第4章2无刷直流电机传感器及驱动

合集下载

反电动势法无位置传感器无刷直流电动机控制原理

反电动势法无位置传感器无刷直流电动机控制原理

反电动势法无位置传感器无刷直流电动机控制原理1. 引言大家好,今天咱们来聊聊一个有趣又复杂的话题,那就是无刷直流电动机的控制原理。

听起来可能有点深奥,但别担心,我会尽量把它讲得简单易懂。

你知道吗,这种电动机在生活中可是随处可见,比如咱们的电动车、风扇,还有玩具车,真是名副其实的“万金油”啊!而说到控制这些电动机,反电动势法可谓是个绝妙的选择。

好,我们不啰嗦,赶紧进入正题吧!2. 无刷直流电动机的基础知识2.1 什么是无刷直流电动机?首先,得给大家科普一下,什么是无刷直流电动机。

顾名思义,这种电动机没有传统的刷子。

传统电动机就像一位大厨,得靠刷子来翻炒食材,而无刷电动机就像一台现代化的烤箱,省心又省力。

它的工作原理是通过电磁场的变化来驱动转子运动,这样一来,就能减少摩擦,降低能耗,噪音也小,真是个“安静”的家伙!2.2 反电动势是什么?接下来,我们聊聊反电动势。

这个名字听起来很吓人,其实它就像是一位“调皮的小鬼”,在电动机工作时,会逆着电流的方向产生一种电压。

这种反电动势就像是电动机在努力工作时,给自己制造的一种保护机制。

就好比一个人努力跑步时,突然感到累了,身体会自然而然地减速,反电动势就是这种“减速”效果的体现。

3. 反电动势法的控制原理3.1 如何实现控制?那么,反电动势法到底是怎么控制电动机的呢?其实,这个过程简单得令人惊讶。

控制器会实时监测电动机的反电动势,通过这个信号,判断电动机的转速和位置。

就像一个教练在旁边观察运动员的表现,根据运动员的状态调整训练方案。

这样一来,电动机就能在没有位置传感器的情况下,精准地控制转速,真是一举两得。

3.2 优势与挑战使用反电动势法的好处可多了,首先,省去了位置传感器这个“累赘”,降低了系统的复杂性,成本也随之降低。

其次,由于没有刷子,电动机的寿命大大延长,维护起来也更方便。

不过,挑战也是有的。

比如,启动时电动机的反电动势比较小,控制器可能一时之间“抓瞎”,这时候就需要一些聪明的控制算法来帮忙。

无刷直流电动机及驱动系统设计

无刷直流电动机及驱动系统设计

无刷直流电动机及驱动系统设计无刷直流电动机是一种能够将电能转化为机械能的电机,它不仅具有高效率、高功率密度、大扭矩和高转速等优点,同时还能在宽范围内调整转速和控制扭矩。

