数学建模定性分析方法解析

合集下载

数学建模各种分析方法

数学建模各种分析方法

现代统计学1.因子分析(Factor Analysis)因子分析的基本目的就是用少数几个因子去描述许多指标或因素之间的联系,即将相关比较密切的几个变量归在同一类中,每一类变量就成为一个因子(之所以称其为因子,是因为它是不可观测的,即不是具体的变量),以较少的几个因子反映原资料的大部分信息.运用这种研究技术,我们可以方便地找出影响消费者购买、消费以及满意度的主要因素是哪些,以及它们的影响力(权重)运用这种研究技术,我们还可以为市场细分做前期分析。

2.主成分分析主成分分析主要是作为一种探索性的技术,在分析者进行多元数据分析之前,用主成分分析来分析数据,让自己对数据有一个大致的了解是非常重要的.主成分分析一般很少单独使用:a,了解数据。

(screening the data),b,和cluster analysis一起使用,c,和判别分析一起使用,比如当变量很多,个案数不多,直接使用判别分析可能无解,这时候可以使用主成份发对变量简化。

(reduce dimensionality)d,在多元回归中,主成分分析可以帮助判断是否存在共线性(条件指数),还可以用来处理共线性。

主成分分析和因子分析的区别1、因子分析中是把变量表示成各因子的线性组合,而主成分分析中则是把主成分表示成个变量的线性组合。

2、主成分分析的重点在于解释个变量的总方差,而因子分析则把重点放在解释各变量之间的协方差。

3、主成分分析中不需要有假设(assumptions),因子分析则需要一些假设。

因子分析的假设包括:各个共同因子之间不相关,特殊因子(specific fact or)之间也不相关,共同因子和特殊因子之间也不相关.4、主成分分析中,当给定的协方差矩阵或者相关矩阵的特征值是唯一的时候,的主成分一般是独特的;而因子分析中因子不是独特的,可以旋转得到不同的因子。

5、在因子分析中,因子个数需要分析者指定(spss根据一定的条件自动设定,只要是特征值大于1的因子进入分析),而指定的因子数量不同而结果不同。

数学建模定性分析方法解析

数学建模定性分析方法解析

定性研究数据采集定量研究往往具有足够样本量支持,丰富的统计分析技术,可以得出具有一定代表性的结论,但对于某个问题消费者为何如此回答,其所给解释是否是其真实想法,这样的问题便显得有些束手无策了。

相对而言,定性技术对数理性的要求低一些,但对消费者动机的深层挖掘要求却更高,更具针对性,因而与定量研究形成互补。

常规定性研究的方法主要是个别深度访谈与座谈会访谈。

其中深度访谈是深层次地挖掘个体的表现特征与背后的原因,而座谈会是利用几个人一起进行头脑风暴(brainstorming)的优势,相互激发、相互启迪,从而挖掘出深层次的原因。

座谈会(FDG)座谈会的成功依赖于两个系统,一个是主持人培训系统,一个是被访者约访系统。

华通现代建立起专职主持人与研究员水平主持人两个体系。

一方面保持几个专职主持人,以利于他们不断提高公司在座谈会主持方面的技术水平,适应一些难度非常大的主持项目;另一方面又更鼓励一部分研究人员掌握主持技巧,完成常规项目中必须的座谈会需求。

专职主持人的特点是主持技巧水平较高,缺点是研究设计、分析能力弱。

必须要研究人员与主持人的高度配合才能够拿出高水平的研究报告。

研究员水平的主持人对于一些特别复杂的技巧没有专职主持人那么强,但由于自己完全参与项目设计、数据分析、报告撰写等过程,容易对消费者有特别深入的理解、对数据的理解也会有独到的方面,比较容易出好的研究报告。

深层访谈(In-depth Interview)深访是一种无结构的、直接的、一对一的访问,在访问过程中,由掌握高级访谈技巧的调查员对调查对象进行深入的访谈,用以揭示对某一问题的潜在动机、态度和情感,此方法最适合于做探测性调查。

深层访谈的优点是更能深入地了解被调查者的内心想法和态度;便于对一些保密性、敏感性问题进行调查;能够自由地交换信息,常常会取得一些意外的资料。

缺点是调查的无结构性使得这种方法首调查员自身素质高低的影响很大;深层访谈结果的数据常难以解释和分析;这种访问的时间长,需要的经费较多,使该法在实际应用中受到一定的限制。

