无刷直流电机的驱动及控制
无刷直流电机的调速与控制技术

无刷直流电机的调速与控制技术随着科技的发展,电动机在各个领域的应用越来越广泛。
而无刷直流电机作为一种高效、可靠的电机,在许多领域得到了广泛的应用。
无刷直流电机的调速与控制技术是保证电机运行稳定性和提高其性能的重要一环。
一、无刷直流电机的工作原理无刷直流电机是一种基于电磁感应原理工作的电动机。
其核心部件是电机转子上的永磁体,通过感应电流产生的磁场与定子线圈产生的磁场相互作用,从而实现电机的运转。
相比于传统的有刷直流电机,无刷直流电机省去了电刷与换向器件,因此具有更高的效率和更长的寿命。
二、无刷直流电机的调速方法无刷直流电机的调速方法主要包括电压控制调速和电流控制调速两种。
1. 电压控制调速电压控制调速是通过改变电压的大小来控制电机的转速。
在实际应用中,最常见的方式是采用PWM (Pulse Width Modulation) 调制技术。
PWM技术通过调整电压的占空比,使得电机在一个固定的周期内以不同的占空比工作,从而实现不同的转速。
这种方法简单易行,但是对于大功率的无刷直流电机,其调速范围较窄。
2. 电流控制调速电流控制调速是通过改变电机定子线圈的电流来控制电机的转速。
常见的控制方法有开环控制和闭环控制。
开环电流控制是在电机定子线圈中加回馈电阻,通过改变反馈电阻的大小来调整电流。
这种方法结构简单,控制参数易调,但是系统稳定性较差,无法适应负载的变化。
闭环电流控制是在开环控制的基础上加入反馈环节,通过传感器测量电机的电流,并与设定的电流进行比较,通过PID控制算法来调整控制器输出的电压,从而控制电机的转速。
这种方法可以提高系统的稳定性和动态响应性能,适用于对转速精度和系统稳定性要求较高的应用。
三、无刷直流电机的控制技术无刷直流电机的控制技术是实现电机调速的重要手段之一。
根据不同的应用场景和需求,可以选择不同的控制方法。
1. 速度控制速度控制是无刷直流电机最基本的控制方式。
通过改变电机的输入提速,可以控制电机的转速。
永磁无刷直流电动机控制方法

永磁无刷直流电动机控制方法
永磁无刷直流电动机控制方法有很多种,以下列举几种常见的方法:
1. 基于电压的控制方法:这种方法通过调节电机的驱动电源电压来控制电机的转速。
可以通过调节PWM(脉冲宽度调制)信号的占空比来控制电机的转速。
2. 基于电流的控制方法:这种方法通过控制电机的相电流来控制电机的转矩。
可以通过调节PWM信号的频率来控制电机的相电流。
3. 位置控制方法:这种方法通过检测电机的转子位置来控制电机的转速和位置。
可以使用轴编码器、霍尔传感器等装置来检测转子位置,并根据实际位置与期望位置之间的差异来调整电机的输入信号,从而实现位置控制。
4. 矢量控制方法:这种方法通过测量电机的电流和电压来实时计算出电机的控制矢量,进而控制电机的转速和转矩。
矢量控制方法可以提供更精确的转速和转矩控制,并且可以减小电机的振动和噪音。
以上仅为常见的几种控制方法,实际应用中可以根据具体需求和系统要求选择合适的控制方法。
无刷直流电机控制方法

无刷直流电机控制方法
无刷直流电机(Brushless DC Motor,BLDC)是一种基于电子换相技术来驱动的电机,它具有高效率、高功率密度、高可靠性等优点。
以下是几种常见的无刷直流电机控制方法:
1. 基于霍尔传感器的六步换相控制方法:BLDC电机通常内置三个霍尔传感器,可以用来检测转子位置。
控制方法通过监测霍尔传感器的状态,来确定哪个绕组需要通电。
该方法只需简单的逻辑门电路即可实现。
2. 无霍尔传感器的电子换相控制方法:这种方法采用传感器无关的技术,通过测量三相电流和电动势来确定转子的位置。
通常需要使用一个称为电机控制器或无刷电机驱动器来完成电子换相功能。
3. 磁场导向控制方法(Field-Oriented Control,FOC):该方法是一种高级控制技术,通过将三相电流分解为坐标轴上的直流分量和交流分量,将电机控制问题转化为直流电机的控制问题。
这种控制方法可以提供更高的动态性能和控制精度。
4. 直流电压控制方法:这种方法基于直流电压的控制原理,通过改变电机的电压来控制电机的转速和转矩。
该方法简单易实现,但通常不能提供高精度和高动态性能。
以上仅为常见的几种无刷直流电机控制方法,实际应用中还有其他高级控制技术和方法,例如逆变器驱动技术、空间矢量调制控制等。
具体选择何种控制方法,需根据电机应用要求、控制精度和成本等因素综合考虑。
无刷直流电机的驱动电路

