点评】本题考查了勾股定理,正方形的性质,直角三角形斜边上的中线的应用,解此题的关键是能正确作出辅助线,并求出AF的长和得出CH=AF,有一定的难度.3.(2015春•泗洪县校级期中)如图,在矩形ABCD中,AB=4,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则AE的长是()A.3 B.5 C.2.4 D.2.5【分析】根据矩形的性质得出∠CDE=90°,AD=BC=8,AB=DC=4,AO=OC,根据线段垂直平分线性质得出AE=CE,在Rt△CDE中,由勾股定理得出CE2=CD2+DE2,代入求出即可.【解答】解:∵在矩形ABCD中,AB=4,BC=8,∴∠CDE=90°,AD=BC=8,AB=DC=4,AO=OC,∵OE⊥AC,∴AE=CE,在Rt△CDE中,由勾股定理得:CE2=CD2+DE2,即AE2=42+(8﹣AE)2,解得:AE=5,故选B.【点评】本题考查了矩形的性质,勾股定理,线段垂直平分线性质的应用,解此题的关键是得出关于AE的方程.4.(2015秋•无锡期中)如图,在△ABC中,CF⊥AB于F,BE⊥AC于E,M为BC的中点,EF=7,BC=10,则△EFM的周长是()A.17 B.21 C.24 D.27【分析】根据CF⊥AB于F,BE⊥AC于E,M为BC的中点,利用直角三角形斜边上的中线等于斜边的一半,求出FM和ME的长,即可求解.【解答】解:∵CF⊥AB,M为BC的中点,∴MF是Rt△BFC斜边上的中线,∴FM=BC=×10=5,同理可得,ME=BC=×10=5,又∵EF=7,∴△EFM的周长=EF+ME+FM=7+5+5=17.故选A.【点评】此题主要考查学生对直角三角形斜边上的中线这个知识点的理解和掌握,解答此题的关键是利用直角三角形斜边上的中线等于斜边的一半,求出FM 和ME的长.5.(2015春•乌兰察布校级期中)如图,在矩形ABCD中,AB=6,AD=8,P是AD 上不与A和D重合的一个动点,过点P分别作AC和BD的垂线,垂足为E、F,则PE+PF的值为()A.10 B.4.8 C.6 D.5【分析】连接OP,利用勾股定理列式求出BD,再根据矩形的对角线相等且互相=S△AOP+S△DOP列方程求解即可.平分求出OA、OD,然后根据S△AOD【解答】解:如图,连接OP,∵AB=6,AD=8,∴BD===10,∵四边形ABCD是矩形,∴OA=OD=×10=5,∵S=S△AOP+S△DOP,△AOD∴××6×8=×5•P E+×5•PF,解得PE+PF=4.8.故选B.【点评】本题考查了矩形的性质,三角形的面积,熟记性质并利用三角形的面积列出方程是解题的关键.二.填空题(共4小题)6.(2016春•东平县期中)如图,在矩形ABCD中,对角线AC与BD相交于点O,AE平分∠BAD交BC于点E,若∠CAE=15°,则∠BOE的度数等于75°.【分析】由矩形ABCD,得到OA=OB,根据AE平分∠BAD,得到等边三角形OAB,推出AB=OB,求出∠OAB、∠OBC的度数,根据平行线的性质和等角对等边得到OB=BE,根据三角形的内角和定理即可求出答案.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,AC=BD,OA=OC,OB=OD,∠BAD=90°,∴OA=OB,∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE=45°=∠AEB,∴AB=BE,∵∠CAE=15°,∴∠DAC=45°﹣15°=30°,∠BAC=60°,∴△BAO是等边三角形,∴AB=OB,∠ABO=60°,∴∠OBC=90°﹣60°=30°,∵AB=OB=BE,∴∠BOE=∠BEO=(180°﹣30°)=75°.故答案为75°.【点评】本题主要考查了三角形的内角和定理,矩形的性质,等边三角形的性质和判定,平行线的性质,角平分线的性质,等腰三角形的判定等知识点,解此题的关键是求出∠OBC的度数和求OB=BE.7.(2014春•武昌区期中)如图,将平行四边形ABCD的边DC延长到E,使CE=CD,连接AE交BC于F,∠AFC=n∠D,当n=2时,四边形ABEC是矩形.【分析】首先根据四边形ABCD是平行四边形,得到四边形ABEC是平行四边形,然后证得FC=FE,利用对角线互相相等的四边形是矩形判定四边形ABEC是矩形.【解答】解:当∠AFC=2∠D时,四边形ABEC是矩形.∵四边形ABCD是平行四边形,∴BC∥AD,∠BCE=∠D,由题意易得AB∥EC,AB∥EC,∴四边形ABEC是平行四边形.∵∠AFC=∠FEC+∠BCE,∴当∠AFC=2∠D时,则有∠FEC=∠FCE,∴FC=FE,∴四边形ABEC是矩形,故答案为:2.【点评】此题考查了平行四边形的性质以及矩形的判定.此题难度适中,注意掌握数形结合思想的应用,解题的关键是了解矩形的判定定理.8.(2015春•南长区期中)如图,在正五边形ABCDE中,连接AC、AD、CE,CE 交AD于点F,连接BF,则线段AC、BF、CD之间的关系式是AC2+BF2=4CD2.【分析】首先根据菱形的判定方法,判断出四边形ABCF是菱形,再根据菱形的性质,即可判断出AC⊥BF;然后根据勾股定理,可得OB2+OC2=BC2,据此推得AC2+BF2=4CD2即可.【解答】解:∵五边形ABCDE是正五边形,∴AB∥CE,AD∥BC,∴四边形ABCF是平行四边形,又∵AB=BC=CD=DE=EA,∴四边形ABCF是菱形,∴AC⊥BF,∴OB2+OC2=BC2,∵AC=2OC,BF=2OB,∴AC2+BF2=(2OC)2+(2OB)2=4OC2+4OB2=4BC2,又∵BC=CD,∴AC2+BF2=4CD2.故答案为:AC2+BF2=4CD2.【点评】(1)此题主要考查了菱形的判定和性质的应用,要熟练掌握,解答此题的关键是要明确:菱形是在平行四边形的前提下定义的,首先它是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法.(2)此题还考查了勾股定理的应用:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方,要熟练掌握.9.(2015春•株洲校级期中)如图,在平面直角坐标系中,O为原点,四边形OABC 是矩形,A(﹣10,0),C(0,3),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标是(﹣4,3),或(﹣1,3),或(﹣9,3).【分析】先由矩形的性质求出OD=5,分情况讨论:(1)当OP=OD=5时;根据勾股定理求出PC,即可得出结果;(2)当PD=OD=5时;①作PE⊥OA于E,根据勾股定理求出DE,得出PC,即可得出结果;②作PF⊥OA于F,根据勾股定理求出DF,得出PC,即可得出结果.【解答】解:∵A(﹣10,0),C(0,3),∴OA=10,OC=3,∵四边形OABC是矩形,∴BC=OA=10,AB=OC=3,∵D是OA的中点,∴AD=OD=5,分情况讨论:(1)当OP=OD=5时,根据勾股定理得:PC==4,∴点P的坐标为:(﹣4,3);(2)当PD=OD=5时,分两种情况讨论:①如图1所示:作PE⊥OA于E,则∠PED=90°,DE==4,∴PC=OE=5﹣4=1,∴点P的坐标为:(﹣1,3);②如图2所示:作PF⊥OA于F,则DF==4,∴PC=OF=5+4=9,∴点P的坐标为:(﹣9,3);综上所述:点P的坐标为:(﹣4,3),或(﹣1,3),或(﹣9,3);故答案为:(﹣4,3),或(﹣1,3),或(﹣9,3).【点评】本题考查了矩形的性质、坐标与图形性质、等腰三角形的性质、勾股定理;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.三.解答题(共31小题)10.(2012春•西城区校级期中)如图,正方形ABCD中,AE=AB,直线DE交BC 于点F,求∠BEF的度数.【分析】设∠BAE=x°,根据正方形性质推出AB=AE=AD,根据等腰三角形性质和三角形的内角和定理求出∠AEB和∠AED的度数,根据平角定义求出即可.【解答】解:设∠BAE=x°,∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∵AE=AB,∴AB=AE=AD,∴∠ABE=∠AEB=(180°﹣∠BAE)=90°﹣x°,∠DAE=90°﹣x°,∠AED=∠ADE=(180°﹣∠DAE)=[180°﹣(90°﹣x°)]=45°+x°,∴∠BEF=180°﹣∠AEB﹣∠AED,=180°﹣(90°﹣x°)﹣(45°+x°),=45°,答:∠BEF的度数是45°.【点评】本题考查了三角形的内角和定理,等腰三角形性质,正方形性质的应用,解此题的关键是如何把已知角的未知角结合起来,题目比较典型,但是有一定的难度.11.(2012秋•高淳县期中)如图,梯形ABCD中,AD∥BC,AB=CD,对角线AC、BD交于点O,AC⊥BD,E、F、G、H分别为AB、BC、CD、DA的中点.(1)求证:四边形EFGH为正方形;(2)若AD=1,BC=3,求正方形EFGH的边长.【分析】(1)先由三角形的中位线定理求出四边相等,然后由AC⊥BD入手,进行正方形的判断.(2)连接EG,利用梯形的中位线定理求出EG的长,然后结合(1)的结论求出EH2=2,也即得出了正方形EHGF的边长.【解答】(1)证明:在△ABC中,∵E、F分别是AB、BC的中点,∴EF=同理FG=,GH=,HE=在梯形ABCD中,∵AB=DC,∴AC=BD,∴EF=FG=GH=HE∴四边形EFGH为菱形.设AC与EH交于点M在△ABD中,∵E、H分别是AB、AD的中点,∴EH∥BD,同理GH∥AC又∵AC⊥BD,∴∠BOC=90°.∴∠EHG=∠EMC=∠BOC=90°∴四边形EFGH为正方形.(2)解:连接EG,在梯形ABCD中,∵E、G分别是AB、DC的中点,∴EG=(AD+BC)=(1+3)=2,在Rt△HEG中,EG2=EH2+HG2,4=2EH2,EH2=2,则EH=.即四边形EFGH的边长为.【点评】此题考查了等腰梯形的性质及三角形、梯形的中位线定理,解答本题的关键是根据三角形的中位线定理得出EH=HG=GF=FE,这是本题的突破口.12.(2013秋•青岛期中)如图,点E、F分别是正方形ABCD的边CD和AD的中点,BE和CF交于点P.求证:AP=AB.【分析】延长CF、BA交于点M,先证△BCE≌△CDF,再证△CDF≌△AMF得BA=MA由直角三角形中斜边中线等于斜边的一半,可得Rt△MBP中AP=BM,即AP=AB.【解答】证明:延长CF、BA交于点M,∵点E、F分别是正方形ABCD的边CD和AD的中点,∴BC=CD,∠BCE=∠CDF,CE=DF,∴△BCE≌△CDF,∴∠CBE=∠DCF.∵∠DCF+∠BCP=90°,∴∠CBE+∠BCP=90°,∴∠BPM=∠CBE+∠BCP=90°.又∵FD=FA,∠CDF=∠MAF,∠CFD=∠MFA,∴△CDF≌△AMF,∴CD=AM.∵CD=AB,∴AB=AM.∴PA是直角△BPM斜边BM上的中线,∴AP=BM,即AP=AB.【点评】本题考查了正方形各边长相等、各内角为直角的性质,全等三角形的判定和对应边相等的性质,直角三角形斜边中线长为斜边长一半的性质,本题中求证△CDF≌△AMF是解题的关键.13.(2015春•禹州市期中)如图,点P为正方形ABCD对角线BD上一点,PE⊥BC于E,PF⊥DC于F.(1)求证:PA=EF;(2)若正方形ABCD的边长为a,求四边形PFCE的周长.【分析】(1)连接PC,证四边形PFCE是矩形,求出EF=PC,证△ABP≌△CBP,推出AP=PC即可;(2)证△CBD是等腰直角三角形,求出BF、PF,求出周长即可.【解答】解:证明:(1)连接PC,∵四边形ABCD是正方形,∴AB=CB,∠ABD=∠CBD=45°,∠C=90°,在△ABP与△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∵PE⊥BC,PF⊥CD,∴∠PFC=90°,∠PEC=90°.又∵∠C=90°,∴四边形PFCE是矩形,∴EF=PC,∴PA=EF.(2)由(1)知四边形PFCE是矩形,∴PE=CF,PF=CE,又∵∠CBD=45°,∠PEB=90°,∴BE=PE,又BC=a,∴矩形PFCE的周长为2(PE+EC)=2(BE+EC)=2BC=2a.【点评】本题主要考查正方形的性质,全等三角形的性质和判定等知识点的连接和掌握,能证出AP=PC是解此题的关键.14.(2015秋•福建校级期中)如图1,在正方形ABCD中,点E为BC上一点,连接DE,把△DEC沿DE折叠得到△DEF,延长EF交AB于G,连接DG.(1)求∠EDG的度数.(2)如图2,E为BC的中点,连接BF.①求证:BF∥DE;②若正方形边长为6,求线段AG的长.【分析】(1)由正方形的性质可得DC=DA.∠A=∠B=∠C=∠ADC=90°,由折叠的性质得出∠DFE=∠C,DC=DF,∠1=∠2,再求出∠DFG=∠A,DA=DF,然后由“HL”证明Rt△DGA≌Rt△DGF,由全等三角形对应角相等得出∠3=∠4,得出∠2+∠3=45°即可;(2)①由折叠的性质和线段中点的定义可得CE=EF=BE,∠DEF=∠DEC,再由三角形的外角性质得出∠5=∠DEC,然后利用同位角相等,两直线平行证明即可;②设AG=x,表示出GF、BG,根据点E是BC的中点求出BE、EF,从而得到GE 的长度,再利用勾股定理列出方程求解即可;【解答】(1)解:如图1所示:∵四边形ABCD是正方形,∴DC=DA.