MathematicalModeling理论建模及实际应用

MathematicalModeling理论建模及实际应用

MathematicalModeling理论建模及实际应用数学建模(Mathematical Modeling)是一种将实际问题转化为数学问题,并通过数学方法对问题进行分析和解决的方法。

它既是数学的一种应用,也是一种研究问题并解决问题的工具。

数学建模在各个领域都有广泛的应用,如物理学、经济学、生物学、环境科学等等。

本文将从理论建模和实际应用两个方面来介绍数学建模的基本概念、方法以及一些实际应用案例。

在数学建模中,理论建模是首要的一步。

理论建模是指对实际问题进行分析和抽象,从中提取出数学模型的基本要素和关系。

对于一个复杂的实际问题,我们需要通过对问题的认识和理解,找出其中的关键因素和变量,并确定它们之间的数学关系。

这些关系可以是线性的、非线性的、离散的或连续的,可以用代数方程、微分方程、差分方程或概率统计等形式来表示。

理论建模需要深入地了解问题的背景和相关领域的知识,同时还需要灵活运用数学方法和工具来描述问题和解决问题。

数学建模的方法主要包括定性分析、定量分析和验证分析。

定性分析是指通过观察和分析问题的特征和特性,对问题进行描述和理解,找出问题的关键因素和变量,并确定它们之间的关系。

定量分析是指通过运用数学方法和工具,对问题进行计算和求解,得出问题的数值结果和解决方案。

验证分析是指对数学模型的有效性和可靠性进行检验和验证,通过与实际数据进行对比和比较,评估模型的拟合程度和预测能力。

这些方法相互补充和支持,共同构建了一个完整的数学建模流程。

数学建模在实际应用中有着广泛的应用。

以物理学为例,物理学中的很多问题都可以通过数学建模来解决。

比如,天体物理学中的行星运动、星系演化等问题可以通过数学建模来描述行星和星系的位置、速度和质量等参数,进而研究它们的运动规律和相互作用。

在经济学中,数学建模可以用来描述和分析经济系统中的供需关系、利润最大化、成本最小化等问题,从而指导经济政策和决策。

在生物学中,数学建模可以用来描述生物种群的增长、遗传变异、物种竞争等问题,为生态保护和资源管理提供科学依据。

数学建模常用各种检验方法

数学建模常用各种检验方法

数学建模常用各种检验方法数学建模是利用数学方法解决实际问题的过程。

在进行数学建模时,需要对模型的合理性进行检验,以确保模型的可靠性和准确性。

本文将介绍数学建模中常用的各种检验方法。

1.残差分析方法残差(residual)是指观测值与模型预测值之间的差异。

残差分析可以通过比较残差的大小、分布和形态,来检验模型的合理性。

常用的残差分析方法包括:正态性检验、稳定性检验、独立性检验和同方差性检验。

2.敏感性分析方法敏感性分析(sensitivity analysis)用于分析参数对模型结果的影响程度。

通过改变参数的值,并观察输出结果的变化,可以评估参数对模型的敏感性。

常用的敏感性分析方法包括:单参数敏感性分析、多参数敏感性分析和全局敏感性分析。

3.假设检验方法假设检验(hypothesis testing)用于判断模型的假设是否成立。

通过对模型的假设进行检验,可以评估模型的合理性和拟合优度。

常用的假设检验方法包括:t检验、F检验和卡方检验。

4.误差分析方法误差分析(error analysis)用于评估模型的误差水平。

通过比较实际观测值与模型预测值之间的误差,可以评估模型的准确性和精度。

常用的误差分析方法包括:平均绝对误差(MAE)、均方根误差(RMSE)和平均百分比误差(MAPE)。

5.稳定性分析方法稳定性分析(stability analysis)用于评估模型的稳定性和鲁棒性。

通过对模型进行参数扰动或输入扰动,并观察输出结果的变化,可以评估模型的稳定性和可靠性。

常用的稳定性分析方法包括:参数扰动分析、输入扰动分析和鲁棒性分析。

6.验证方法验证(validation)用于评估模型的预测能力和适用范围。

通过对模型进行验证,可以判断模型在不同情况下的预测效果和适用性。

常用的验证方法包括:留一验证(leave-one-out validation)、交叉验证(cross-validation)和外部验证(external validation)。