无刷直流电机的驱动电路一、无刷直流电机简介无刷直流电机是一种通过电子方式实现电机转子磁场与定子磁场的同步旋转,无需刷子与换向器来调整磁场方向的电机。
它具有高效率、高转矩密度、长寿命等优点,被广泛应用于工业、航空航天、交通工具等领域。
二、无刷直流电机的基本原理无刷直流电机的驱动主要是通过电子器件来控制电机的磁场和转子的位置。
基本原理如下: 1. 无刷直流电机的转子上安装有磁体,称为永磁体,用来产生转子磁场。
2. 定子上绕有若干个线圈,通过电流激励产生定子磁场。
3. 当定子磁场与转子磁场交叉时,产生转矩,使电机转动。
三、无刷直流电机的驱动电路设计要求设计无刷直流电机的驱动电路时,需要满足以下要求: 1. 高效率:电路应尽可能减少能量的损耗,以提高电机的效率。
2. 稳定性:电路应具有良好的稳定性,能够在各种工作条件下保持电机的正常运行。
3. 可调性:电路应具备可调节转速和转向的功能,以满足不同应用场景的需求。
4. 保护功能:电路应具备过流、过温等保护功能,以确保电机和电路的安全运行。
四、无刷直流电机的驱动电路设计方案4.1 无刷直流电机驱动电路的基本组成无刷直流电机的驱动电路通常由以下几部分组成: 1. 电源模块:提供电机驱动所需的电压和电流。
2. 电流检测模块:用于检测电机驱动电路中的电流情况,保护电机和电路的安全。
3. 电压转换模块:用于将电源提供的电压转换为电机所需的工作电压。
4. 逻辑控制模块:根据输入信号控制电机的转速和转向。
5. 保护模块:监测电机驱动电路的工作状态,当出现异常情况时进行相应的保护。
4.2 无刷直流电机驱动电路的工作原理无刷直流电机的驱动电路工作原理如下: 1. 逻辑控制模块接收输入信号,根据信号产生驱动电流的时序。
2. 驱动电流经过电流检测模块后,进入电机的定子线圈。
3. 电机定子线圈中的电流产生定子磁场,与转子磁场交叉产生转矩。
4. 电压转换模块将电源提供的电压转换为电机所需的工作电压。
无刷直流电机控制技术综述

无刷直流电机控制技术综述一、本文概述随着科技的飞速发展和工业自动化的深入推进,无刷直流电机(Brushless DC Motor, BLDCM)控制技术日益受到广泛关注。
无刷直流电机以其高效、节能、长寿命等优点,在电动工具、电动车、航空航天、机器人等领域得到广泛应用。
本文旨在对无刷直流电机控制技术进行综述,介绍其基本原理、发展历程、主要控制策略以及未来发展趋势,以期为相关领域的研究者和工程师提供有益的参考。
本文将对无刷直流电机的基本结构和工作原理进行简要介绍,为后续的控制技术分析奠定基础。
通过回顾无刷直流电机控制技术的发展历程,揭示其从简单的开环控制到复杂的闭环控制,再到智能控制的演变过程。
接着,重点介绍几种主流的无刷直流电机控制策略,包括PID控制、模糊控制、神经网络控制等,并分析它们在不同应用场景下的优缺点。
还将探讨无刷直流电机在高速、高精度、高效率等方面的特殊控制需求及其解决方案。
本文将对无刷直流电机控制技术的未来发展趋势进行展望,包括控制算法的优化与创新、新型功率电子器件的应用、以及电机与控制系统的一体化设计等。
通过本文的综述,读者可以对无刷直流电机控制技术有一个全面而深入的了解,为相关领域的研究和实践提供有益的启示和指导。
二、无刷直流电机的基本原理与结构无刷直流电机(Brushless Direct Current,简称BLDC)是一种采用电子换向器替代传统机械换向器的直流电机。
其基本工作原理和结构与传统直流电机有所不同,因此在控制上也具有其独特之处。
基本原理:无刷直流电机的工作原理基于电子换向技术。
它利用电子开关器件(如功率晶体管或功率MOSFET)实现对电机电流的换向控制,从而改变了电机转子的旋转方向。
与传统直流电机相比,无刷直流电机省去了机械换向器和电刷,因此具有更高的运行效率和更长的使用寿命。
结构特点:无刷直流电机主要由定子、转子和电子换向器三部分组成。
定子通常由多极电磁铁构成,而转子则是一个带有永磁体的圆柱形结构。
直流无刷电机及其驱动技术