∠A=∠B=∠C=∠ADC=90°,∵△DEC沿DE折叠得到△DEF,∴∠DFE=∠C,DC=DF,∠1=∠2,∴∠DFG=∠A=90°,DA=DF,在Rt△DGA和Rt△DGF中,,∴Rt△DGA≌Rt△DGF(HL),∴∠3=∠4,∴∠EDG=∠3+∠2=∠ADF+∠FDC,=(∠ADF+∠FDC),=×90°,=45°;(2)①证明:如图2所示:∵△DEC沿DE折叠得到△DEF,E为BC的中点,∴CE=EF=BE,∠DEF=∠DEC,∴∠5=∠6,∵∠FEC=∠5+∠6,∴∠DEF+∠DEC=∠5+∠6,∴2∠5=2∠DEC,即∠5=∠DEC,∴BF∥DE;②解:设AG=x,则GF=x,BG=6﹣x,∵正方形边长为6,E为BC的中点,∴CE=EF=BE=×6=3,∴GE=EF+GF=3+x,在Rt△GBE中,根据勾股定理得:(6﹣x)2+32=(3+x)2,解得:x=2,即线段AG的长为2.【点评】本题考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理、翻折变换的性质;熟练掌握正方形的性质,并能进行推理论证与计算是解决问题的关键.15.(2016春•召陵区期中)如图①,在正方形ABCD中,F是对角线AC上的一点,点E在BC的延长线上,且BF=EF.(1)求证:BF=DF;(2)求证:∠DFE=90°;(3)如果把正方形ABCD改为菱形,其他条件不变(如图②),当∠ABC=50°时,∠DFE=50度.【分析】(1)根据正方形的四条边都相等可得BC=DC,对角线平分一组对角可得∠BCF=∠DCF,然后利用“边角边”证明即可;(2)易证∠FBE=∠FEB,又因为∠FBE=∠FDC,所以可证明∠FEB=∠FDC,进而可证明∠DFE=90°;(3)根据全等三角形对应角相等可得∠CBF=∠CDF,根据等边对等角可得∠CBF=∠E,然后求出∠DFE=∠DCE,再根据两直线平行,同位角相等可得∠DCE=∠ABC,从而得解.【解答】(1)证明:在正方形ABCD中,BC=DC,∠BCF=∠DCF=45°,∵在△BCF和△DCF中,,∴△BCF≌△DCF(SAS);∴BF=DF;(2)证明:∵BF=EF,∴∠FBE=∠FEB,又∵∠FBE=∠FDC,∴∠FEB=∠FDC,又∵∠DGF=∠EGC,∴∠DFG=∠ECG=90°,即∠DFE=90°;(3)证明:由(1)知,△BCF≌△DCF,∴∠CBF=∠CDF,∵EE=FB,∴∠CBF=∠E,∵∠DGF=∠EGC(对顶角相等),∴180°﹣∠DGF﹣∠CDF=180°﹣∠EGC﹣∠E,即∠DFE=∠DCE,∵AB∥CD,∴∠DCE=∠ABC,∴∠DFE=∠ABC=50°,故答案为:50.【点评】本题考查了正方形的性质,全等三角形的判定与性质,菱形的性质,等边对等角的性质,熟记正方形的性质确定出∠BCF=∠DCF是解题的关键.16.(2015秋•泗县期中)已知正方形ABCD中,对角线AC、BD相交于O.①如图1,若E是AC上的点,过A 作AG⊥BE于G,AG、BD交于F,求证:OE=OF②如图2,若点E在AC的延长线上,AG⊥EB交EB的延长线于G,AG延长DB 延长线于点F,其它条件不变,OE=OF还成立吗?【分析】①由正方形的性质得出OA=OB,AC⊥BD,得出∠BOE=∠AOF=90°,由角的互余关系得出∠OBE=∠OAF,由ASA证明△BOE≌△AOF,得出对应边相等即可;②由正方形的性质得出OA=OB,AC⊥BD,得出∠BOE=∠AOF=90°,由角的互余关系得出∠OBE=∠OAF,由ASA证明△BOE≌△AOF,得出对应边相等即可.【解答】①证明:∵四边形ABCD是正方形,∴OA=OB,AC⊥BD,∴∠BOE=∠AOF=90°,∴∠OEB+∠OBE=90°,∵AG⊥BE,∴∠AGE=90°,∴∠OEB+∠OAF=90°,∴∠OBE=∠OAF,在△BOE和△AOF中,,∴△BOE≌△AOF(ASA),∴OE=OF;②解:OE=OF还成立;理由如下:∵四边形ABCD是正方形,∴OA=OB,AC⊥BD,∴∠BOE=∠AOF=90°,∴∠OEB+∠OBE=90°,∵AG⊥BE,∴∠AGE=90°,∴∠OEB+∠OAF=90°,∴∠OBE=∠OAF,在△BOE和△AOF中,,∴△BOE≌△AOF(ASA),∴OE=OF.【点评】本题考查了正方形的性质、全等三角形的判定与性质;熟练掌握正方形的性质,并能进行推理论证是解决问题的关键.17.(2016春•邳州市期中)如图,点P是菱形ABCD中对角线AC上的一点,且PE=PB.(1)求证:PE=PD;(2)求证:∠PDC=∠PEB;(3)若∠BAD=80°,连接DE,试求∠PDE的度数,并说明理由.【分析】(1)由菱形的性质得出AB=BC=CD=AD,AB∥CD,∠DCP=∠BCP,由SAS 证明△CDP≌△CBP,得出PB=PD,再由PE=PB,即可得出结论;(2)由等腰三角形的性质得出∠PBC=∠PEB,由全等三角形的性质得出∠PDC=∠PBC,即可得出∠PDC=∠PEB;(3)由四边形内角和定理得出∠DPE=100°,由等腰三角形的性质和三角形内角和定理即可得出结果.【解答】(1)解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,AB∥CD,∠DCP=∠BCP,在△DCP和△BCP中,,∴△CDP≌△CBP(SAS),∴PB=PD,∵PE=PB,∴PE=PD;(2)证明:∵PE=PB,∴∠PBC=∠PEB,∵△CDP≌△CBP,∴∠PDC=∠PBC,∴∠PDC=∠PEB;(3)解:如图所示:∠PDE=40°;理由如下:在四边形DPEC中,∵∠DPE=360°﹣(∠PDC+∠PEC+∠DCB)=360°﹣(∠PEB+∠PEC+∠DCB)=360°﹣(180°+80°)=100°,∵PE=PD∴∠PDE=∠PED=40°.【点评】本题考查了菱形的性质、全等三角形的判定与性质、等腰三角形的性质;熟练掌握菱形的性质,证明三角形全等是解决问题的关键.18.(2016春•昆山市期中)如图,正方形ABCD中,AB=1,点P是BC边上的任意一点(异于端点B、C),连接AP,过B、D两点作BE⊥AP于点E,DF⊥AP于点F.(1)求证:EF=DF﹣BE;(2)若△ADF的周长为,求EF的长.【分析】(1)由正方形的性质得出AD=AB,证出∠DAF=∠ABE,由AAS证明△ADF ≌△BAE,得出AF=BE,DF=AE,即可得出结论;(2)设DF=a,AF=b,EF=DF﹣AF=a﹣b>0,由已知条件得出DF+AF=,即a+b=,由勾股定理得出a2+b2=1,再由完全平方公式得出a﹣b即可.【解答】(1)证明:∵BE⊥AP,DF⊥AP,∴∠DFA=∠AEB=90°,∠ABE+∠BAE=90°,∵四边形ABCD为正方形,∴AD=AB,∠DAB=90°=∠DAF+∠BAE,∴∠DAF=∠ABE,在△ADF和△BAE中,,∴△ADF≌△BAE(AAS),∴AF=BE,DF=AE,∴EF=AE﹣AF=DF﹣BE;(2)解:设DF=a,AF=b,EF=DF﹣AF=a﹣b>0,∵△ADF的周长为,AD=1,∴DF+AF=,即a+b=,由勾股定理得:DF2+AF2=AD2,即a2+b2=1,∴(a﹣b)2=2(a2+b2)﹣(a+b)2=2﹣=,∴a﹣b=,即EF=.【点评】本题考查了正方形的性质、全等三角形的判定与性质、勾股定理等知识;熟练掌握正方形的性质,由勾股定理得出a与b的关系式是解决问题(2)的关键.19.(2015春•繁昌县期中)如图,正方形ABCD的对角线AC、BD的交点为O,以O为端点引两条互相垂直的射线OM、ON,分别交边AB、BC于点E、F.(1)求证:0E=OF;(2)若正方形的边长为4,求EF的最小值.【分析】(1)根据正方形的性质可得∠EAO=∠FBO=45°,OA=OB,再根据同角的余角相等可得∠AOE=∠BOE,然后利用“角边角”证明△AOE和△BOF全等,根据全等三角形对应边相等即可得证;(2)根据等腰直角三角形△EOF,当OE最小时,再根据勾股定理得出EF的最小值.【解答】解:(1)∵四边形ABCD是正方形,∴OA=OB,∠AOB=90°,∠EAO=∠FBO=45°,∴∠AOE+∠BOE=90°,∵OE⊥OF,∴∠BOF+∠BOE=90°,∴∠AOE=∠BOF,在△AOE与△BOF中,,∴△AOE≌△BOF(ASA),∴OE=OF;(2)由(1)可知,△EOF是等腰直角三角形,∠EOF是直角,当OE最小时,EF的值最小,∵OA=OB,OE⊥AB,∴点E是AB的中点,∴OE=AB,∵AB=4,∴OE=2,∴EF=,即EF的最小值是2.【点评】本题考查了正方形的性质,解决此类问题的关键是正确的利用旋转不变量.正确作出辅助线是关键.20.(2016春•江宁区期中)如图,在正方形ABCD中,点E是边AD上任意一点,BE的垂直平分线FG交对角AC于点F.求证:(1)BF=DF;(2)BF⊥FE.【分析】(1)由正方形的性质得出AB=AD,∠BAF=∠DAF=45°,由SAS证明△BAF ≌△DAF,得出对应边相等即可;(2)由线段垂直平分线的性质得出BF=EF,证出EF=DF,得出∠FDE=∠FED,再由全等三角形的性质证出∠ABF=∠FED,由邻补角关系得出∠FED+∠FEA=180°,证出∠ABF+∠FEA=180°,由四边形内角和得出∠BAE+∠BFE=180°,求出∠BFE=90°即可.【解答】证明:如图所示:(1)∵四边形ABCD是正方形,∴AB=AD,∠BAF=∠DAF=45°,∠BAE=90°,在△BAF和△DAF中,,∴△BAF≌△DAF(SAS),∴BF=DF;(2)∵BE的垂直平分线FG交对角AC于点F,∴BF=EF,∵BF=DF,∴EF=DF,∴∠FDE=∠FED,∵△BAF≌△DAF,∴∠ABF=∠FDE,∴∠ABF=∠FED,∵∠FED+∠FEA=180°,∴∠ABF+∠FEA=180°,∴∠BAE+∠BFE=180°,∴∠BFE=90°,∴BF⊥FE.。

专题2.6特殊的平行四边形大题专练(分层培优30题,八下人教)

专题2.6特殊的平行四边形大题专练(分层培优30题,八下人教)

2022-2023学年八年级数学下学期复习备考高分秘籍【人教版】专题2.6特殊的平行四边形大题专练(分层培优30题,八下人教)A卷基础过关卷(限时50分钟,每题10分,满分100分)1.(2023•肃州区校级开学)如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形.(2)若∠ACB=30°,菱形OCED的面积为2,求AC的长.2.(2022•南京模拟)如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1)求证:∠BAC=∠DAC.(2)若AB∥CD,试证明四边形ABCD是菱形.3.(2022春•沂南县期末)如图,在平行四边形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC到点F,使CF=BE,连接DF.(1)求证:四边形ADFE是矩形;(2)连接OF,若AD=6,EC=4,∠ABF=60°,求OF的长度.4.(2022春•铜官区期末)如图1,矩形ABCD中,AB=2,BC=3,过对角线AC中点O的直线分别交边BC、AD于点E、F(1)求证:四边形AECF是平行四边形;(2)如图2,当EF⊥AC时,求EF的长度.5.(2022•邢台模拟)如图,菱形ABCD的周长为8,对角线BD=2,E、F分别是边AD,CD上的两个动点;且满足AE+CF=2.(1)求证:△BDE≌△BCF;(2)判断△BEF的形状,并说明理由.6.(2022•浑南区二模)如图所示,点O是菱形ABCD对角线的交点,CE∥BD,EB∥AC,连接OE,交BC 于F.(1)求证:OE=CB;(2)如果OC:OB=1:2,OE=2,求菱形ABCD的面积.7.(2021春•柳南区校级期末)如图,矩形ABCD的对角线AC、BD相交于点O,点E、F在AC上,AE=CF.(1)求证:四边形BEDF是平行四边形;(2)若AD=2,∠AOB=120°,求AB的长.8.(2022秋•礼泉县期末)按如图所示的方法分别以AB和AC为边作正方形ABDE和正方形AGFC,连接CE、BG,求证:△ACE≌△AGB.9.(2022秋•毕节市期末)如图,在Rt△ABC中,∠ABC=90°,D为AB的中点,AE∥CD,CE∥AB.(1)试判断四边形ADCE的形状,并证明你的结论;(2)当∠ABC= °时,四边形ADCE为正方形.10.(2022秋•汉台区期末)如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N,连接BM、DN.(1)求证:四边形BNDM是菱形;(2)若四边形BNDM的周长为52,MN=10,求BD的长.B卷能力提升卷(限时60分钟,每题10分,满分100分)11.(2022秋•南安市期末)如图,在正方形ABCD中,AB=24cm.动点E、F分别在边CD、BC上,点E 从点C出发沿CD边以1cm/s的速度向点D运动,同时点F从点C出发沿CB边以2cm/s的速度向点B 运动(当点F到达点B时,点E也随之停止运动),连结EF.问:在AB边上是否存在一点G,使得以B、F、G为顶点的三角形与△CEF全等?若存在,求出此时BG的长;若不存在,请说明理由.12.(2022秋•竞秀区期末)如图,四边形ABCD为平行四边形,对角线AC,BD交于点O,E,F分别在OB,OD上,AC=4,BD=6.