数学建模的相关问题求解方法

数学建模的相关问题求解方法

数学建模的相关问题求解方法:1.量纲分析法是在物理领域建立数学模型的一种方法,主要是依据物理定律的量纲齐次原则来确定个物理量之间的关系,量纲齐次原则是指一个有意义的物理方程的量纲必须一致的,也就是说方程的两边必须具有相同的量纲,即: dim左=dim右并且,方程中每一边的每一项都必须有相同的量纲。

例子见书《数学建模方法与实践》P17—P232.线性规划法线性规划法是运筹学的一个重要分支应用领域广泛。

从解决各种技术领域中的优化问题,到工农业生产、商业经济、交通运输、军事等的计划和管理及决策分析。

线性规划所解决的问题具有以下共同的特征:(1)每一个问题都有一组未知数(x1,x2,……,xn)表示某一方案;这些未知数的一组定值就代表一个具体方案。

由于实际问题的要求,通常这些未知数取值都是非负的。

(2)存在一定的限制条件(即约束条件),这些条件是关于未知数的一组线性等式或线性不等式来表示。

(3)有一个目标要求,称为目标函数。

目标函数可表示为一组未知数的线性函数。

根据问题的需要,要求目标函数实现最大化或最小化。

例子见书《数学建模方法与实践》P26—P303.0—1规划法用于解决指派问题,是线性规划的特殊情况。

例子见书《数学建模方法与实践》P314.图解法用于求解二维线性规划的一种几何方法,其方法步骤见书《数学建模方法与实践》P345.单纯形法也是一种求解线性规划的常用方法,其基本原理和方法见书《数学建模方法与实践》P37——P39,计算步骤P40。

6.非线性规划法在目标函数和(或)约束条件很难用线性函数表示时,如果目标函数或约束条件中,有一个或多个是变量的非线性函数,则称这种规划问题为非线规划问题。

例子见书《数学建模方法与实践》P44——P457.最短路及狄克斯特拉算法狄克斯特拉算法是图论中用于计算最短路的一种方法,详见书《数学建模方法与实践》P588.克罗斯克尔算法克罗斯克尔算法是用来求解一个连通的赋权图的最小生成树的方法,详见书《数学建模方法与实践》P599.普莱姆算法同上10.欧拉回路及弗洛来算法欧拉回路是指若存在一条回路。

2011全国大学生数学建模竞赛A题题目及参考答案

2011全国大学生数学建模竞赛A题题目及参考答案

2011高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题城市表层土壤重金属污染分析随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质量的影响日显突出。

对城市土壤地质环境异常的查证,以及如何应用查证获得的海量数据资料开展城市环境质量评价,研究人类活动影响下城市地质环境的演变模式,日益成为人们关注的焦点。

按照功能划分,城区一般可分为生活区、工业区、山区、主干道路区及公园绿地区等,分别记为1类区、2类区、……、5类区,不同的区域环境受人类活动影响的程度不同。

现对某城市城区土壤地质环境进行调查。

为此,将所考察的城区划分为间距1公里左右的网格子区域,按照每平方公里1个采样点对表层土(0~10 厘米深度)进行取样、编号,并用GPS记录采样点的位置。

应用专门仪器测试分析,获得了每个样本所含的多种化学元素的浓度数据。

另一方面,按照2公里的间距在那些远离人群及工业活动的自然区取样,将其作为该城区表层土壤中元素的背景值。

附件1列出了采样点的位置、海拔高度及其所属功能区等信息,附件2列出了8种主要重金属元素在采样点处的浓度,附件3列出了8种主要重金属元素的背景值。

现要求你们通过数学建模来完成以下任务:(1) 给出8种主要重金属元素在该城区的空间分布,并分析该城区内不同区域重金属的污染程度。

(2) 通过数据分析,说明重金属污染的主要原因。

(3) 分析重金属污染物的传播特征,由此建立模型,确定污染源的位置。

(4) 分析你所建立模型的优缺点,为更好地研究城市地质环境的演变模式,还应收集什么信息?有了这些信息,如何建立模型解决问题?题目A题城市表层土壤重金属污染分析摘要:本文研究的是某城区警车配置及巡逻方案的制定问题,建立了求解警车巡逻方案的模型,并在满足D1的条件下给出了巡逻效果最好的方案。

在设计整个区域配置最少巡逻车辆时,本文设计了算法1:先将道路离散化成近似均匀分布的节点,相邻两个节点之间的距离约等于一分钟巡逻路程。

数学建模评价类问题如何确定评价系统的指标权重?