OVDCOND寄存器的值由霍尔传感器输出的二进制编码绕组通电顺序决定。
A+C- A+B- C+B- C+A- B+A- B+C-
例1 由单片机控制的BLDC系统:
例2 单片三相无刷直流电动机控制器SI9979
SI9979特点
霍尔传感器输入信号处理,60及120度间隔选择,提供霍尔传感器电源。 自动换相功能 集成逆变器高端驱动 PWM输入及处理 电流限制,欠电压保护 20到40电源电压
PMSM的问题
控制比直流伺服电机要复杂的多; 要想实现力矩控制,必须有角位置传感器,以测量d-q坐标系的旋转角; 反电势必须是正弦波的,这对电机制造及工艺提出了较高的要求。
反电势必须是正弦波的才能产生正弦电流
3.3 无刷直流电动机 (Brushless Direct Current Motor ,BLDC)
附:电角度和机械角度
机械角度是指电机转子的旋转角度,由Θm表示; 电角度是指磁场的旋转角度,由Θe表示。 当转子为一对极时,Θm=Θe; 当转子为n对极时,Θe=nΘm。
2. 工作原理
1)旋转磁场的产生 假定电机定子为3相6极,星型连接。转子为一对极。
电流方向不同时,产生的磁场方向不同。 若绕组的绕线方向一致,当电流从A相绕组流进,从B相绕组流出时,电流在两个绕组中产生的磁动势方向是不同的。
BLDC电机的机械特性曲线
在连续工作区,电机可被加载直至额定转矩Tr. 在电机起停阶段,需要额外的力矩克服负载惯性。这时可使其短时工作在短时工作区,只要其不超过电机峰值力矩Tp且在特性曲线之内即可。
4、PWM控制技术
为了使BLDC 电机速度可变,必须在绕组的两端加可变电压。 利用PWM控制技术,通过控制PWM 信号的不同占空比,则绕组上平均电压可以被控制,从而控制电机转速。 在控制系统中采用DSP或单片机时,可利用器件中的PWM产生模块产生PWM波形。 根据转速要求设定占空比,然后输出6路PWM信号,加到6个功率管上。 以dsPIC30F2010单片机为例:
直流无刷电机驱动器工作原理

直流无刷电机驱动器工作原理
直流无刷电机驱动器工作原理是通过电子元件来控制电机的转速和方向。
它通常由功率电源、电机驱动电路和控制器三部分组成。
功率电源提供足够的电压和电流给电机驱动器。
它通常会将可变的交流电源转换为直流电源,以满足电机的电力需求。
然后,电机驱动电路将来自功率电源的电力信号传递给电机。
电机驱动电路包括电流放大器和电流传感器。
电流放大器负责控制电流的大小,以控制电机的转速和动力输出。
电流传感器用于监测电机的电流,以便及时传输正确的电流信号给电流放大器。
控制器是整个驱动器的“大脑”,它负责控制电机驱动电路的工作方式。
控制器通常由微处理器和相关的控制算法组成,通过对电机的控制信号进行处理和调节,实现电机的精确转速和方向控制。
控制器还可以根据要求提供各种附加功能,例如启动和停止电机、调整电机的转速、实现定速运行和反向旋转等。
直流无刷电机驱动器通过功率电源、电机驱动电路和控制器的协同工作,实现对电机的转速和方向的精确控制。
这种驱动器常见于许多应用领域,例如工业自动化、机器人技术、电动车辆和家电等。
它的高效性、可靠性和精确性使直流无刷电机驱动器在现代电动设备中得到广泛应用。
直流无刷电机驱动原理