(1)当BE=DF=1时,判断四边形AECF的形状并证明;(2)当四边形AECF为菱形时,求平行四边形ABCD的周长.13.(2023•惠阳区校级开学)如图,在四边形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.(1)求证:四边形ABCD是菱形.(2)过点D作DE⊥BD,交BC的延长线于点E,若BC=5,BD=8.①求菱形ABCD的面积.②求四边形ABED的周长.14.(2022秋•平昌县校级期末)如图:在菱形ABCD中,对角线AC、BD交于点O,过点A作AE⊥BC于点E,延长BC至点F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若BF=16,DF=8,求CD的长.15.(2022秋•南关区校级期末)如图,在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,CF=AE,连接AF,BF.(1)求证:四边形BFDE是矩形.(2)已知∠DAB=60°,AF是∠DAB的平分线,若AD=6,则▱ABCD的面积为 .16.(2022秋•渠县校级期末)如图,菱形ABCD的对角线AC,BD相交于点O,分别延长OA,OC到点E,F,使AE=CF,依次连接B,F,D,E各点.(1)求证:△BAE≌△BCF;(2)若∠ABC=40°,则当∠EBA= °时,四边形BFDE是正方形.17.(2022秋•郑州期末)如图,平行四边形ABCD中,AB=6cm,BC=10cm,∠B=60°,点G是CD的中点,点E是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①直接写出:当AE= cm时,四边形CEDF是菱形(不需要说明理由);②当AE= cm时,四边形CEDF是矩形,请说明理由.18.(2022秋•通川区期末)已知如图,M为正方形ABCD边AB上一点,P为边AB延长线上一点,连接DM,以点M为直角顶点作MN⊥DM交∠CBP的角平分线于N,过点C作CE∥MN交AD于E,连接EM,CN,DN.(1)求证:DM=MN;(2)求证:EM∥CN.19.(2022秋•绿园区校级期末)如图,在平行四边形ABCD中,点E,F分别在边BC,AD上,BE=DF,∠AEC=90°.(1)求证:四边形AECF是矩形;(2)连接BF,若AB=6,∠ABC=60°,BF平分∠ABC,则平行四边形ABCD的面积为 .20.(2022秋•朝阳区校级期末)如图,在△ABC中,AB=AC,点D、E分别是线段BC、AD的中点,过点A作BC的平行线交BE的延长线于点F,连接DF、CF.(1)求证:四边形ABDF为平行四边形;(2)求证:四边形ADCF为矩形.C卷培优压轴卷(限时70分钟,每题10分,满分100分)21.(2022秋•皇姑区校级期末)如图,菱形ABCD的对角线AC和BD交于点O,分别过点C、D作CE∥BD,DE∥AC,CE和DE交于点E.(1)求证:四边形ODEC是矩形;(2)连接AE,交CD于点F,当∠ADB=60°,AD=2时,直接写出EA的长.22.(2022秋•礼泉县期末)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC,且,连接CE.(1)求证:四边形OCED为矩形;(2)连接AE,若DB=6,AC=8,求AE的长.23.(2022秋•鼓楼区校级期末)如图,四边形ABCD是正方形,△ABE是等腰三角形,AB=AE,∠BAE=θ(0°<θ<90°).连接DE,过B作BF⊥DE于F,连接AF,CF.(1)若θ=60°,求∠BED的度数;(2)当θ变化时,∠BED的大小会发生变化吗?请说明理由;(3)试用等式表示线段DE与CF之间的数量关系,并证明.24.(2023•深圳模拟)如图,已知△ABC中,D是BC边上一点,过点D分别作DE∥AC交AB于点E,作DF∥AB交AC于点F,连接AD.(1)下列条件:①D是BC边的中点;②AD是△ABC的角平分线;③点E与点F关于直线AD对称.请从中选择一个能证明四边形AEDF是菱形的条件,并写出证明过程;(2)若四边形AEDF是菱形,且AE=2,CF=1,求BE的长.25.(2022秋•安丘市校级期末)如图,正方形ABCD的对角线AC、BD相交于点O,G是CD边上一点,连接BG交AC于E,过点A作AM⊥BG,垂足M,AM交BD于点F.(1)求证:OE=OF.(2)若H是BG的中点,BG平分∠DBC,求证:DG=2OE.26.(2022春•南谯区校级月考)如图1,四边形ABCD为正方形,E为对角线AC上一点,连接DE,BE.(1)求证:BE=DE;(2)如图2,过点E作EF⊥DE,交边BC于点F,以DE,EF为邻边作矩形DEFG,连接CG.①求证:矩形DEFG是正方形;②若正方形ABCD的边长为9,CG=3,求正方形DEFG的边长.27.(2022春•沂水县期中)(1)将矩形纸片ABCD沿过点D的直线折叠,使点A落在CD上的点A'处,得到折痕DE,如图1.求证:四边形AEA'D是正方形;(2)将图1中的矩形纸片ABCD沿过点E的直线折叠,点C恰好落在AD上的点C'处,点B落在点B'处,得到折痕EF,B'C'交AB于点M,如图2.线段MC'与ME是否相等?若相等,请给出证明;若不等,请说明理由.28.(2022秋•迎江区校级期末)(1)如图1,在四边形ABCD中,AB=AD,∠B=∠ADC=90°,点E、F 分别在边BC、CD上,且EF=BE+DF,探究图中∠BAE、∠FAD、∠EAF之间的数量关系.小明探究的方法是:延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论是 .(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,且EF=BE+DF,探究上述结论是否仍然成立,并说明理由.(3)如图3,在四边形ABCD中,AB=AD,∠ABC+∠ADC=180°,若点E在CB的延长线上,点F在CD的延长线上,仍然满足EF=BE+FD,请直接写出∠EAF与∠DAB的数量关系为 .29.(2022秋•宜春期末)【问题解决】在一节数学课上,张老师提出了这样一个问题:如图1,点E是正方形ABCD内一点,BE=2,EC=4,DE=6.你能求出∠BEC的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将△BEC绕点C逆时针旋转90°,得到△DE'C,连接EE',求出∠BEC的度数;思路二:将△DEC绕点C顺时针旋转90°,得到△BE'C,连接EE',求出∠BEC的度数.(1)请参考小明的思路,写出两种思路的完整解答过程.【类比探究】(2)如图2,若点E是正方形ABCD外一点,EB=8,EC=2,DE=6,求∠BEC的度数.30.(2022秋•邗江区校级期末)综合与实践.(1)如图1,在正方形ABCD中,点M、N分别在AD、CD上,若∠MBN=45°,则MN,AM,CN的数量关系为 .(2)如图2,在四边形ABCD中,AB=BC,∠A+∠C=180°,点M、N分别在AD、CD上,若∠MBN=∠ABC,试探索线段MN、AM、CN有怎样的数量关系?请写出猜想,并给予证明.(3)如图3,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M、N分别在DA、CD的延长线上,若∠MBN=∠ABC,试探究线段MN、AM、CN的数量关系.。

人教版 八年级数学下册 18.2 特殊的平行四边形 培优训练(含答案)

人教版  八年级数学下册 18.2 特殊的平行四边形 培优训练(含答案)

人教版八年级数学18.2 特殊的平行四边形培优训练一、选择题(本大题共10道小题)1. 矩形具有而平行四边形不具有的性质为()A.对角线相等B.对角相等C.对角线互相平分D.对边相等2. 如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为60︒的菱形,剪口与折痕所成的角α的度数应为()A.15︒或30︒B.30︒或45︒C.45︒或60︒D.30︒或60︒3. (2020·菏泽)如果顺次连接四边形的各边中点得到的四边形是矩形,那么原来四边形的对角线一定满足的条件是()A.互相平分B.相等C.互相垂直D.互相垂直平分4. 如图,在▱ABCD中,对角线AC与BD交于点O.若增加一个条件,使▱ABCD 成为菱形,下列给出的条件不正确...的是()A. AB=ADB. AC⊥BDC. AC=BDD. ∠BAC=∠DAC5. (2020台州)下列是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是()A.由②推出③,由③推出①B.由①推出②,由②推出③C.由③推出①,由①推出②D.由①推出③,由③推出②6. (2020·襄阳)已知四边形ABCD是平行四边形,AC,BD相交于点O,下列结论错误的是()A.OA=OC,OB=OD B.当AB=CD时,四边形ABCD 是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD且AC⊥BD时,四边形ABCD是正方形7. 如图,在矩形ABCD中,点E,F在对角线BD.请添加一个条件,使得结论“AE=CF”成立,并加以证明.8. (2020·黑龙江龙东)如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D 作DH ⊥AB 于点H ,连接OH ,若OA =6,OH =4,则菱形ABCD 的面积为( )A .72B .24C .48D .969. (2020·滨州)下列命题是假命题的是( )A .对角线互相垂直且相等的平行四边形是正方形B .对角线互相垂直的矩形是正方形C .对角线相等的菱形是正方形D .对角线互相垂直且平分的四边形是正方形10. (2020·达州)如图,∠BOD =45°,BO=DO ,点A 在OB 上,四边形ABCD 是矩形,连接AC 、BD 交于点E ,连接OE 交AD 于点F .下列4个判断:①OE 平分∠BOD ;②OF=BD ;③DF=AF ;④若点G 是线段OF 的中点,则△AEG 为等腰直角三角形.正确判断的个数是( ) A.4 B.3 C.2 D.1二、填空题(本大题共6道小题)11. 正方形有 条对称轴.12. 如图,矩形ABCD 中,AC BD ,相交于点O ,AE 平分BAD ∠交BC 于E ,若15CAE ∠=︒,求BOE ∠=EODC BA13. 如图,已知E 、F分别是正方形ABCD 的边BC 、CD 上的点,AE 、AF 分别DCA B F EO与对角线BD 相交于M 、N ,若50EAF ∠=︒,则CME CNF ∠+∠=.NMFEDCBA14. 如图所示,ABCD 是正方形,E 为BF 上的一点,四边形AEFC 恰好是一个菱形,则EAB ∠=______.ABCDEF15. 如图,A 在线段BG 上,ABCD 和DEFG 都是正方形,面积分别为27cm 和211cm ,则CDE ∆的面积为GFEDCB A16. 如图,在矩形纸片ABCD 中,AB =6,BC =10.点E 在CD 上,将△BCE 沿BE 折叠,点C 恰落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处.有下列结论:①∠EBG =45°;②△DEF ∽△ABG ;③S △ABG =32S △FGH ;④AG +DF =FG . 其中正确的是______________.(把所有正确结论的序号都选上)三、解答题(本大题共5道小题)17. 已知:如图,在菱形ABCD 中,点E ,F 分别在边BC ,CD 上,且BE=DF ,连结AE ,AF.求证:AE=AF.18.如图,折叠长方形的一边AD ,使点D 落在BC 边的点F 处,如果8AB =,10BC =,求EC 的长.BDCAEF19. 如图,已知平行四边形ABCD 中,对角线AC 、BD 交于点O ,E 是BD 延长线上的点,且ACE ∆是等边三角形.⑴ 求证:四边形ABCD 是菱形;⑵ 若2AED EAD ∠=∠,求证:四边形ABCD 是正方形.OEDCBA20. 如图,正方形ABCD 中,在AD 的延长线上取点E ,F,使DE AD =,DF BD =.连结BF 分别交CD ,CE 于H ,G .求证:GHD ∆是等腰三角形.3142FE GHCDBA21. 如图,在ABCD 中,AE BC ⊥于E ,AF CD ⊥于F,AEF ∆的两条高相交于M ,20AC =,16EF =,求AM 的长.MF E DC BA人教版 八年级数学 18.2 特殊的平行四边形培优训练-答案一、选择题(本大题共10道小题) 1. 【答案】A2. 【答案】D3. 【答案】C【解析】利用三角形的中位线定理,可得中点四边形有如下结论:任意四边形的中点四边形是平行四边形;对角线相等的四边形的中点四边形是菱形;对角线互相垂直的四边形的中点四边形是矩形;对角线相等且垂直的四边形的中点四边形是正方形.由此可知,该题选项C 符合题意.4. 【答案】C 【解析】邻边相等的平行四边形是菱形,所以A 正确;对角线互相垂直的平行四边形是菱形,所以B 正确;对角线相等的平行四边形是矩形,所以C 错误;由∠BAC =∠DAC 可得对角线是角平分线,所以D 正确.5. 【答案】解:对角线相等的四边形推不出是正方形或矩形,故①→②,①→③错误,故选项B ,C ,D 错误,故选:A .【分析】根据对角线相等的四边形推不出是正方形或矩形即可判断.6. 