数学建模评价类问题如何确定评价系统的指标权重?

数学建模评价类问题如何确定评价系统的指标权重?之前小编发过一篇系统介绍综合评价类问题的文章【数学建模之综合评价问题】,文中总结了综合评价模型一般步骤:1. 明确评价目的;2. 确定被评价对象;3. 建立评价指标体系(包括评价指标的原始值、评价指标的若干预处理等);4. 确定与各项评价指标相对应的权重系数;5. 选择或构造综合评价模型;6. 计算各系统的综合评价值,并给出综合评价结果。

今天,小编继续和大家聊聊——如何确定评价系统的指标权重?0、前言对于多指标的评价系统,各指标之间的相对重要性是互不相同的,单纯将所有指标的重要性假设为无差别并不是一种可取的方法。

指标间相对重要性的量化过程也就是不同指标的权重确定过程,不同的权重确定方法必然导致不同的评价结果。

而指标权重的确定不仅在综合评价系统中应用广泛,同时在多目标决策中也有很多应用(当然,综合评价问题也可视为多目标决策问题),在进行数学规划时,实际问题中往往存在多个目标,而且很难证,可行域内存在某一个解使得所有目标函数都取得最优值。

在这种情况下,就需要对多个目标进行综合加权,将多目标问题转化为单目标问题再进行求解。

1、权重确定方法分类现有的指标权重方法主要可以分为两类,一类是相对主观的方法,专家通过经验确定不同指标之间的相对重要程度,通过多个专家的打分,取其平均值作为权重。

这类方法中,非常具有代表性的就是层次分析法。

另一类相对客观的权重确定方法是根据不同评价对象在该指标上得分的离散程度来确定权重。

评价系统的最终目的是将所有的评价对象区分开,如果某一个指标的数据离散程度越大,其对评价对象的区分度也就越好,所以其权重也应该较大一些。

在这类方法中,应用比较广泛的有变异系数法和熵值法。

2、主观赋权法——层次分析法本文中,我们以层次分析法为例来看一看主观赋权法。

在确定指标之间的权重时,如果指标数量较多,我们很难直接凭经验给出一组权重。

比如通过语文、数学和英语3门功课来评价一个学生的文化课水平,我们无法给出一个3维向量,可以同时衡量不同功课间的相对重要程度。

数学建模常见模型的解法

数学建模常见模型的解法

一、权重的确定方法在统计理论和实践中,权重是表明各个评价指标(或者评价项目)重要性的权数,表示各个评价指标在总体中所起的不同作用。

权重有不同的种类,各种类别的权重有着不同的数学特点和经济含义,一般有以下几种权重。

按照权重的表现形式的不同,可分为绝对数权重和相对数权重。

相对数权重也称比重权数,能更加直观地反映权重在评价中的作用。

按照权重的形成方式划分,可分为人工权重和自然权重。

自然权重是由于变换统计资料的表现形式和统计指标的合成方式而得到的权重,也称为客观权重。

人工权重是根据研究目的和评价指标的内涵状况,主观地分析、判断来确定的反映各个指标重要程度的权数,也称为主观权重。

按照权重形成的数量特点的不同划分,可分为定性赋权和定量赋权。

如果在统计综合评价时,采取定性赋权和定量赋权的方法相结合,获得的效果更好。

按照权重与待评价的各个指标之间相关程度划分,可分为独立权重和相关权重。

独立权重是指评价指标的权重与该指标数值的大小无关,在综合评价中较多地使用独立权重,以此权重建立的综合评价模型称为“定权综合”模型。

相关权重是指评价指标的权重与该指标的数值具有函数关系,例如,当某一评价的指标数值达到一定水平时,该指标的重要性相应的减弱;或者当某一评价指标的数值达到另一定水平时,该指标的重要性相应地增加。