因此,无刷直流电动机及其驱动系统设计成为了工业应用和个人消费电子产品中常见的一种电机类型。

无刷直流电动机驱动系统由电机本体、功率器件、传感器、微控制器和控制算法等组成。

首先,电机本体是电机的核心部分,包括转子、定子、磁铁和绕组等。

转子是电机的运动部分,由永磁体和轴承支撑。

定子是电机的静止部分,由铁芯和绕组组成。

磁铁是电机的永磁体,产生磁场以与永磁体上的磁场相互作用。

绕组是由导线绕制的线圈,通过流过电流产生磁场。

其次,功率器件是驱动系统的关键部分,用于将电能从电源转化为机械能。

一般采用MOSFET或IGBT等功率器件,以实现高速开关和较高电流能力。

它们能够承受高电压和大电流,并快速切换,使得电机能够根据控制信号调整转速和扭矩。

传感器是驱动系统中用于检测电机位置和转速的重要组成部分。

常见的传感器有霍尔传感器、反电动势传感器和编码器等。

霍尔传感器通过检测磁场强度变化来确定转子的位置,反电动势传感器通过测量绕组中电流变化产生的反电动势来确定电机的转速,编码器则能够提供更准确的位置和速度信息。

微控制器是驱动系统中负责控制电机运行的核心部件。

它包含了控制算法、控制逻辑和通信接口等功能,通过与传感器和功率器件进行交互来实现对电机转速、扭矩和方向的精确控制。

微控制器能够根据输入的控制信号,通过调节电流和电压来控制电机的运行状态。

最后,控制算法是驱动系统的重要组成部分,在实际应用中起到至关重要的作用。

常见的控制算法包括PID控制、电流环控制、速度环控制和位置环控制等。

PID控制通过调整比例、积分和微分控制器的系数来达到稳定控制的效果。

电流环控制通过直接或间接测量电机电流,以控制电机的转矩和速度。

速度环控制通过测量电机转速,并根据所需转速和实际转速之间的差异来调整控制信号。

无刷直流电机驱动电路的实现方法

无刷直流电机驱动电路的实现方法

无刷直流电机驱动电路的实现方法文章标题:无刷直流电机驱动电路的实现方法导言:无刷直流电机具有高效、低噪声和长寿命等优点,广泛应用于工业自动化、电动车辆和家用电器等领域。

然而,为了实现无刷直流电机的高效运行,需要一个可靠而高效的驱动电路。

本文将介绍无刷直流电机驱动电路的实现方法,并探讨其中的关键技术和设计要点。

一、无刷直流电机驱动电路的基本原理无刷直流电机驱动电路是通过控制电机的相序和电流来实现电机的运转。

它主要由功率电子器件、控制电路和电源组成。

其中,功率电子器件用于控制电流的开关和调节,控制电路用于检测电机的位置和速度,并控制功率电子器件的工作。

电源则提供所需的电能。

二、无刷直流电机驱动电路的实现方法1. 直流电压源驱动法直流电压源驱动法是最简单、成本最低的无刷直流电机驱动方法之一。

它通过将电压源直接连接到电机的相,通过调节电压的极性和大小来控制电机的运转。

然而,由于缺乏对电机位置和速度的准确检测和控制,其控制性能较差,适用于一些简单的应用场景。

2. 舵机驱动法舵机驱动法通过使用传感器检测电机的位置和速度,并根据检测结果控制功率电子器件的工作,实现对电机的精确控制。

该方法通常包括位置传感器、速度传感器和控制模块。

然而,由于传感器的引入增加了系统的复杂性和成本,对传感器的精度和稳定性要求较高。

3. 无传感器驱动法无传感器驱动法是一种最为常用和成熟的无刷直流电机驱动方法。

它通过使用反电动势(Back EMF)来检测电机的位置和速度,并根据检测结果来控制功率电子器件的工作。

该方法不仅降低了系统的复杂性和成本,还提高了系统的可靠性和稳定性。

然而,由于反电动势的检测较为困难,需要一套复杂的算法和控制策略。

三、无刷直流电机驱动电路的关键技术1. 电子换向技术无刷直流电机的运转需要按照一定的相序来进行,电子换向技术是实现相序控制的关键。

它通过控制功率电子器件的工作来改变电流的方向和大小,从而实现电机的正常运转。

无刷直流电机的驱动电路

无刷直流电机的驱动电路

无刷直流电机的驱动电路一、无刷直流电机简介无刷直流电机是一种通过电子方式实现电机转子磁场与定子磁场的同步旋转,无需刷子与换向器来调整磁场方向的电机。

它具有高效率、高转矩密度、长寿命等优点,被广泛应用于工业、航空航天、交通工具等领域。

二、无刷直流电机的基本原理无刷直流电机的驱动主要是通过电子器件来控制电机的磁场和转子的位置。

基本原理如下: 1. 无刷直流电机的转子上安装有磁体,称为永磁体,用来产生转子磁场。

2. 定子上绕有若干个线圈,通过电流激励产生定子磁场。

3. 当定子磁场与转子磁场交叉时,产生转矩,使电机转动。

三、无刷直流电机的驱动电路设计要求设计无刷直流电机的驱动电路时,需要满足以下要求: 1. 高效率:电路应尽可能减少能量的损耗,以提高电机的效率。

2. 稳定性:电路应具有良好的稳定性,能够在各种工作条件下保持电机的正常运行。

3. 可调性:电路应具备可调节转速和转向的功能,以满足不同应用场景的需求。

4. 保护功能:电路应具备过流、过温等保护功能,以确保电机和电路的安全运行。

四、无刷直流电机的驱动电路设计方案4.1 无刷直流电机驱动电路的基本组成无刷直流电机的驱动电路通常由以下几部分组成: 1. 电源模块:提供电机驱动所需的电压和电流。