【答案】B【解析】由平行四边形的对角线互相平分,知A选项正确;由有一个角是直角的平行四边形是矩形,知C选项正确;由对角线垂直且相等的平行四边形是正方形,知D选项正确;由一组邻边相等的平行四边形是菱形,知B选项错误(因为B选项中是一组对边相等了),故选B.7. 【答案】添加的条件是BE=DF(答案不唯一).证明:∵四边形ABCD是矩形,∴AB∥CD,AB=CD,∴∠ABD=∠BDC,又∵BE=DF(添加),∴△ABE≌△CDF(SAS),∴AE=CF.8. 【答案】C【解析】本题考查了菱形的性质,对角线互相垂直平分以及直角三角形的斜边上中线的性质,解:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,∵DH⊥AB,∴∠BHD=90°,∴BD=2OH,∵OH=4,∴BD=8,∵OA=6,∴AC=12,∴菱形ABCD的面积.故选:C.9. 【答案】D【解析】本题考查了正方形的判定,对角线互相垂直且相等的平行四边形是正方形、对角线互相垂直的矩形是正方形、对角线相等的菱形是正方形是真命题,对角线互相垂直且平分的四边形是菱形,即对角线互相垂直且平分的四边形是正方形是假命题,因此本题选D.10. 【答案】A【解析】由矩形的性质可知:BE=DE=BD,∠OAD=∠BAD=90°,在△ODE和△OBE中,BO=DO,BE=DE,OE=OE,所以△ODE≌△OBE,∠OED=∠OEB=90°,∠OBD=∠ODB=67.5°,∠BOE=∠DOE=22.5°,故①正确;在R t△AOD中,∠BOD=45°,∴OA=AD,在R t△ABD中,∠BAD=90°,∠OBD=67.5°,所以∠BDA=22.5°,在△BDA和△FOA中,∠BDA=∠FOA,OA=AD,∠OAD=∠BAD=90°,所以△BDA≌△FOA,所以OF=BD,故②正确;如答图,过点F作FQ⊥OD于点Q,由角平分线的性质得AF=FQ,由题可知∠ADO=45°,所以△FDQ是等腰直角三角形即DF=AF,故③正确;如答图,AG=OG=OF,所以OG=DE,由题意可得△OAG≌△DAE,所以∠OAG=∠DAE,AG=AE,又由∠OAG+∠GAF=90°可得∠GAE=90°,所以△GAE是等腰直角三角形,故④正确.二、填空题(本大题共6道小题) 11. 【答案】412. 【答案】75︒.【解析】∵四边形ABCD 是矩形 ∴90DAB ABC OA OB ∠=∠=︒=,∵AE 平分BAD ∠,所以1452BEA BAD ∠=∠=︒ ∴BA BE = ∵1560CAE BAC ∠=︒∠=︒, 所以ABO ∆为等边三角形 ∴60OB AB BE ABO ==∠=︒,,所以30OBE ∠=︒ ∴()1180752BOE OBE ∠=︒-∠=︒13. 【答案】100︒【解析】如图,连结AC .NMFEDCBA14. 【答案】连接CE ,作过B 、E 点的AC 垂线,垂足分别为H ,G ,则四边形BEGH是矩形,1122GE BH AC AE ===, 所以30GAE ∠=︒,所以15EAB ∠=︒.AB CDEFG H15.【解析】过E 作EH CD ⊥交CD 延长线于H ,CDE ADG DEH DAG EH AG S S ∆∆∆∆==≌,,GQD C ABF E O16. 【答案】①③④ 【解析】由折叠的性质得,∠CBE =∠FBE ,∠ABG =∠FBG ,∴∠EBG =∠FBE +∠FBG =12×90°=45°,故①正确;由折叠的性质得,BF =BC =10,BA =BH =6,∴HF =BF -BH =4,AF =BF 2-BA 2=102-62=8,设GH =x ,则GF =8-x ,在Rt △GHF 中,x 2+42=(8-x)2,∴x =3,∴GF =5,∴AG =3,同理在Rt △FDE 中,由FD 2=EF 2-ED 2,得ED =83,EF =103,∴EDFD =43≠AB AG =2,∴△DEF 与△ABG 不相似,故②不正确;S △ABG =12×3×6=9,S △FGH =12×3×4=6,∴S △ABG S △FGH =96=32,故③正确;∵AG =3,DF =AD -AF =2,∴FG=5,∴AG +DF =FG =5,故④正确.综上,答案是①③④.三、解答题(本大题共5道小题)17. 【答案】∵四边形ABCD 是菱形, ∴AB=AD ,∠B=∠D ,∵BE=DF ,∴△ABE ≌△ADF ,∴AE=CF .18. 【答案】由题意可知,AD AF =,DE EF =. ∵8AB =,10BC =,AB BF ⊥∴6BF === ∴4CF =∵CE CF ⊥,DE EF = ∴222DE CE CF =+∴222(8)43CE CE CE -=+⇒=19. 【答案】⑴ ∵四边形ABCD 是平行四边形,∴AO CO =.又∵ACE ∆是等边三角形,∴EO AC ⊥,即DB AC ⊥. ∴平行四边形ABCD 是菱形.⑵ ∵ACE ∆是等边三角形,∴60AEC ∠=︒.∵EO AC ⊥,∴1302AEO AEC ∠=∠=︒.∵2AED EAD ∠=∠,∴15EAD ∠=︒.∴45ADO EAD AED ∠=∠+∠=︒. 四边形ABCD 是菱形,∴290ADC ADO ∠=∠=︒ ∴四边形ABCD 是正方形.20. 【答案】首先证明:GDH GHD ∠=∠.因为DE BC DE BC =∥,,所以四边形BCED 为平行四边形, 14∠=∠,又BD FD =,所以1123452∠=∠=∠=⨯︒,134452∠=∠=⨯︒,BC GC CD ==.因此,DCG ∆为等腰三角形,故()11351804522CDG ︒∠=︒-︒=. 又451359039022GHD ︒︒∠=︒-∠=︒-=,所以CDG GHD ∠=∠.从而GD GH =.21. 【答案】12【解析】过C 作CG AD ⊥于G ,连接EG 、FG .∵AE BC ⊥,FM AE ⊥,∴FM ∥EC 又∵EM AF ⊥,CD AF ⊥,∴EM ∥CF ∴四边形EMFC 为平行四边形,∴MF EC = 又∵AE BC ⊥,CG AD ⊥且BC ∥AD ∴90EAG AGC GCE AEC ∠=∠=∠=∠=︒ ∴四边形AGCE 为矩形∴EC AG =,EG AC =,∴MF AG = 又∵MF ∥AG∴四边形AGFM 为平行四边形,∴GF AM = ∵AM EF ⊥,∴GF EF ⊥,即90GFE ∠=︒∴GF =12AM ==GMF E DC BA。

浙教版2022-2023学年八下数学第四章 平行四边形 培优测试卷(解析版)

浙教版2022-2023学年八下数学第四章 平行四边形 培优测试卷(解析版)

浙教版2022-2023学年八下数学第四章 平行四边形 培优测试卷(解析版)一、选择题(本大题有10小题,每小题3分,共30分) 下面每小题给出的四个选项中,只有一个是正确的.1.以下分别是回收、节水、绿色包装、低碳4个标志,其中是中心对称图形的是( ).A .B .C .D .【答案】C【解析】A 、此图形不是中心对称图形,故本选项不符合题意; B 、此图形不是中心对称图形,故此选项不符合题意; C 、此图形是中心对称图形,故此选项符合题意;D 、此图形不是中心对称图形,故此选项不符合题意. 故答案为:C .2.已知平行四边形ABCD 中,∠A +∠C =240°,则∠B 的度数是( ) A .100° B .60° C .80° D .160° 【答案】B【解析】∵四边形ABCD 为平行四边形, ∴∠A=∠C ,∠A+∠B =180°. 又∵∠A+∠C=240°, ∴∠A=∠C=120°, ∠B=180°-∠A=60°. 故答案为:B3.多边形边数从n 增加到n +1,则其内角和( ) A .增加180° B .增加360° C .不变 D .减少180° 【答案】A【解析】n 边形的内角和是(n -2)•180°,边数增加1,则新的多边形的内角和是(n+1-2)•180°. 则(n+1-2)•180°-(n -2)•180°=180°. 故它的内角和增加180°. 故答案为:A .4.如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,AB∠AC .若AC =6,BD =10,则AB 的长是( )A .3B .4C .5D .6 【答案】B【解析】∵四边形ABCD 是平行四边形,BD =10,AC =6, ∴AO =OC =12AC =3,BO =DO =12BD =5,又∵AB∠AC , ∴∠BAC =90°,∴AB =√BO 2−AO 2=√52−32=4, 故答案为:B . 5.用反证法证明,“在∠ABC 中,∠A 、∠B 对边是a 、b ,若∠A <∠B ,则a <b .”第一步应假设( ) A .a >b B .a =b C .a≤b D .a≥b【答案】D【解析】根据反证法步骤,第一步应假设a <b 不成立,即a≥b . 故答案为:D.6.如图,点E 、F 分别是∠ABCD 边AD 、BC 的中点,G 、H 是对角线BD 上的两点,且BG=DH .则下列结论中错误的是( )A .GF =EHB .四边形EGFH 是平行四边形C .EG =FHD .EH ⊥BD【答案】D【解析】连接EF 交BD 于点O ,在平行四边形ABCD 中,AD=BC ,∠EDH=∠FBG , ∵E 、F 分别是AD 、BC 边的中点,∴DE=BF=12BC ,∠EDO=∠FBO ,∠DOE=∠BOF ,∴∠EDO∠∠FBO , ∴EO=FO ,DO=BO , ∵BG=DH , ∴OH=OG ,∴四边形EGFH 是平行四边形, ∴GF=EH ,EG=HF ,故答案为:A 、B 、C 不符合题意; ∵∠EHG 不一定等于90°,∴EH∠BD 错误,D 符合题意; 故答案为:D .7.如图,在四边形ABCD 中,点P 是对角线BD 的中点,点E 、F 分别是AB 、CD 的中点,AD=BC ,∠CBD=30°,∠ADB=100°,则∠PFE 的度数是( )A .15°B .25°C .30°D .35°【答案】D【解析】∵点P 是BD 的中点,点E 是AB 的中点, ∴PE 是∠ABD 的中位线, ∴PE=12AD ,PE∠AD ,∴∠EPD=180°-∠ADB=80°, 同理可得,PF=12BC ,PE∠BC ,∴∠FPD=∠CBD=30°, ∵AD=BC , ∴PE=PF ,∴∠PFE=12×(180°-110°)=35°,故答案为:D .8.如图, ▱EFGH 的四个顶点分别在 ▱ABCD 的四条边上, QF ∥AD ,分别交EH 、CD 于点P 、Q 过点P 作 MN ∥AB ,分别交AD 、BC 于点M 、N ,若要求 ▱EFGH 的面积,只需知道下列哪个四边形的面积( )A .四边形AFPMB .四边形MPQDC .四边形FBNPD .四边形PNCQ【答案】C【解析】如图,连接PG ,FN ,∵∠EFGH ,∴S △FPG =12S ▱EFGH ,∵FQ ∥BC ,∴S △FPN =S △FPG , 又∵MN∠AB ,∴四边形FBNP 为平行四边形,∴S △FPN =S △FPG =12S ▱FBNP∴S ▱FBNP =S ▱EFGH ,∴要求∠EFGH 的面积,只需要知道四边形FBNP 的面积. 故答案为:C.9.如图,已知□OABC 的顶点A ,C 分别在直线 x =1 和 x =4 上,O 是坐标原点,则对角线OB 长的最小值为( )A .3B .4C .5D .6 【答案】C【解析】过点B 作BD⊥直线x=4,交直线x=4于点D ,过点B 作BE⊥x 轴,交x 轴于点E ,直线x=1与OC 交于点M ,与x 轴交于点F ,直线x=4与AB 交于点N ,如图:∵四边形OABC是平行四边形,∴⊥OAB=⊥BCO,OC⊥AB,OA=BC.∵直线x=1与直线x=4均垂直于x轴,∴AM⊥CN,∴四边形ANCM是平行四边形,∴⊥MAN=⊥NCM,∴⊥OAF=⊥BCD.∵⊥OFA=⊥BDC=90°,∴⊥FOA=⊥DBC.在⊥OAF和⊥BCD中,⊥FOA=⊥DBC,OA=BC,⊥OAF=⊥BCD,∴⊥OAF⊥⊥BCD,∴BD=OF=1,∴OE=4+1=5,∴OB=√OE2+BE2.由于OE的长不变,所以当BE最小时,OB取得最小值,最小值为OB=OE=5.故答案为:C.10.如图,∠ ABCD的对角线AC、BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,AB=12BC,连接OE.下列结论:①∠ADO=30°;②S ∠ ABCD=AB·AC;③OB=AB;④S四边形OECD=32S∠AOD,其中成立的个数为()A.1个B.2个C.3个D.4个【答案】B【解析】∵四边形ABCD为平行四边形,∠ADC=60°,∴OA=OC,OB=OD,∠ABC=60°,∠BAD=120°,∵AE平分∠BAD,∴∠BAE=∠DAE=60°,∴△ABE是等边三角形,∴AB=AE=BE,∠AEB=60°,∵AB=12BC,∴BE=12BC,∴CE=BE=AE,∴∠ACE=∠CAE=30°,∴∠OAB=90°,∠OAD=30°,∴在Rt△AOB中,OB>OA,OB>AB,则结论③不成立;∴OD >OA ,∴∠ADO ≠∠OAD ,即∠ADO ≠30°,结论①不成立; ∵∠OAB =90°,即AB ⊥AC ,∴S ▱ABCD =AB ⋅AC ,则结论②成立; 设平行四边形ABCD 的面积为8a(a >0), 则S △AOD =S △COD =S △BOC =14S ▱ABCD =2a ,∵BE =CE ,∴S △BOE =S △COE =12S △BOC =a ,∴S 四边形OECD =S △COE +S △COD =3a =32S △AOD ,结论④成立;综上,成立的个数为2个, 故答案为:B .