相关权重适用于评价指标的重要性随着指标取值的不同而发生变化的条件下,基于相关权重建立的综合评价模型被称为“变权模型”。

比如评估环境质量多采用“变权综合”模型。

确定权重的方法较多,这里介绍统计平均法、变异系数法和层次分析法,这些也是实际工作种常用的方法。

(一) 统计平均法统计平均数法(Statistical average method)是根据所选择的各位专家对各项评价指标所赋予的相对重要性系数分别求其算术平均值,计算出的平均数作为各项指标的权重。

其基本步骤是:第一步,确定专家。

一般选择本行业或本领域中既有实际工作经验、又有扎实的理论基础、并公平公正道德高尚的专家;第二步,专家初评。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定性研究数据采集定量研究往往具有足够样本量支持,丰富的统计分析技术,可以得出具有一定代表性的结论,但对于某个问题消费者为何如此回答,其所给解释是否是其真实想法,这样的问题便显得有些束手无策了。

相对而言,定性技术对数理性的要求低一些,但对消费者动机的深层挖掘要求却更高,更具针对性,因而与定量研究形成互补。

常规定性研究的方法主要是个别深度访谈与座谈会访谈。

其中深度访谈是深层次地挖掘个体的表现特征与背后的原因,而座谈会是利用几个人一起进行头脑风暴(brainstorming)的优势,相互激发、相互启迪,从而挖掘出深层次的原因。

座谈会(FDG)座谈会的成功依赖于两个系统,一个是主持人培训系统,一个是被访者约访系统。

华通现代建立起专职主持人与研究员水平主持人两个体系。

一方面保持几个专职主持人,以利于他们不断提高公司在座谈会主持方面的技术水平,适应一些难度非常大的主持项目;另一方面又更鼓励一部分研究人员掌握主持技巧,完成常规项目中必须的座谈会需求。

专职主持人的特点是主持技巧水平较高,缺点是研究设计、分析能力弱。

必须要研究人员与主持人的高度配合才能够拿出高水平的研究报告。

研究员水平的主持人对于一些特别复杂的技巧没有专职主持人那么强,但由于自己完全参与项目设计、数据分析、报告撰写等过程,容易对消费者有特别深入的理解、对数据的理解也会有独到的方面,比较容易出好的研究报告。

深层访谈(In-depth Interview)深访是一种无结构的、直接的、一对一的访问,在访问过程中,由掌握高级访谈技巧的调查员对调查对象进行深入的访谈,用以揭示对某一问题的潜在动机、态度和情感,此方法最适合于做探测性调查。

深层访谈的优点是更能深入地了解被调查者的内心想法和态度;便于对一些保密性、敏感性问题进行调查;能够自由地交换信息,常常会取得一些意外的资料。

缺点是调查的无结构性使得这种方法首调查员自身素质高低的影响很大;深层访谈结果的数据常难以解释和分析;这种访问的时间长,需要的经费较多,使该法在实际应用中受到一定的限制。

德尔非法(Delphi method)德尔非法也是专家调查法的一种,但是它与其他的专家调查法的区别在于:它是用背对背的判断来代替面对面的会议,即采用函询的方式,依靠调查机构反复征求每个专家的意见,经过客观分析和多次征询反复,使各种不同意见逐步趋向一致。

因此这种方法在一定程度上克服了畏惧权威及不愿听到不同意见等弊病,使专家能够充分发表意见,最后取得较为客观实际的调查结果。

神秘顾客访问“神秘顾客”是由经过严格培训的调查员,在规定或指定的时间里扮演成顾客,对事先设计的一系列问题逐一进行评估或评定的一种调查方式。

由于被检查或需要被评定的对象,事先无法识别或确认“神秘顾客”的身份,故该调查方式能真实、准确地反映客观存在的实际问题。

具体到窗口服务型行业而言,通过“神秘顾客”的调查可以对窗口服务型行业的营业环境,营业/服务人员的服务质量、规范进行评估和考核,以此达到改进内部服务管理、改善服务质量,提高顾客满意度的目的。