2. 电流检测模块:用于检测电机驱动电路中的电流情况,保护电机和电路的安全。

3. 电压转换模块:用于将电源提供的电压转换为电机所需的工作电压。

4. 逻辑控制模块:根据输入信号控制电机的转速和转向。

5. 保护模块:监测电机驱动电路的工作状态,当出现异常情况时进行相应的保护。

4.2 无刷直流电机驱动电路的工作原理无刷直流电机的驱动电路工作原理如下: 1. 逻辑控制模块接收输入信号,根据信号产生驱动电流的时序。

2. 驱动电流经过电流检测模块后,进入电机的定子线圈。

3. 电机定子线圈中的电流产生定子磁场,与转子磁场交叉产生转矩。

4. 电压转换模块将电源提供的电压转换为电机所需的工作电压。

(完整版)无刷直流电动机无传感器控制方法

(完整版)无刷直流电动机无传感器控制方法

无刷直流电动机无传感器低成本控制方法关键词:无刷直流电动机无位置传感器控制可编程逻辑器件1引言无刷直流电机的无传感器控制是近年来电机驱动领域关注的一项技术。

无位置传感器控制的关键在于获得可靠的转子位置信号,即从软、硬件两个方面间接获得可靠的转子位置信号来代替传统的位置传感器[1~3]。

采用无传感器控制技术的无刷电机具有结构简单、体积小、可靠性高和可维护性强等优点,使其在多个领域内得到了充分的利用[4]。

目前对于无传感器无刷电机的控制多采用单纯依靠DSP软件控制的方法[5],但是由于控制算法计算量大,执行速度较慢,且DSP成本较高,不利于以后向市场推广。

同时也出现了应用于无传感器BLDCM控制的一些专用的集成电路[6],但由于这些芯片可扩展性和通用性较低,而且价格昂贵,只适用于低压、小功率领域。

为了扩展无传感器BLDCM应用领域,降低其控制系统的成本,扩充控制系统的功能,增加控制系统的灵活性,本文以MCU+PLD方式组成控制系统的核心,利用PLD数字逻辑功能,分担MCU 的逻辑运算压力,使MCU和PLD的功能都得到了最大程度的发挥。

对于无位置传感器BLDCM控制系统,本文着重分析了换相控制策略和闭环调速,最后通过仿真和实验,验证了控制系统的合理性和可行性。

2系统的总体硬件设计本文中所设计系统是以8位PIC单片机和PLD构成的硬件平台,硬件结构框图如图1所示。

功率逆变电路采用三相全桥逆变结构,电机定子绕组为Y接法,电机工作模式为三相6状态方式。

在本文无传感器控制方式中采用反电动势过零位置检测方法,位置检测电路根据电机端电压获取3路位置信号,将信号送入PIC单片机进行软件移相后得到3路换相信号,由可编程逻辑器件进行逻辑解码后输出6路驱动开关管的前极信号,通过驱动芯片IR2233产生驱动信号以控制各开关管的导通与关断。

该系统采用速度单闭环方式,通过改变PWM的占空比以达到调速的目的。

本文中选用Microchip 公司的单片机PIC16F874作为控制核心,它内部有8K的FLASH 程序存储器,368字节的数据存储器(RAM),256字节的EEPROM数据存储器,14个中断源,8级深度的硬件堆栈,3个定时/计数器,两个捕捉/比较/PWM (CCP)模块,10位多通道A/D转换器等外围电路和硬件资源⑹。