二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.一个多边形的内角和与外角和的和为2160∠,则这个多边形的边数为 . 【答案】12【解析】设这个多边形的边数是n , (n -2)•180°+360°=2160°, 解得n=12. 故答案为:12.12.在平面直角坐标系中,已知A 、B 、C 、D 四点的坐标依次为(0,0)、(6,0)、(8,6)、(2,6),若一次函数y=mx -6m 的图象将四边形ABCD 的面积分成1:3两部分,则m 的值为 .【答案】−35或−6【解析】∵直线y=mx -6m 经过定点B (6,0),A 、B 、C 、D 四点的坐标依次为(0,0)、(6,0)、(8,6)、(2,6),∴CD∠AB ,CD=8-2=6= AB , ∴四边形ABCD 是平行四边形,∴S∠ADC= S∠ADC=12S 平行四边形ABCD ,又∵直线y=mx -6m 把平行四边形ABCD 的面积分成1:3的两部分.∴直线y=mx -6m 经过AD 的中点M (1,3)或经过CD 的中点N (5,6), ∴m -6m=3或5m -6m=6,∴m=-35或-6,故答案为:-35或-6.13.如图,△ABC 是边长为1的等边三角形,取BC 边中点E ,作ED ∥AB ,EF ∥AC ,ED ,EF 分别交AC ,AB 于点D ,F ,得到四边形EDAF ,它的面积记作S 1;取BE 中点E 1,作E 1D 1∥FB ,E 1F 1∥EF ,E 1D 1,E 1F 1分别交EF ,BF 于点D 1,F 1,得到四边形E 1D 1FF 1,它的面积记作S 2……照此规律作下去,则S n = .【答案】√322n+1【解析】∵∠ABC 是边长为1的等边三角形,∴∠ABC 的高为:√12−(12)2=√32,∴S △ABC =12×1×√32=√34,∵DE 、EF 分别是∠ABC 的中位线,∴AF =12AC =12,∴S 1=12S △ABC =√38,同理可得S 2=√38×14;…,∴S n =√38×(14)n−1=√322n+1;故答案为:√322n+1.14.如图, ΔABC 和 ΔDEC 关于点C 成中心对称,若 AC =1 , AB =2 , ∠BAC =90° ,则 AE 的长是 .【答案】2√2【解析】∵∠DEC 与∠ABC 关于点C 成中心对称, ∴DC=AC=1,DE=AB=2,∴在Rt∠EDA 中,AE 的长是:AE =√AD 2+DE 2=√(DC +AC)2+DE 2=√(1+1)2+22=2√2 . 故答案为: 2√2 . 15.已知:如图,线段AB =6cm ,点P 是线段AB 上的动点,分别以AP 、BP 为边在AB 作等边△APC 、等边△BPD ,连接CD ,点M 是CD 的中点,当点P 从点A 运动到点B 时,点M 经过的路径的长是 cm .【答案】3【解析】如图,分别延长AC,BD交于H,过点M作GN∠AB分别交AH于G,BH于N,∵∠APC、∠BPD都是等边三角形,∴∠A=∠B=∠DPB=∠CPA=60°,∴AH∠PD,BH∠CP,∴四边形CPDH是平行四边形,∴CD与HP互相平分,∴M是PH的中点,故在P运动过程中,M始终在HP的中点,所以M的运动轨迹即为∠HAB的中位线,即线段GN,∴GN=12AB=3cm,故答案为:3.16.如图,把含45∘,30∘角的两块直角三角板放置在同一平面内,若AB//CD,AB=CD=√6则以A,B,C,D为顶点的四边形的面积是.【答案】3+2√3【解析】延长CO,交AB于点E,由题意可知:∠BAO=45°,∠CDO=30°∵AB//CD,AB=CD=√6∴四边形ABCD为平行四边形∵OC∠CD∴CE∠AB∴S∠AOB+S∠COD= 12AB·OE+12CD·OC= 12AB·(OE+OC)= 12AB·CE= 12S平行四边形ABCD∴S平行四边形ABCD=2(S∠AOB+S∠COD)在Rt∠AOB中,AO2+BO2=AB2=6,AO=BO解得:AO=BO= √3在Rt∠COD中,∠CDO=30°,OC2+CD2=OD2∴OD=2OC,OC2+6=(2OC)2解得:OC= √2,∴S∠AOB= 12AO·BO= 32,S∠COD=12CD·OC= √3∴S平行四边形ABCD=2(S∠AOB+S∠COD)=2×(32+√3)= 3+2√3故答案为:3+2√3.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)解答应写出文字说明,证明过程或推演步骤.17.如图,在▱ABCD中,点E、F在对角线AC上,且AE=CF,连接BF、DE.求证:BF=DE,BF∥DE.【答案】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∴∠DAC=∠BCA.又∵AE=CF,∴△DAE≌△BCF(SAS),∴BF=DE,∠DEA=∠BFC.∴∠DEC=∠BFA.∴BF∥DE.18.如图,在∠ABCD中,点E在边AD上,连接EB并延长至F,使BF=BE;连接EC并延长至G,使CG=CE,连接FG,点H为FG的中点,连接DH,AF.(1)若∠BAE=70°,∠DCE=20°,求∠DEC的度数;(2)求证:四边形AFHD为平行四边形.【答案】(1)解:∵四边形ABCD是平行四边形,∴∠BAE=∠BCD=70°,AD∠BC,∵∠DCE=20°,AB∠CD,∴∠CDE=180°﹣∠BAE=110°,∴∠DEC=180°﹣∠DCE﹣∠CDE=50°;(2)解:∵四边形ABCD是平行四边形,∴AD=BC,AD∠BC,∵BF=BE,CG=CE,∴BC是∠EFG的中位线,∴BC∠FG ,BC =12FG ,∵H 为FG 的中点, ∴FH =12FG ,∴BC∠FH ,BC =FH , ∴AD∠FH ,AD =FH ,∴四边形AFHD 是平行四边形.19.如图,∠ABC 中,点D ,E 分别是边AB ,AC 的中点,过点C 作CF∠AB 交DE 的延长线于点F ,连接BE .(1)求证:四边形BCFD 是平行四边形.(2)当AB =BC 时,若BD =2,BE =3,求AC 的长. 【答案】(1)证明:∵点 D ,E 分别是边 AB ,AC 的中点, ∴DE∠BC . ∵ CF∠AB ,∴四边形 BCFD 是平行四边形;(2)解:∵AB =BC ,E 为 AC 的中点, ∴BE∠AC .∵AB =2DB =4, BE =3, ∴AE =√42−32=√7 ∴AC =2AE =2√720.如图,在 5×5 的方格纸中,每个小正方形的边长均为1,A ,B 两点均在小正方形的顶点上,请按下列要求,在图1,图2,图3中各画一个四边形(所画四边形的顶点均在小正方形的项点上)(1)在图1中画四边形 ABCD ,使其为中心对称图形,但不是轴对称图形; (2)在图2中画以A ,B ,M ,N 为顶点的平行四边形,且面积为5;(3)在图3中画以A ,B ,E ,F 为顶点的平行四边形,且其中一条对角线长等于3. 【答案】(1)解:如图1中,四边形ABCD 即为所求作.(2)解:如图2中,四边形ABMN即为所求作. (3)解:如图3中,四边形ABEF即为所求作. 21.如图,在▱ABCD中,E,F是对角线AC上的两点,且AE=CF.(1)求证:四边形BEDF是平行四边形;(2)若AB⊥BF,AB=8,BF=6,AC=16.求线段EF长.【答案】(1)证明:连接BD交AC于点O.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OE=OF,∵OB=OD,∴四边形BEDF是平行四边形.(2)解:在Rt△ABF中,AF=√AB2+BF2=√82+62=10,∵AC=16,∴CF=AC−AF=16−10=6,∵AE=CF,∴AE=6,∴EF=AF−AE=10−6=4.22.如图,已知:在∠ABCD中,AE∠BC,垂足为E,CE=CD,点F为CE的中点,点G为CD上的一点,连接DF,EG,AG,∠1=∠2.(1)求证:G 为CD 的中点.(2)若CF =2.5,AE =4,求BE 的长.【答案】(1)证明:∵点F 为CE 的中点,∴CF=12CE , 在∠ECG 与∠DCF 中,∵∠2=∠1, ∠C =∠C , CE =CD ,∴∠ECG∠∠DCF (AAS ),∴CG=CF= 12CE. 又CE=CD , ∴CG=12CD , 即G 为CD 的中点; (2)解:∵CE=CD ,点F 为CE 的中点,CF=2.5,∴DC=CE=2CF=5,∵四边形ABCD 是平行四边形,∴AB=CD=5,∵AE∠BC ,∴∠AEB=90°,在Rt∠ABE 中,由勾股定理得:BE=√52−42=3.23.如图,平行四边形ABCD 中,AE 平分∠BAD ,交BC 于点E ,且AB =AE ,延长AB 与DE 的延长线交于点F .下列结论中:求证:(1)∠ABE 是等边三角形;(2)∠ABC ∠∠EAD ;(3)S △ABE =S △CEF .【答案】(1)证明:∵ABCD 是平行四边形∴AD∠BC ,AD=BC ,∴∠EAD=∠AEB ,又∵AE 平分∠BAD ,∴∠BAE=∠DAE ,∴∠BAE=∠BEA ,∴AB=BE ,∵AB=AE ,∴∠ABE 是等边三角形;(2)证明:∵∠ABE 是等边三角形∴∠ABE=∠EAD=60∠,∵AB=AE ,BC=AD ,∴∠ABC∠∠EAD(SAS)(3)证明:∵∠FCD 与∠ABC 等底(AB=CD)等高(AB 与CD 间的距离相等),∴S∠FCD=S∠ABC ,又∵∠AEC与∠DEC同底等高,∴S∠AEC=S∠DEC,∴S∠ABE=S∠CEF24.我们规定:有一组邻边相等,且这组邻边的夹角为60°的凸四边形叫做“准筝形”.(1)如图1,在四边形ABCD中,∠A+∠C=270°,∠D=30°,AB=CB,求证:四边形ABCD是“准筝形”;(2)如图2,在“准筝形”ABCD中,AB=AD,∠BAD=∠BCD=60°,BC=4,CD=3,求AC的长;(3)如图3,在∠ABC中,∠A=45°,∠ABC=120°,AB=3-√3,设D是∠ABC所在平面内一点,当四边形ABCD是“准筝形”时,请直接写出四边形ABCD的面积.【答案】(1)证明:在四边形ABCD中,∠A+∠B+∠C+∠D=360°,∵∠A+∠C=270°,∠D=30°,∴∠B=360°-(∠A+∠C+∠D)=360°-(270°+30°)=60°,∵AB=BC,∴四边形ABCD是“准筝形”;(2)解:以CD为边作等边∠CDE,连接BE,过点E作EF∠BC于F,如图2所示:则DE=DC=CE=3,∠CDE=∠DCE=60°,∵AB=AD,∠BAD=∠BCD=60°,∴∠ABD是等边三角形,∴∠ADB=60°,AD=BD,∴∠ADB+∠BDC=∠CDE+∠BDC,即∠ADC=∠BDE,在∠ADC和∠BDE中,{AD=BD∠ADC=∠BDEDC=DE,∴∠ADC∠∠BDE(SAS),∴AC=BE,∵∠BCD=∠DCE=60°,∴∠ECF=180°-60°-60°=60°,∵∠EFC =90°,∴∠CEF =30°,∴CF =12CE =32 , 由勾股定理得:EF =√CE 2−CF 2=√32−(32)2=3√32 , BF =BC +CF =4+32=112, 在Rt∠BEF 中,由勾股定理得:BE =√BF 2+EF 2=√(112)2+(3√32)2=√37 , ∴AC =√37 ;(3)解:四边形ABCD 的面积为3√32或9+3√32 或 92+3√3. 【解析】(3)过点C 作CH∠AB ,交AB 延长线于H ,如图3所示:设BH =x ,∵∠ABC =120°,CH 是∠ABC 的高线,∴∠BCH =30°,∴HC =√3x ,BC =2BH =2x ,又∵∠A =45°,∴∠HAC 是等腰直角三角形,∴HA =HC ,∵AB =3-√3 ,∴√3x =3-√3+x ,解得:x =√3,∴HC =√3x =3,BC =2√3 ,∴AC = √2 HC =3 √2 ,当AB =AD =3- √3 ,∠BAD =60°时,连接BD ,过点C 作CG∠BD ,交BD 延长线于点G ,过点A 作AK∠BD ,如图4所示:则BD =3-√3 ,∠ABD =60°,BK =12AB =12(3-√3 ), ∵∠ABC =120°,∴∠CBG =60°=∠CBH ,在∠CBG 和∠CBH 中, {∠CGB =∠CHB =90°∠CBG =∠CBH BC =BC,∴∠CBG∠∠CBH (AAS ),∴GC =HC =3,在Rt∠ABK 中,由勾股定理得:AK =√AB 2−BK 2 =√(3−√3)2−[12(3−√3)]2 = 3√3−32, ∴S ∠ABD = 12 BD•AK = 12×(3-√3 )×3√3−32 =6√3−92, S ∠CBD = 12 BD•CG = 12×(3-√3 )×3=9−3√32, ∴S 四边形ABCD = 6√3−92 + 9−3√32 = 3√32; ②当BC =CD =2√3 ,∠BCD =60°时,连接BD ,作CG∠BD 于点G ,AK∠BD 于K ,如图5所示:则BD =2√3 ,CG =√32 BC =√32×2√3 =3,AK =3√3−32 , ∴S ∠BCD =12 BD•CG =12×2√3×3=3√3, S ∠ABD =12BD•AK =12×2√3×3√3−32=9−3√32, ∴S 四边形ABCD =3√3+9−3√32=9+3√32 ; ③当AD =CD =AC =3√2,∠ADC =60°时,作DM∠AC 于M ,如图6所示:则DM =√32AD =√32×3√2 =3√62 , ∴S ∠ABC =12AB•CH =12×(3-√3)×3=9−3√32, S ∠ADC = 12 AC•DM =12×3√2×3√62=9√32, ∴S 四边形ABCD =9−3√32+ 9√32=92+3√3. 综上所述,四边形ABCD 的面积为3√32或9+3√32 或 92+3√3.。