“神秘顾客”的优点是可以对窗口服务型行业中的各项服务项目进行质量控制;被调查者没有意识被调查,故反映的情况准确性、真实性较高;缺点是调查员的心理状态、综合素质以及对考核指标的理解等往往存在一定差异,可能会对考核结果产生一定的反面影响;调查同时无法做记录,难免有遗漏;无法观察到内在因素,有时需做长时间的观察。

这样,经验不足或者组织流程不严密紧凑时,会导致考核结果失偏,缺乏公正和准确性。

“神秘顾客”的适用于了解各种类型窗口服务型行业营业/服务的环境、服务人员的服务态度、业务素质和技能等情况,广泛应用到如电信、银行、超市、连锁店、医院等窗口服务性行业。

作为竞争对手调查,了解竞争对手商铺的销售货物商品的种类、品牌、价格、摆放情况等信息。

定量研究主要类型:使用习惯和态度研究、品牌/广告跟踪、概念测试、产品/口味测试、广告投放前测试、包装测试、价格测试等,主要研究方法包括:电话访问法:选取一个被调查者的样本,通过人工拨号,询问被访者一系列的问题,调查员记录被访者的答案,调查员被集中在某个场所或专门的电话访问间,在固定的时间内进行工作,督导现场管理。

电话调查适用于一些简单的访问,一般不超过10分钟。

计算机辅助电话访问:使用一份按计算机设计方法设计的问卷,用电话向被调查者进行访问。

计算机问卷可以利用大型机、微型机或个人用计算机来设计生成,调查员坐在终端(与总控计算机相联的带屏幕和键盘的终端设备)对面,头戴小型耳机式电话。

通过计算机拨打号码,电话接通之后,调查员就读出CRT屏幕上显示出的问答题并直接将被调查者的回答(用号码表示)用键盘记入计算机的记忆库之中。

定点电话访问:通过特定的电话设备进行访问。

这些设备允许督导在访问进行时监听访问,其中一些设备有宽带电话服务,可允许从一个地点抽取国际样本.利用电脑辅助设备来进行访问的这个比例正在增长,在这些指定地点,访问坐在附加主机或个人电脑前面,直接将问卷的答案输入电脑。

拦截访问法:是指在某个场所拦截在场的一些人进行面访调查,这种方法常用于商业性的消费者意向调查中。

拦截访问的优点在于效率高,但是无论怎样控制样本及调查的质量,收集的数据对总体的代表性都无法估计。

定点拦截(街访):在商场或其他人流量密集的地区对消费者进行访问,访问可能在定点的公共区域,或者将受访者带到指定的地点进行访问。

入户调查法:访问员到被访者的家中或工作单位访问,直接与被访者接触,然后利用结构式问卷访问,并记下被访者的答案。

这是国内目前最常用的方法。

调查的户或单位是随机抽样原则抽取的,入户访问的对象抽取也有一定的法则。

入户调查是概率抽样,样本对总体的代表性可以通过抽样误差来表示。

定点调查法:在人流集中的中心街区选择调查场地,把符合条件的被访问者邀到指定区域进行面访和产品实物测试。

这种方法是一般拦截调查的演变,调查代表性无法估计,但可以根据人口资料进行配额控制。

定点查已广泛应用于各类测试类研究,现场一般设有专门的甄别区、访问区和测试区。

神秘顾客法(Mystery Buyer):由经过严格培训的调查员,在规定或指定的时间里扮演成顾客,对事先设计的一系列问题逐一进行评估或评定的一种调查方式。

由于被检查或需要被评定的对象,事先无法识别或确认“神秘顾客”的身份,故该调查方式能真实、准确地反映客观存在的实际问题。

神秘顾客研究(Mystery Buyer Research)是顾客满意度调查的重要方法之一。

其做法是由对被调查企业所在行业有深刻了解的调查者以普通顾客的身份亲历被调查企业的服务产品,在真实的消费环境中以专业的视角感知企业与顾客接触的每一个真实时刻,并将其消费经历、感受、评价等以《顾客经历报告》的形式反馈给被调查企业。

层次分析法(重定向自)层次分析法(The analytic hierarchy process,简称AHP),也称层级分析法[]什么是层次分析法层次分析法(The analytic hierarchy process)简称AHP,在20世纪70年代中期由美国运筹学家(T.L.Saaty)正式提出。