直流无刷电机驱动原理

直流无刷电机驱动原理

直流无刷电机驱动原理直流无刷电机(Brushless DC Motor,简称BLDC)是一种通过电子器件控制转子转动的电机。

与传统的有刷直流电机相比,直流无刷电机具有结构简单、寿命长、效率高等优点,因此在许多领域得到广泛应用,如家电、汽车、航空航天等。

直流无刷电机的驱动原理主要包括电机结构、电机控制器和传感器三个方面。

首先,直流无刷电机的结构由转子和定子组成。

转子上的永磁体产生磁场,而定子上的线圈通过电流产生磁场。

当电流通过定子线圈时,定子磁场与转子磁场相互作用,产生转矩,从而驱动转子转动。

其次,直流无刷电机的控制器是实现电机转动的关键。

控制器主要由功率电子器件和控制电路组成。

功率电子器件包括MOSFET(金属氧化物半导体场效应晶体管)或IGBT(绝缘栅双极型晶体管),用于控制电流的通断。

控制电路则根据传感器反馈的信息,控制功率电子器件的开关状态,从而实现对电机的控制。

最后,直流无刷电机的传感器用于检测电机的转子位置和速度。

常用的传感器有霍尔传感器和编码器。

霍尔传感器通过检测转子磁场的变化,确定转子位置。

编码器则通过检测转子的旋转角度和速度,提供更精确的转子位置和速度信息。

传感器的反馈信息被送回控制器,用于控制电机的转动。

总结起来,直流无刷电机的驱动原理是通过控制器控制功率电子器件的开关状态,使电流按照一定的顺序流过定子线圈,从而产生转矩驱动转子转动。

传感器则用于检测转子位置和速度,提供反馈信息给控制器,实现对电机的精确控制。

直流无刷电机驱动原理的应用非常广泛。

在家电领域,直流无刷电机被广泛应用于洗衣机、冰箱、空调等产品中,提高了产品的效率和可靠性。

在汽车领域,直流无刷电机被用于驱动电动汽车的电机,实现零排放和高效能。

在航空航天领域,直流无刷电机被用于驱动飞机的舵机和飞行控制系统,提高了飞行的稳定性和安全性。

总之,直流无刷电机驱动原理是一种高效、可靠的电机驱动方式。

通过控制器和传感器的配合,实现对电机的精确控制,使其在各个领域发挥出更大的作用。

多旋翼无人机技术基础 第4章

多旋翼无人机技术基础 第4章
(3)串励直流电机:串励直流电机的励磁绕组与电枢串联后,再接于直流 电源。这种直流电机的励磁 电刷弹簧 电流就是电枢电流。
(4)复励直流电机:复励直流电机有并励和串励 图4-2他励直流电机接线 示意图 两个励磁绕组。若串励绕组产生的磁通势与并励绕组 产生的磁 通势方向相同则称为积复励;若两个磁通势方向相反,则称为差复励。
多旋翼无人机动力装置
2)在低电压环境下 单从KV值不可以评价电机的好坏因为不同的KV值有 不同的适用场合,无刷直流电机的电压范围很宽。在低电压环境(例如7. 4V)下.KV值对输出功率的影响有:
(1)KV值低的,由于转速偏低适合配较小的减速比和较大的螺旋桨,可输 出较大功率;
(2)KV值高的,由于转速较高,适合配较大的减速比和较小的螺旋桨,在 满足输出功率的条件下,要减小负荷.避免电流过大。
多旋翼无人机动力装置
4.1.2 多旋翼无人机动力装置的组成 组成多旋翼无人机动力装置的主要部件或系统取决于所采用发动机的类 型。 1.直流电动机及其附件和系统 为多旋翼无人机提供动力的电动机类型主要有无刷直流电机和空心杯有 刷直流电机两种。
多旋翼无人机动力装置
1)无刷直流电机系统 多旋翼无人机采用无刷直流电机作为发动机,其动力装置由5部分构成。 (1)无刷直流电机:无刷直流电机属于外转子电机,没有电刷。 (2)电调:电调全称为电子调速器(ESC),主要作用是控制电机的转速。 (3)电池:电池用来给电机供电,多旋翼无人机常用的电池有聚合物锂电 池.燃料电他等
多旋翼无人机动力装置
4.1.1 多旋翼无人机发动机的分类、功用和要求 1.多旋翼无人机发动机的分类 发动机是能够把其他形式的能转化为机械能,进而产生拉力或推力的机 器,是多旋翼无人机动力装置的核心,被视为多旋粪无人机的心脏。发动 机特性的优劣对多旋翼无人机的各种使用性能都有很大影响,在多旋翼无 人机设计过程中,首先会碰到选用哪种发动机能最有效地满足其技术要求 的问题,要对发动机的性能和特点有深人的了解,以正确选择发动机,并 达到与多旋翼无人机飞行性能的最佳匹配。