部编数学八年级下册考前必做30题之平行四边形小题培优提升(压轴篇,八下册人教)2023复习备考含答案

部编数学八年级下册考前必做30题之平行四边形小题培优提升(压轴篇,八下册人教)2023复习备考含答案

2022-2023学年八年级数学下学期复习备考高分秘籍【人教版】专题6.3考前必做30题之平行四边形小题培优提升(压轴篇,八下人教)本套试题主要针对期中期末考试的选择填空压轴题,所选题目典型性和代表性强,均为中等偏上和较难的题目,具有一定的综合性,适合学生的培优拔高训练.试题共30题,选择20道,每题3分,填空10道,每题4分,总分100分.涉及的考点主要有以下方面:1.平行四边形的性质:平行四边形的边与角的计算、平行四边形的对角线问题平行四边形的判定:平行四边形的判定方法的认识、判断能否构成平行四边2.形、添加条件成为平行四边形、已知三点构成平行四边形、平行四边形的性质与判定综合3.三角形的中位线:三角形中位线有关线段计算、三角形的中位线与面积一、单选题1.(2023春·江苏·八年级专题练习)如图所示,在四边形ABCD中,已知∠1=∠2,添加下列一个条件,不能判断四边形ABCD成为平行四边形的是( )A.∠D=∠B B.AB∥CD C.AD=BC D.AB=DC2.(2023春·全国·八年级专题练习)如图,平行四边形ABCD的对角线AC、BD相交于点O,OE//AB交AD于点E.若OA=2,ΔAOE的周长为10,则平行四边形ABCD的周长为()A.16B.32C.36D.403.(2023秋·山东烟台·八年级统考期末)如图,在▱ABCD中,∠DAB的平分线交CD于点E,交BC的延长线于点G,∠ABC的平分线交CD于点F,交AD的延长线于点H,AG与BH交于点O,连接BE,下列结论错误的是()A.BO=OH B.DF=CE C.DH=CG D.AB=AE4.(2023春·湖北武汉·八年级武汉外国语学校(武汉实验外国语学校)校考阶段练习)如图,P为▱ABCD内一点,且△PAB和△PAD的面积分别为5和2,则△PAC的面积为()A.3B.4C.5D.65.(2023春·江苏·八年级专题练习)如图,在▱ABCD中,BF平分∠ABC交AD于点F,CE平分∠BCD交AD于点E,若AB=6,AD=8,则EF的长度为( )A.4B.5C.6D.76.(2023春·江苏·八年级专题练习)如图,四边形ABCD中,∠A=90°,AB=12,AD=5,点M、N分别为线段BC、AB上的动点,点E、F分别为DM、MN的中点,则EF长度的可能为()A.2B.2.3C.4D.77.(2023春·江苏·八年级专题练习)如图,△ABC周长20,D,E在边BC上,BN和CM分别是∠ABC和∠ACB 的平分线,BN⊥AE,CM⊥AD,若BC=8,则MN的长为()A.1B.2C.3D.8.(2023春·湖北武汉·八年级武汉外国语学校(武汉实验外国语学校)校考阶段练习)已知,在▱ABCD中,点M、N分别是AB、CD的中点,AN、CM交DB于P、Q两点,下列结论:①DP=PQ=QB;②AP=CQ③CQ=2MQ;④S△ADP=1S▱ABCD.其中正确的结论的个数是()4A.4个B.3个C.2个D.1个9.(2023春·湖北武汉·八年级武汉外国语学校(武汉实验外国语学校)校考阶段练习)如图,E为平行四边形ABCD内一点,且EA=EB=EC,若∠D=50°,则∠AEC的度数是()A.90°B.95°C.100°D.110°10.(2023春·江苏·八年级专题练习)如图,在△ABC中,∠ACB=90°,M、N分别是AB、AC的中点,延BC.连接DM、DN、MN.若AB=6,则DN的长为()长BC至点D,使CD=12A.1B.2C.3D.411.(2022春·黑龙江哈尔滨·八年级校考阶段练习)如图,BD为平行四边形ABCD的对角线,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE、BF相交于H,直线BF交线段AD的延长线于G,下面结论:①BD=BE;②∠A=∠BHE;③AB=BH;④∠BHD=∠BDG;其中正确的个数是( )A.1B.2C.3D.412.(2023秋·浙江宁波·八年级校考期末)如图,分别以直角三角形的三边向外作等边三角形,然后将较小的两个等边△AFG和△BDE放在最大的等边△ABC内(如图),DE与FG交于点P,连结AP,FE.欲求△GEC 的面积,只需要知道下列哪个三角形的面积即可( )A.△APG B.△ADP C.△DFP D.△FEG13.(2023春·八年级课时练习)如图,在四边形ABCD中,AB∥CD,∠B=∠D,点E为BC延长线上一点,连接AC、AE,AE交CD于点H,∠DCE的平分线交AE于点G.若AB=2AD=10,点H为CD的中点,HE=6,则AC的长为( )A.9B C.10D.14.(2023秋·山东东营·八年级统考期末)如图,平行四边形ABCD的对角线AC、BD交于点O,DE平分∠ADCAB,连接OE.下列结论:①S▱ABCD=AD⋅BC;②DB平分∠CDE;③交AB于点E,∠BCD=60°,AD=12AO=DE;④OE垂直平分BD.其中正确的个数有()A.1个B.2个C.3个D.4个15.(2023春·八年级课时练习)如图,△ABC的面积为1.第一次操作:分别延长AB,BC,CA至点A1,B1,C1,使A1B=AB,B1C=BC,C1A=CA,顺次连接A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2;使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连接A2,B2,C2,得到△A2B2C2,…按此规律,要使得到的三角形的面积超过2021,最少经过()次操作.A.2B.3C.4D.516.(2023春·全国·八年级专题练习)如图,在平行四边形ABCD中,∠BCD=30°,BC=4,CD=M 是AD边的中点,点N是AB边上的一个动点.将△AMN沿MN所在的直线翻折到△A′MN,连接A′C.则线段A′C长度的最小值为()A.5B.7C.D.17.(2023春·八年级单元测试)如图所示,在△ABC中,已知点D,E,F,G分别为边BC,AD,CE,BE的中点,且S△ABC=8cm2,则S阴影=()A.2cm2B.1cm2C.0.5cm2D.0.25cm218.(2023春·八年级课时练习)如图,在▱ABCD中,∠BCD=60°,DC=6,点E、F分别在AD,BC上,将,则B′F的值为()四边形ABFE沿EF折叠得四边形A′B′FE,A′E恰好垂直于AD,若AE=52DA.3B.C.−1219.(2023春·八年级课时练习)如图,四边形ABCD中.AC⊥BC,AD∥BC,BD为∠ABC的平分线,BC=3,AC=4,E,F分别是BD,AC的中点,则EF的长为( )A.1B.1.5C.2D.2.520.(2022春·江西赣州·八年级校考阶段练习)如图,Rt△ABC中,BC=∠ACB=90°,∠A=30°,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连接B E1交C D1于D2;过D2作D2E2⊥AC于E2,连接B E2交C D1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点E4、E5、…、E2013,分别记△BC E1、△BC E2、△BC E3、…、△BC E2013的面积为S1、S2、S3、…、S2013.则S2013的大小为()A B C D.4671二、填空题21.(2023春·湖北武汉·八年级武汉外国语学校(武汉实验外国语学校)校考阶段练习)如图,▱ABCD,∠C 的平分线交AB于点E,交DA延长线于点F,且AE=3cm,EB=5cm,则▱ABCD的周长为______ .22.(2022春·浙江杭州·八年级校考期中)在▱ABCD中,BE,CF分别平分∠ABC,∠BCD,交AD于点E,F,若AD=6,EF=2,则AB的长为______.23.(2022秋·山东济宁·八年级济宁学院附属中学校考期末)如图,在四边形ABCD中,AD∥BC,AD=12 cm,BC=18cm,点P在AD边上以每秒3cm的速度从点A向点D运动,点Q在BC边上,以每秒2cm的速度从点C向点B运动.若P、Q同时出发,当直线PQ在四边形ABCD内部截出一个平行四边形时.点P运动了_____秒.24.(2022秋·山东泰安·八年级统考期末)如图,△A1B1C1中,A1B1=4,A1C1=5,B1C1=7.点A2、B2、C2分别是边B1C1、A1C1、A1B1的中点;点A3、B3、C3分别是边B2C2、A2C2、A2B2的中点;…;以此类推,则第2022个三角形的周长是________.25.(2023春·八年级单元测试)如图,平行四边形ABCD的对角线AC和BD相交于点O,EF过点O与AD、BC 相交于点E、F,若AB=5,BC=6,OF=2,那么四边形ABFE的周长是______.26.(2022春·江苏宿迁·八年级校考阶段练习)如图,矩形ABCD的边AB=4,BC=8,E是AD上一点,DE=2,F是BC上一动点,P、Q分别是EF、AE的中点,则PE+PQ的最小值为_____.27.(2022春·山西晋城·八年级统考期末)如图,点A,B,C的坐标分别是0,2,2,2,0,−1,在平面直角坐标系内有一点D,使以A,B,C,D为顶点的四边形是平行四边形,那么点D的坐标是________.28.(2021春·浙江宁波·八年级校考期中)如图,△ABC边长分别为AB=14,BC=16,AC=26.P为∠A的平分线AD上一点,且BP⊥AD,M为BC的中点,则PM的值是__________.29.(2023春·湖北武汉·八年级武汉外国语学校(武汉实验外国语学校)校考阶段练习)如图,平行四边形ABCD中,∠ABC=60°,AB=2,BC=6,P为边AD上的一动点,则PC的最小值等于______.30.(2022·全国·八年级专题练习)如图,△APB中,AB=4,∠APB=90°,在AB的同侧作正△ABD、正△APE和正△BPC,则四边形PCDE面积的最大值是______________.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级(下)特殊平行四边形培优一.选择题(共13小题)1.(2014•达州)如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=( )A.90°﹣αﻩB.90°+αﻩC.ﻩD.360°﹣α2.(2012•河南模拟)如图,DE是△ABC的中位线,F是DE的中点,CF的延长线交AB于点G,则S△CEF:S△DGF等于()A.2:1B.3:1 C.4:1 D.5:13.(2005•湖州)如图,在等边△ABC中,M、N分别是边AB,AC的中点,D为MN上任意一点,BD,CD的延长线分别交于AB,AC于点E,F.若=6,则△ABC的边长为( )A.B.C.ﻩD.14.(2002•无锡)已知:四边形ABCD中,AB=2,CD=3,M、N分别是AD,BC的中点,则线段MN的取值范围是()A.1<MN<5ﻩB.1<MN≤5 C.<MN< D.<MN≤5.(2015•鄂州)在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B 、A3B3C3D3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、3E4、C3…在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…则正方形A2015B2015C2015D2015的边长是()A.()2014B.()2015ﻩC.()2015 D.()20146.(2013•渝中区校级模拟)如图,矩形ABCD中,BC=2AB,对角线相交于O,过C点作CE ⊥BD交BD于E点,H为BC中点,连接AH交BD于G点,交EC的延长线于F点,下列5个结论:①EH=AB;②∠ABG=∠HEC;③△ABG≌△HEC;④S△GAD=S四边形GHCE;⑤C F=BD.正确的有()个.A.2ﻩB.3ﻩC.4ﻩD.57.(2012•重庆模拟)如图,正方形ABCD中,点E是对角线BD上一点,点F是边BC上一点,点G是边CD上一点,BE=2ED,CF=2BF,连接AE并延长交CD于G,连接AF、EF、FG.给出下列五个结论:①DG=GC;②∠FGC=∠AGF;③S△ABF=S△FCG;④AF=EF;⑤∠AFB=∠AEB.其中正确结论的个数是()A.5个B.4个ﻩC.3个 D.2个8.(2012•鹿城区校级二模)如图,在正方形ABCD中,四边形IJFH是正方形,面积为S ,四边形BEFG是矩形,面积为S2,下列说法正确的是()1A.S1>S2ﻩB.S1=S2ﻩC.S1<S2ﻩD.2S1=3S29.(2011•承德县一模)如图,在矩形ABCD中,AB=3,AD=4,点P在AB上,PE⊥AC 于E,PF⊥BD于F,则PE+PF等于()A.ﻩB.ﻩC. D.10.(2011•瑞安市校级一模)如图,E,F分别是矩形ABCD边AD、BC上的点,且△ABG,△DCH的面积分别为15和20,则图中阴影部分的面积为( )A.15ﻩB.20ﻩC.35ﻩD.4011.