它是一种定性和定量相结合的、系统化、层次化的分析方法。

由于它在处理复杂的问题上的实用性和有效性,很快在世界范围得到重视。

它的应用已遍及经济和、能源政策和分配、、军事指挥、运输、农业、教育、人才、医疗和环境等领域。

层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一样的。

不妨用假期旅游为例:假如有3个旅游胜地A、B、C供你选择,你会根据诸如景色、和居住、饮食、旅途条件等一些准则去反复比较这3个候选地点.首先,你会确定这些准则在你的心目中各占多大比重,如果你经济宽绰、醉心旅游,自然分别看重景色条件,而平素俭朴或手头拮据的人则会优先考虑费用,中老年旅游者还会对居住、饮食等条件寄以较大关注。

其次,你会就每一个准则将3个地点进行对比,譬如A景色最好,B次之;B费用最低,C次之;C居住等条件较好等等。

最后,你要将这两个层次的比较判断进行综合,在A、B、C中确定哪个作为最佳地点。

[]层次分析法的基本步骤1、建立层次结构模型。

在深入分析实际问题的基础上,将有关的各个因素按照不同属性地分解成若干层次,同一层的诸因素从属于上一层的因素或对上层因素有影响,同时又支配下一层的因素或受到下层因素的作用。

最上层为目标层,通常只有1个因素,最下层通常为方案或对象层,中间可以有一个或几个层次,通常为准则或指标层。

当准则过多时(譬如多于9个)应进一步分解出子准则层。

2、构造成对比较阵。

从层次结构模型的第2层开始,对于从属于(或影响)上一层每个因素的同一层诸因素,用和1—9比较尺度构造成对比较阵,直到最下层。

3、计算权向量并做一致性检验。

对于每一个成对比较阵计算最大特征根及对应特征向量,利用一致性指标、随机一致性指标和一致性比率做一致性检验。

若检验通过,特征向量(归一化后)即为权向量:若不通过,需重新构造成对比较阵。

4、计算组合权向量并做组合一致性检验。

计算最下层对目标的组合权向量,并根据公式做组合一致性检验,若检验通过,则可按照组合权向量表示的结果进行决策,否则需要重新考虑模型或重新构造那些一致性比率较大的成对比较阵。

[]层次分析法的优点运用层次分析法有很多优点,其中最重要的一点就是简单明了。

层次分析法不仅适用于存在不确定性和主观信息的情况,还允许以合乎逻辑的方式运用经验、洞察力和直觉。

也许层次分析法最大的优点是提出了层次本身,它使得买方能够认真地考虑和衡量指标的相对重要性。

[]建立层次结构模型将问题包含的因素分层:最高层(解决问题的目的);中间层(实现总目标而采取的各种措施、必须考虑的准则等。

也可称策略层、约束层、准则层等);最低层(用于解决问题的各种措施、方案等)。

把各种所要考虑的因素放在适当的层次内。

用层次结构图清晰地表达这些因素的关系。

〔例1〕购物模型某一个选购电视机时,对正在出售的四种电视机考虑了八项准则作为评估依据,建立层次分析模型如下:〔例2〕选拔干部模型对三个干部候选人y1、y2、y3,按选拔干部的五个标准:品德、才能、资历、年龄和群众关系,构成如下层次分析模型:假设有三个干部候选人y1、y2、y3,按选拔干部的五个标准:品德,才能,资历,年龄和群众关系,构成如下层次分析模型[]构造成对比较矩阵比较第i 个元素与第j 个元素相对上一层某个因素的重要性时,使用数量化的相对a ij来描述。

设共有n 个元素参与比较,则称为成对比较矩阵。

成对比较矩阵中a ij的取值可参考Satty 的提议,按下述标度进行赋值。

a ij在1-9 及其倒数中间取值。

•a ij= 1,元素i 与元素j 对上一层次因素的重要性相同;•a ij = 3,元素i 比元素j 略重要;•a ij = 5,元素i 比元素j 重要;•a ij = 7,元素i 比元素j 重要得多;•a ij = 9,元素i 比元素j 的极其重要;•a ij = 2n,n=1,2,3,4,元素i 与j 的重要性介于a ij =2n− 1与a ij = 2n + 1之间;•,n=1,2,...,9,当且仅当a ji = n。

相关文档
最新文档