直流无刷电机原理及驱动技术

直流无刷电机原理及驱动技术

直流无刷电机原理及驱动技术直流无刷电机(Brushless DC Motor,简称BLDC)是一种以电子换向的方式驱动的电机。

相对于传统的有刷直流电机,无刷直流电机具有更高的效率、更低的能量损耗、更长的寿命和更高的输出功率等优点,因此在许多应用领域得到了广泛应用。

直流无刷电机的工作原理比较复杂,它的转子由一组磁钢组成,分布在转子的外围,并以等间距排列。

在转子的外围,固定了一组电磁铁使得它们的磁极排列和磁铁相互间隔的磁极相对应。

电机通过控制器产生的脉冲信号,控制转子磁极的磁场的极性和强度。

当转子的磁场与电磁铁的磁场产生的磁力相互作用时,就会产生力矩推动转子旋转。

为了控制无刷电机的旋转方向和速度,需要使用电子换向技术。

电子换向可以通过测量转子位置并实时调整电流来实现。

电子换向通常通过三相电流反馈控制来实现。

这意味着需要三个传感器来测量电机的电流,并通过调整电流来实现换向控制。

无刷直流电机的驱动技术有多种,其中最常见的是基于PWM调制的驱动技术。

PWM调制将直流电源与电机连接,并以一定的频率调制电源电压,控制电机的运转速度和力矩。

这种驱动方式能够提高电机的效率,并减少能量损失。

此外,也可以使用传统的定向控制器来实现无刷电机的驱动,通过测量转子位置并控制定子线圈的电流来实现精确的转子控制。

在应用中,无刷电机的驱动技术还可以根据具体的需求进行调整。

例如,使用传感器和反馈控制器来实现闭环控制,可以提高驱动系统的响应速度和稳定性。

此外,还可以使用无传感器的反电动势控制技术,通过测量电机绕组的电流反电动势来测量转子位置,从而实现换向控制。

总之,直流无刷电机通过电子换向和驱动技术,实现了高效、低能耗、长寿命和高输出功率的特点。

在各种应用领域,比如磁盘驱动器、家用电器、汽车等,无刷电机都发挥了重要的作用。

进一步的研究和发展无刷直流电机驱动技术,可以进一步提高其性能,推动其应用范围的拓展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成本低廉
体积小,安装方便
26
1. 编码器(脉冲编码器)分类
脉 冲 编 码 器 的 分 类
增量式脉冲编码器
绝对式脉冲编码盘


光电式 接触式 电磁感应式 光电式 接触式 电磁感应式
27
1. 编码器(脉冲编码器)分类 光电编码器
原理:一种角度(角速度)检测装置,它将输入 给轴的角度量,利用光电转换原理转换成相应的 电脉冲或数字量,
23 4 5
1415 0 1 13 2 12 3 11 4 10 5 98 7 6 葛莱编码盘
43
二进制编码盘
(3)混合式光电编码器 高位为绝对式编码,低位为脉冲式编码
在解决初始零位的同时,降低成本
0 HA HB HC A B
44
60
120
180
240
300
360
4.4 无刷直流电动机的功率驱动电路
21
一、旋转变压器
22
一、旋转变压器 4. 旋转变压器的专用数字芯片