(2011春•内江期末)如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接EF给出下列五个结论:①AP=EF;②AP⊥EF;③△AP D一定是等腰三角形;④∠PFE=∠BAP;⑤PD=2EC.其中有正确结论的个数是()A.2个ﻩB.3个C.4个ﻩD.5个12.(2010•盘锦)已知如图,矩形ABCD中AB=4cm,BC=3cm,点P是AB上除A,B 外任一点,对角线AC,BD相交于点O,DP,CP分别交AC,BD于点E,F且△ADE和BCF 的面积之和4cm2,则四边形PEOF的面积为( )A.1cm2B.1.5cm2C.2cm2ﻩD.2.5cm213.(1997•内江)如图,四边形ABCD和MNPQ都是边长为a的正方形,点A是MNPQ的中心(即两条对角线MP和NQ的交点),点E是AB与MN的交点,点F是NP与AD的交点,则四边形AENF的面积是()A.ﻩB.ﻩC.ﻩD.二.填空题(共17小题)14.(2015•广州)如图,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为.15.(2015•无锡)已知:如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=BE=6,则AC的长等于.16.(2014•安徽)如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是 .(把所有正确结论的序号都填在横线上)①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.17.(2013•乌鲁木齐)如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=5,AC=2,则DF的长为.18.(2013•南岗区校级一模)如图,AD、BE为△ABC的中线交于点O,∠AOE=60°,OD=,OE=,则AB= .19.(2012•枣庄)如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若A B=5,BC=8,则EF的长为 .20.(2015•凉山州)菱形0BCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为 .21.(2015•天水)正方形OA1B1C1、A1A2B2C2、A2A3B3C3,按如图放置,其中点A1、A2、A 在x轴的正半轴上,点B1、B2、B3在直线y=﹣x+2上,则点A3的坐标为. 322.(2015•潮南区一模)如图所示,如果以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以AE为边作第三个正方形AEGM,…已知正方形ABCD的面积S1=1,按上述方法所作的正方形的面积依次为S2,S3,…Sn(n为正整数),那么第8个正方形面积S8= .23.(2014•南岗区二模)如图,正方形ABCD的对角线AC、BD相交于点O,∠CAB的平分线交BD于点E,交BC于点F.若OE=1,则CF=.24.(2013•德州)如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F 分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的序号是(把你认为正确的都填上).25.(2013•广安区校级模拟)如图,在菱形ABCD中,∠A=60°,E、F分别是AB,AD 的中点,DE、BF相交于点G,连接BD,CG.有下列结论,其中正确的有(填正确结论的序号).①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④S△ABD=AB2.26.(2013•金城江区一模)如图,点P是矩形ABCD的边AD的一个动点,矩形的两条边AB、BC的长分别为3和4,那么点P到矩形的两条对角线AC和BD的距离之和是.27.(2013•锡山区校级三模)如图,矩形ABCD中,点E,F,G,H分别在边AB,BC,CD,DA上,点P在矩形ABCD内.若AB=4cm,BC=6cm,AE=CG=3cm,BF=DH=4cm,四边形AEP H的面积为5cm2,则四边形PFCG的面积为cm2.28.(2013•成都模拟)将n个边长都为1cm的正方形按如图所示的方法摆放,点A1、A2…A n分别是各正方形的中心,则n个这样的正方形重叠部分(阴影部分)的面积的和为cm2.29.(2013•郑州模拟)如图,在平面直角坐标系中,正方形ABCD顶点A的坐标为(0,2),B点在x轴上,对角线AC,BD交于点M,OM=,则点C的坐标为.参考答案与试题解析一.选择题(共13小题)1.(2014•达州)如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A.90°﹣αﻩB.90°+αﻩC.ﻩD.360°﹣α【解答】解:∵四边形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,∵PB和PC分别为∠ABC、∠BCD的平分线,∴∠PBC+∠PCB=(∠ABC+∠BCD)=(360°﹣α)=180°﹣α,则∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣α)=α.故选:C.2.(2012•河南模拟)如图,DE是△ABC的中位线,F是DE的中点,CF的延长线交AB于点G,则S△CEF:S△DGF等于()A.2:1ﻩB.3:1ﻩC.4:1ﻩD.5:1【解答】解:如图,取CG的中点H,连接EH,∵E是AC的中点,∴EH是△ACG的中位线,∴EH∥AD,∴∠GDF=∠HEF,∵F是DE的中点,∴DF=EF,在△DFG和△EFH中,,∴△DFG≌△EFH(ASA),∴FG=FH,S△EFH=S△DGF,又∵FC=FH+HC=FH+GH=FH+FG+FH=3FH,∴S△EFC=3S△EFH,∴S△EFC=3S△DGF,因此,S△CEF:S△DGF=3:1.故选B.3.(2005•湖州)如图,在等边△ABC中,M、N分别是边AB,AC的中点,D为MN上任意一点,BD,CD的延长线分别交于AB,AC于点E,F.若=6,则△ABC的边长为()A.ﻩB.C.D.1【解答】解:过点A作直线PQ∥BC,延长BD交PQ于点P;延长CD,交PQ于点Q.∵PQ∥BC,∴△PQD∽△BCD,∵点D在△ABC的中位线上,∴△PQD与△BCD的高相等,∴△PQD≌△BCD,∴PQ=BC,∵AE=AC﹣CE,AF=AB﹣BF,在△BCE与△PAE中,∠PAE=∠ACB,∠APE=∠CBE,∴△BCE∽△PAE,=…①同理:△CBF∽△QAF,=…②①+②,得:+=.∴+=3,又∵=6,AC=AB,∴△ABC的边长=.故选C.4.(2002•无锡)已知:四边形ABCD中,AB=2,CD=3,M、N分别是AD,BC的中点,则线段MN的取值范围是()A.1<MN<5ﻩB.1<MN≤5ﻩC.<MN<ﻩD.<MN≤【解答】解:连接BD,过M作MG∥AB,连接NG.∵M是边AD的中点,AB=2,MG∥AB,∴MG是△ABD的中位线,BG=GD,MG=AB=×2=1;∵N是BC的中点,BG=GD,CD=3,∴NG是△BCD的中位线,NG=CD=×3=,在△MNG中,由三角形三边关系可知NG﹣MG<MN<MG+NG,即﹣1<MN<+1,∴<MN<,当MN=MG+NG,即MN=时,四边形ABCD是梯形,故线段MN长的取值范围是<MN≤.故选D.5.(2015•鄂州)在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A3B3C3D3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…则正方形A2015B2015C2015D2015的边长是()A.()2014ﻩB.()2015C.()2015ﻩD.()2014【解答】方法一:解:如图所示:∵正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D1E1=C1D1sin30°=,则B2C2=()1,同理可得:B3C3==()2,故正方形AnB nCn D n的边长是:()n﹣1.则正方形A2015B2015C2015D2015的边长是:()2014.故选:D.方法二:∵正方形A1B1C1D1的边长为1,∠B1C1O=60°,∴D1E1=B2E2=,∵B1C1∥B2C2∥B3C3…∴∠E2B2C2=60°,∴B2C2=,同理:B3C3=×=…∴a1=1,q=,∴正方形A2015B2015C2015D2015的边长=1×.6.(2013•渝中区校级模拟)如图,矩形ABCD中,BC=2AB,对角线相交于O,过C点作CE⊥BD交BD于E点,H为BC中点,连接AH交BD于G点,交EC的延长线于F点,下列5个结论:①EH=AB;②∠ABG=∠HEC;③△ABG≌△HEC;④S△GAD=S四边形GHCE;⑤CF=BD.正确的有()个.A.2 B.3C.4D.5【解答】解:①在△BCE中,∵CE⊥BD,H为BC中点,∴BC=2EH,又BC=2AB,∴EH=AB,正确;②由①可知,BH=HE∴∠EBH=∠BEH,又∠ABG+∠EBH=∠BEH+∠HEC=90°,∴∠ABG=∠HEC,正确;③由AB=BH,∠ABH=90°,得∠BAG=45°,同理:∠DHC=45°,∴∠EHC>∠DHC=45°,∴△ABG≌△HEC,错误;④作AM⊥BD,则AM=CE,△AMD≌△CEB,∵AD∥BC,∴△ADG∽△HGB,∴=2,即△ABG的面积等于△BGH的面积的2倍,根据已知不能推出△AMG的面积等于△ABG的面积的一半,即S△GAD≠S四边形GHCE,∴④错误⑤∠ECH=∠CHF+∠F=45°+∠F,又∠ECH=∠CDE=∠BAO,∠BAO=∠BAH+∠HAC,∴∠F=∠HAC,∴CF=BD,正确.正确的有三个.故选B.7.(2012•重庆模拟)如图,正方形ABCD中,点E是对角线BD上一点,点F是边BC上一点,点G是边CD上一点,BE=2ED,CF=2BF,连接AE并延长交CD于G,连接AF、EF、FG.给出下列五个结论:①DG=GC;②∠FGC=∠AGF;③S△ABF=S△FCG;④AF=EF;⑤∠AFB=∠AEB.其中正确结论的个数是()A.5个B.4个ﻩC.3个ﻩD.2个【解答】解:①∵BE=2DE∴=∴∵AB=CD∴DG=CD∴DG=CG故本选项正确②设BF=1,则CF=2,AB=AD=3,DG=CG=,过点E作AB的平行线,交AD于M,交BC于N,可得四边形MNCD是矩形,△AME∽△ADG,且相似比为,∵AD=3,∴AM=2,DM=1,NC=1,则BN=BC﹣NC=2,FN=BN﹣BF=1,∵MD∥BN,∴△MDE∽NBE,且相似比,∴ME=1,EN=2,在Rt△EFN中,EF==,在Rt△AME中,AE==,在Rt△ABF中,AF=,∴AE2+EF2=AF2,∴∠AEF=90°,∵AG==∴EG=,∴tan∠AGF==2,又tan∠FGC=,∴∠FGC≠∠AGF,故本选项错误③∵×=∴S△ABF=SFCG故本选项正确④连接EC,过E点作EH⊥BC,垂足为H,由②可知AF=,∵BE=2ED,∴BH=2HC,EH=CD=2,又∵CF=2BF,∴H为FC的中点,FH=1,∴在Rt△HEF中:∵EF===AF=∴AF=EF故本选项正确.⑤过A点作AO⊥BD,垂足为O,∵,∴Rt△ABF∽Rt△AOE,∴∠AFB=∠AEB.故本选项正确.故选B.8.(2012•鹿城区校级二模)如图,在正方形ABCD中,四边形IJFH是正方形,面积为S1,四边形BEFG是矩形,面积为S2,下列说法正确的是()A.S1>S2ﻩB.S1=S2ﻩC.S1<S2D.2S1=3S2【解答】解:∵AC是正方形ABCD的对角线,∴∠BAC=∠DAC=∠ACB=∠ACD=45°,∵四边形IJFH是正方形,四边形BEFG是矩形,∴∠AJI=∠CFH=AEF=∠CGF=90°,∴△AIJ、△AEF、△CFH、△CFG都是等腰直角三角形,设JF=x,则S1=x2,根据等腰直角三角形的性质,EF=AF=×2x=x,FG=FC=x,所以S2=EF•FG=x•x=x2,所以S1=S2.故选B.9.(2011•承德县一模)如图,在矩形ABCD中,AB=3,AD=4,点P在AB上,PE⊥A C于E,PF⊥BD于F,则PE+PF等于()A.ﻩB.ﻩC.ﻩD.【解答】解:设AP=x,PB=3﹣x.∵∠EAP=∠EAP,∠AEP=∠ABC;∴△AEP∽△ABC,故=①;同理可得△BFP∽△DAB,故=②.①+②得=,∴PE+PF=.故选B.10.(2011•瑞安市校级一模)如图,E,F分别是矩形ABCD边AD、BC上的点,且△ABG,△DCH的面积分别为15和20,则图中阴影部分的面积为()A.15B.20C.35 D.40【解答】解:连接EF,∵S△ABF=S△EBF∴S△EFG=S△ABG=15;同理:S△EFH=S△DCH=20∴S阴影=S△EFG+S△DCH=15+20=35.故选C.11.(2011春•内江期末)如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF ⊥CD于点F,连接EF给出下列五个结论:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤PD=2EC.其中有正确结论的个数是()A.2个ﻩB.3个ﻩC.4个 D.5个【解答】解:延长FP交AB于点N,延长AP交EF于点M.∵四边形ABCD是正方形.∴∠ABP=∠CBD又∵NP⊥AB,PE⊥BC,∴四边形BNPE是正方形,∠ANP=∠EPF,∴NP=EP,∴AN=PF在△ANP与△FPE中,∵,∴△ANP≌△FPE(SAS),∴AP=EF,∠PFE=∠BAP(故①④正确);△APN与△FPM中,∠APN=∠FPM,∠NAP=∠PFM∴∠PMF=∠ANP=90°∴AP⊥EF,(故②正确);P是BD上任意一点,因而△APD是等腰三角形和PD=2EC不一定成立,(故③⑤错误); 故正确的是:①②④.故选:B.12.(2010•盘锦)已知如图,矩形ABCD中AB=4cm,BC=3cm,点P是AB上除A,B外任一点,对角线AC,BD相交于点O,DP,CP分别交AC,BD于点E,F且△ADE和BCF的面积之和4cm2,则四边形PEOF的面积为( )A.1cm2ﻩB.1.5cm2C.2cm2 D.2.5cm2【解答】解:已知矩形ABCD,∴△APD的面积+△BPC的面积=矩形ABCD的面积﹣△CPD的面积=4×3﹣×4×3=6(cm2),∴△AEP的面积+△BFP的面积=(△APD的面积+△BPC的面积)﹣△ADE和BCF的面积之和=6﹣4=2(cm2),已知矩形ABCD,∴△AOB的面积=×4×(3×)=3(cm2),∴四边形PEOF的面积=△AOB的面积﹣(△AEP的面积+△BFP的面积)=3﹣2=1(cm 2).故选A.13.(1997•内江)如图,四边形ABCD和MNPQ都是边长为a的正方形,点A是MNPQ 的中心(即两条对角线MP和NQ的交点),点E是AB与MN的交点,点F是NP与AD的交点,则四边形AENF的面积是()A.ﻩB.C.ﻩD.【解答】解:连接AP,AN,点A是正方形的对角线的交点,则AP=AN,∠APF=∠ANE=45°,∵∠PAF+∠FAN=∠FAN+∠NAE=90°,∴∠PAF=∠NAE,∴△PAF≌△NAE,∴四边形AENF的面积等于△NAP的面积,而△NAP的面积是正方形的面积的,正方形的面积为a2,∴四边形AENF的面积为;故选A二.填空题(共17小题)14.(2015•广州)如图,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为3.【解答】解:∵ED=EM,MF=FN,∴EF=DN,∴DN最大时,EF最大,∵N与B重合时DN最大,此时DN=DB==6,∴EF的最大值为3.故答案为3.15.(2015•无锡)已知:如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=BE=6,则AC的长等于.【解答】解:过D点作DF∥BE,∵AD是△ABC的中线,AD⊥BE,∴F为EC中点,AD⊥DF,∵AD=BE=6,则DF=3,AF==3,∵BE是△ABC的角平分线,AD⊥BE,∴△ABG≌△DBG,∴G为AD中点,∴E为AF中点,∴AC=AF=×3=.故答案为:.16.(2014•安徽)如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E 在线段AB上,连接EF、CF,则下列结论中一定成立的是①②④ .(把所有正确结论的序号都填在横线上)①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.【解答】解:①∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=∠BCD,故此选项正确;延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FM,故②正确;③∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,∴S△BEC<2S△EFC故S△BEC=2S△CEF错误;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故此选项正确.故答案为:①②④.17.(2013•乌鲁木齐)如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=5,AC=2,则DF的长为.【解答】解:延长CF交AB于点G,∵AE平分∠BAC,∴∠GAF=∠CAF,∵AF垂直CG,∴∠AFG=∠AFC,在△AFG和△AFC中,∵,∴△AFG≌△AFC(ASA),∴AC=AG,GF=CF,又∵点D是BC中点,∴DF是△CBG的中位线,∴DF=BG=(AB﹣AG)=(AB﹣AC)=.故答案为:.18.(2013•南岗区校级一模)如图,AD、BE为△ABC的中线交于点O,∠AOE=60°,O D=,OE=,则AB= 7 .【解答】解:如图,过点E作EF⊥AD于F,连接DE,∵∠AOE=60°,∴∠OEF=90°﹣60°=30°,∵OE=,∴OF=OE=×=,在Rt△OEF中,EF===,∵OD=,∴DF=OD+OF=+=,在Rt△DEF中,DE===,∵AD、BE为△ABC的中线,∴DE是△ABC的中位线,∴AB=2DE=2×=7.故答案为:7.19.(2012•枣庄)如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若A B=5,BC=8,则EF的长为.【解答】解:∵∠AFB=90°,D为AB的中点,∴DF=AB=2.5,∵DE为△ABC的中位线,∴DE=BC=4,∴EF=DE﹣DF=1.5,故答案为:1.5.20.(2015•凉山州)菱形0BCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为().【解答】解:连接ED,如图,∵点B关于OC的对称点是点D,∴DP=BP,∴ED即为EP+BP最短,∵四边形OBCD是菱形,顶点B(2,0),∠DOB=60°,∴点D的坐标为(1,),∴点C的坐标为(3,),∴可得直线OC的解析式为:y=x,∵点E的坐标为(0,﹣1),∴可得直线ED的解析式为:y=(1+)x﹣1,∵点P是直线OC和直线ED的交点,∴点P的坐标为方程组的解,解方程组得:,所以点P的坐标为(),故答案为:().21.(2015•天水)正方形OA1B1C1、A1A2B2C2、A2A3B3C3,按如图放置,其中点A1、A2、A在x轴的正半轴上,点B1、B2、B3在直线y=﹣x+2上,则点A3的坐标为(,0).3【解答】解:设正方形OA1B1C1的边长为t,则B1(t,t),所以t=﹣t+2,解得t=1,得到B1(1,1);设正方形A1A2B2C2的边长为a,则B2(1+a,a),a=﹣(1+a)+2,解得a=,得到B2(,);设正方形A2A3B3C3的边长为b,则B3(+b,b),b=﹣(+b)+2,解得b=,得到B3(,),所以A3(,0).故答案为(,0).22.(2015•潮南区一模)如图所示,如果以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以AE为边作第三个正方形AEGM,…已知正方形ABCD的面积S1=1,按上述方法所作的正方形的面积依次为S2,S3,…S n(n为正整数),那么第8个正方形面积S8= 128 .【解答】解:根据题意可得:第n个正方形的边长是第(n﹣1)个的倍;故面积是第(n﹣1)个的2倍,已知第一个面积为1;则那么第8个正方形面积S8=27=128.故答案为128.23.(2014•南岗区二模)如图,正方形ABCD的对角线AC、BD相交于点O,∠CAB的平分线交BD于点E,交BC于点F.若OE=1,则CF=2.【解答】解:作EG⊥AB于G,根据角平分线的性质可得,EG=OE=1,又BD平分∠ABC,则∠ABE=45°∴△EBG是等腰直角三角形,可得BE=,则OB=1+,可得BC=2+又∠AFB=90°﹣∠FAB,∠FEB=∠OEA=90°﹣∠FAC,∴∠AFB=∠FEB∴BF=BE=则CF=BC﹣BF=2+﹣=2.24.(2013•德州)如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的序号是①②④(把你认为正确的都填上).【解答】解:∵四边形ABCD是正方形,∴AB=AD,∵△AEF是等边三角形,∴AE=AF,在Rt△ABE和Rt△ADF中, ,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=DC,∴BC﹣BE=CD﹣DF,∴CE=CF,∴①说法正确;∵CE=CF,∴△ECF是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=75°,∴②说法正确;如图,连接AC,交EF于G点,∴AC⊥EF,且AC平分EF,∵∠CAF≠∠DAF,∴DF≠FG,∴BE+DF≠EF,∴③说法错误;∵EF=2,∴CE=CF=,设正方形的边长为a,在Rt△ADF中,AD2+DF2=AF2,即a2+(a﹣)2=4,解得a=,则a2=2+,S正方形ABCD=2+,④说法正确,故答案为:①②④.25.(2013•广安区校级模拟)如图,在菱形ABCD中,∠A=60°,E、F分别是AB,AD的中点,DE、BF相交于点G,连接BD,CG.有下列结论,其中正确的有①②(填正确结论的序号).①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④S△ABD=AB2.【解答】解:①由菱形的性质可得△ABD、BDC是等边三角形,∠DGB=∠GBE+∠GEB=30°+90°=120°,故①正确;②∵∠DCG=∠BCG=30°,DE⊥AB,∴可得DG=CG(30°角所对直角边等于斜边一半)、BG=CG,故可得出BG+DG=CG,即②也正确;③首先可得对应边BG≠FD,因为BG=DG,DG>FD,故可得△BDF不全等△CGB,即③错误;④S△ABD=AB•DE=AB•(BE)=AB•AB=AB2,即④不正确.综上可得①②正确,共2个.故答案为①②.26.(2013•金城江区一模)如图,点P是矩形ABCD的边AD的一个动点,矩形的两条边A B、BC的长分别为3和4,那么点P到矩形的两条对角线AC和BD的距离之和是.【解答】解:过P点作PE⊥AC,PF⊥BD,∵四边形ABCD是矩形,∴AD⊥CD,∴△PEA∽△CDA,∴,∵AC=BD==5,∴…①,同理:△PFD∽△BAD,∴,∴…②,∴①+②得:,∴PE+PF=,即点P到矩形的两条对角线AC和BD的距离之和是:.故答案为:.27.(2013•锡山区校级三模)如图,矩形ABCD中,点E,F,G,H分别在边AB,BC,CD,DA上,点P在矩形ABCD内.若AB=4cm,BC=6cm,AE=CG=3cm,BF=DH=4cm,四边形AEPH的面积为5cm2,则四边形PFCG的面积为8 cm2.【解答】解:连接AP,CP,设△AHP在AH边上的高为x,△AEP在AE边上的高为y. 则△CFP在CF边上的高为4﹣x,△CGP在CG边上的高为6﹣y.∵AH=CF=2cm,AE=CG=3cm,∴S四边形AEPH=S△AHP+S△AEP.=AH×x×+AE×y×=2x×+3y×=5cm22x+3y=10S四边形PFCG=S△CGP+S△CFP=CF×(4﹣x)×+CG×(6﹣y)×=2(4﹣x)×+3(6﹣y)×=(26﹣2x﹣3y)×=(26﹣10)×=8cm2.故答案为8.28.(2013•成都模拟)将n个边长都为1cm的正方形按如图所示的方法摆放,点A1、A2…An分别是各正方形的中心,则n个这样的正方形重叠部分(阴影部分)的面积的和为cm2.【解答】解:由题意可得阴影部分面积等于正方形面积的,即是,5个这样的正方形重叠部分(阴影部分)的面积和为×4,n个这样的正方形重叠部分(阴影部分)的面积和为×(n﹣1)=cm2.故答案为:.29.(2013•郑州模拟)如图,在平面直角坐标系中,正方形ABCD顶点A的坐标为(0,2),B点在x轴上,对角线AC,BD交于点M,OM=,则点C的坐标为(6,4) .【解答】解:过点C作CE⊥x轴于点E,过点M作MF⊥x轴于点F,连结EM,∴∠MFO=∠CEO=∠AOB=90°,AO∥MF∥CE,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,AM=CM,∴∠OAB=∠EBC,OF=EF,∴MF是梯形AOEC的中位线,∴MF=(AO+EC),∵MF⊥OE,∴MO=ME.∵在△AOB和△BEC中,,∴△AOB≌△BEC(AAS),∴OB=CE,AO=BE.∴MF=(BE+OB),又∵OF=FE,∴△MOE是直角三角形,∵MO=ME,∴△MOE是等腰直角三角形,∴OE==6,∴A(0,2),∴OA=2,∴BE=2,∴OB=CE=4.∴C(6,4).故答案为:(6,4).30.(2013•荣成市模拟)如图,在正方形ABCD中,AB=1,E、F分别是BC、CD边上点,若CE=CB,CF=CD,则图中阴影部分的面积是.【解答】解:延长GE到M,使GE=EM,连接CG、CM、BM,过C作CN⊥DE于N,∵E为BC中点,∴BE=EC=,在△BEG和△CEM中∴△BEG≌△CEM(SAS),∴S△BEG=S△CEM,∵E、F分别为BC、CD中点,∴DG:EG=2:1,∴GM=DG=2EG,∴S△MGC=S△DGC,∴S△DMC=2S△DGC=2×S△DEC,∵S△DEC=×1×=,∴S△DMC=,∴阴影部分的面积S=S正方形ABCD﹣S△DMC=1×1﹣=,故答案为:.。

相关文档
最新文档