作用
将旋转变压器输出的模拟量信号转化为数字信号

型号:AD2S80A
23
AD2S80A内部结构图
24
AD2S80A连接图
25
二、编码器(脉冲编码器)
脉冲编码器是一种旋转式角位移检测装置, 能将机械转角变换成电脉冲。
易于与数字电路接口
B
5v 0v 5v 0v 90o
脉冲编码的输出信号
5v
0v 33
工作原理
U
90
A
B
鉴相:如光栅盘正转时 A相超前90o ,反转时B 相超前90o。
o 5v 0v 5v 0v 90o
脉冲编码的输出信号
5v
基准:另外还产生一脉 A相 冲Z,Z为基准脉冲, 或称零点脉冲,它是圆 B相 光栅盘,可以作为坐标 原点的信号。
输出
(a)
(b)
绝对式脉冲编码盘
37
1) 二进制数码
码盘上有许多同心圆环,称为码道,整个圆 盘又分为若干个等分的扇形区段,每一相同的扇 形区段的码道组成一个数码,着色的码道为“1”, 未着色的码道为“0”,内环码道为数码的高位。 在圆盘的同一半径方向的每个码道处,如图的 圆点所示,安装一个光电元件,光源装在圆盘的另 一侧,码盘转动,每一扇形区段的光信号通过光电 元件转换成数码脉冲信号。
检测信号为方波,只在 转子位置的某些特征点 产生跃变,经过简单的 逻辑变换就可以很方便 地产生绕组电流导通逻
HC 0 30 150 270 360 θ HB 0 θ HA 0 θ
辑信号(功率开关控制
信号) 单相通电方式位置信号
4
4.3 无刷直流电动机的位置传感器
4.3.1 方波运行用位置传感器
1. 开关式霍尔传感器 2. 红外光断续传感器
A C
两相全桥结构
三相半桥结构
47
4.4.2 全控型电力电子器件简介
常用的典型全控Leabharlann 器件IGBT单管及模块电力MOSFET
48
4.4.3 电力电子器件的驱动技术
1 应用电力电子器件系统组成 2 电力电子器件驱动电路概述 3 典型全控型器件的驱动电路
49
1. 应用电力电子器件系统组成
电力电子系统:由控制电路、驱动电路、保护电路 和以电力电子器件为核心的主电路组成。 在 主 电 路
ID R Uin Uout IC R1 E R R1 E R R1 E
a)
b)
c)
52
光耦合器的类型及接法
a) 普通型 b) 高速型 c) 高传输比型
(1) 电力电子器件驱动电路概述
分类
按照驱动信号的性质分,可分为电流驱动型和电压驱
动型。
驱动电路具体形式可为分立元件的,但目前的趋势是 采用专用集成驱动电路。
41
2) 葛莱码
42
3) 两种编码的可靠性的比较:
纯二进制码有一个缺点:相邻两个二进制数可能有多位二 进制码不同,当数码切换时有多个数位要进行切换,增大了误 读的机率。 葛莱码相邻两个二进制数码只有一个数位不同,因此两数切 换时只在一位进行,提高了读数的可靠性。
多位二进 码不同
6 1 7 0 15 8 14 9 1312 1110
双列直插式集成电路及将光耦隔离电路也集成在内的混 合集成电路。
为达到参数最佳配合,首选所用器件生产厂家专门开发
的集成驱动电路。
53
(2) 典型全控型器件的驱动电路
GTO
1) 电流驱动型器件的驱动电路
GTO的开通控制与普 通晶闸管相似。
uG O t
GTO关断控制需施加 负门极电流。 GTO驱动电路通常包括 开通驱动电路、关断驱 动电路和门极反偏电路 三部分,可分为脉冲变 压器耦合式和直接耦合 式两种类型。
控 控制电路 制 电
和控制电 路中附加 一些电路, 以保证电 力电子器 件和整个 系统正常 可靠运行
检测 电路
保护 电路
V1
L R

驱动 电路
V2
主电路
50
电气隔离 电力电子器件在实际应用中的系统组成
(1) 电力电子器件驱动电路概述
驱动电路——主电路与控制电路之间的接口
使电力电子器件工作在较理想的开关状态,缩短开、关时 间,减小开关损耗。 对装置的运行效率、可靠性和安全性都有重要的意义。 保护措施也往往设在驱动电路中,或通过驱动电路实现。
16
2)光电三极管

光敏三极管有两个PN结。与普通三极管相似,有电流增 益,灵敏度比光敏二极管高。多数光敏三极管的基极没有 引出线,只有正负(c、e)两个引脚,所以其外型与光敏 二极管相似,从外观上很难区别。
17
4.3.2 正弦波运行用位置传感器
输出连续的位置信号
一、旋转变压器
输出连续的位置角度的正弦信号
第四章 无刷直流电动机及其控制系统
内容提要

引言


有刷直流电动机的电磁关系
无刷直流电动机系统结构及原理
无刷直流电动机的位置传感器
无刷直流电动机系统的功率驱动电路
无刷直流电动机控制系统及应用
1
4.3 无刷直流电动机位置传感器
1、位置传感器的作用
通过检测磁极与定子各相绕组的轴线位置,控制电机定子绕 组的通电方向。 方波运行用位置传感器:特征点位置信号
14
2)光电三极管

光电三极管比具有相同有效面积的光电二极管的 光电流大几十至几百倍,但响应速度较二极管差。
工作原理 (1)光电转换 (2)电流放大

15
工作原理


光敏晶体管与一般晶体管很相似, 具有两个PN结, 只是它的 基区一边做得很大, 以扩大光的照射面积。 当光照射在集电结上时,就会在结附近产生电子-空穴对, 从 而形成光电流,相当于三极管的基极电流。由于基极电流的 增加, 因此集电极电流是光生电流的β 倍, 所以光敏晶体管 有放大作用。
绝对式脉冲编码器
增加 一位
达到6位
40
2) 葛莱码
葛莱码的特点是任意相邻的两个二进制数之
间只有一位是不同的,最末一个数与第一个数也
是如此,这样,就形成了循环,使整个循环里的 相邻数之间都遵循这一规律。要生成葛莱码,可 参考下图所示的方法。其中的行和列分别为三位 和二位葛莱码,结合可生成五位葛莱码。
38
绝对式脉冲编码器
二进制编码盘
图中二进制的数码 1100的位置就是从0 位算起的第12个角 度绝对坐标位置, 换算成角度是 (360/16)x12=270 的位置(编码盘分 为16个区段)。
6 1 7 0 15 8 14 9 1312 1110
23 4 5
(2)3 (2)2 (2)1 (2)0 39
13
工作原理



光照射在PN结上; 无光照时, 反向电阻很大, 反向电流很小(暗电流)。 光照射PN结时, 光子打在PN结附近, 使PN结附近产生光 生电子和空穴对。它们在PN结处的内电场作用下作定向 运动, 形成光电流。光的照度越大, 光电流越大。 光敏二极管在不受光照射时, 处于截止状态, 受光照射时, 处于导通状态。
4.3 无刷直流电动机的位置传感器
4.3.1 方波运行
2.红外光断续传感器
12
1)光电二极管

工作原理与电池相似,利用光子引起的电子跃迁将光信号 转变成电信号,光生电流与光强成正比。

光敏二极管的结构与一般二极管相似。 它装在透明玻璃外 壳中, 其PN结装在管的顶部, 可以直接受到光的照射。
将光敏二极管的PN 结 设置在透明管壳顶部 的正下方
6
3)霍尔元件
金属或半导体薄片置于磁场中,当有电流 流过时,在垂直于电流和磁场的方向上将产生 电动势,这种物理现象称为霍尔效应。
7
3)霍尔元件
霍尔元件的组成:由霍尔片、四根引线和壳体组成, 如下图示。
8
3)霍尔元件
几种典型结构
9
4)测量原理
罚担罚
10
5)产生位置信号的原理
开关式霍尔传感器
11
绝对式编码器实物照片
36
绝对式脉冲编码盘的编码方法有:A图为二进制数码, B图为葛莱循环码
二进制编码盘 葛莱编码盘
6 1 7 0 15 8 14 9 1312 1110
23 4 5
(2)3 (2)2 (2)1 (2)0
1415 0 1 13 2 12 3 11 4 10 5 98 7 6
(2)3 (2)2 (2)1 (2)0
驱动电路的基本任务:
按控制目标的要求施加开通或关断的信号。 对半控型器件只需提供开通控制信号。 对全控型器件则既要提供开通控制信号,又要提供关断控 制信号。
相关文档
最新文档