直流无刷电机驱动原理直流无刷电机(Brushless DC Motor,简称BLDC)是一种通过电子器件控制转子转动的电机。
与传统的有刷直流电机相比,直流无刷电机具有结构简单、寿命长、效率高等优点,因此在许多领域得到广泛应用,如家电、汽车、航空航天等。
直流无刷电机的驱动原理主要包括电机结构、电机控制器和传感器三个方面。
首先,直流无刷电机的结构由转子和定子组成。
转子上的永磁体产生磁场,而定子上的线圈通过电流产生磁场。
当电流通过定子线圈时,定子磁场与转子磁场相互作用,产生转矩,从而驱动转子转动。
其次,直流无刷电机的控制器是实现电机转动的关键。
控制器主要由功率电子器件和控制电路组成。
功率电子器件包括MOSFET(金属氧化物半导体场效应晶体管)或IGBT(绝缘栅双极型晶体管),用于控制电流的通断。
控制电路则根据传感器反馈的信息,控制功率电子器件的开关状态,从而实现对电机的控制。
最后,直流无刷电机的传感器用于检测电机的转子位置和速度。
常用的传感器有霍尔传感器和编码器。
霍尔传感器通过检测转子磁场的变化,确定转子位置。
编码器则通过检测转子的旋转角度和速度,提供更精确的转子位置和速度信息。
传感器的反馈信息被送回控制器,用于控制电机的转动。
总结起来,直流无刷电机的驱动原理是通过控制器控制功率电子器件的开关状态,使电流按照一定的顺序流过定子线圈,从而产生转矩驱动转子转动。
传感器则用于检测转子位置和速度,提供反馈信息给控制器,实现对电机的精确控制。
直流无刷电机驱动原理的应用非常广泛。
在家电领域,直流无刷电机被广泛应用于洗衣机、冰箱、空调等产品中,提高了产品的效率和可靠性。
在汽车领域,直流无刷电机被用于驱动电动汽车的电机,实现零排放和高效能。
在航空航天领域,直流无刷电机被用于驱动飞机的舵机和飞行控制系统,提高了飞行的稳定性和安全性。
总之,直流无刷电机驱动原理是一种高效、可靠的电机驱动方式。
通过控制器和传感器的配合,实现对电机的精确控制,使其在各个领域发挥出更大的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无刷直流电机驱动James P. Johnson, Caterpiller公司本章的题目是无刷直流电动机及其驱动。
无刷直流电动机(BLDC)的运行仿效了有刷并励直流电动机或是永磁直流电动机的运行。
通过将原直流电动机的定子、转子内外对调—变成采用包含电枢绕组的交流定子和产生磁场的转子使得该仿效得以可能。
正如本章中要进一步讨论的,输入到BLDC定子绕组中的交流电流必须与转子位置同步更变,以便保持磁场定向,或优化定子电流与转子磁通的相互作用,类似于有刷直流电动机中换向器、电刷对绕组的作用。
该原理的实际运用只能在开关电子学新发展的今天方可出现。
BLDC电机控制是今天世界上发展最快的运动控制技术。
可以预见,随着BLDC的优点愈益被大家所熟知且燃油成本持续增加,BLDC必然会进一步广泛运用。
2011-01-3023.1 BLDC基本原理在众文献中无刷直流电动机有许多定义。
NEMA标准《运动/定位控制电动机和控制》中对“无刷直流电动机”的定义是:“无刷直流电动机是具有永久磁铁转子并具有转轴位置监测来实施电子换向的旋转自同步电机。
不论其驱动电子装置是否与电动机集成在一起还是彼此分离,只要满足这一定义均为所指。
”图23.1 无刷直流电机构形2011-01-31若干类型的电机和驱动被归类于无刷直流电机,它们包括:1 永磁同步电机(PMSMs);2 梯形反电势(back - EMF)表面安装磁铁无刷直流电机;3 正弦形表面安装磁铁无刷直流电机;4 内嵌式磁铁无刷直流电机;5 电机与驱动装置组合式无刷直流电机;6 轴向磁通无刷直流电机。
图23.1给出了几种较常见的无刷直流电机的构形图。
永磁同步电机反电势是正弦形的,其绕组如同其他交流电机一样通常不是满距,或是接近满距的集中式绕组。
许多无刷直流电机的绕组也是这样。
表面安装式磁铁无刷直流电机的反电势波形通常取决于磁铁的磁场取向。
要获得正弦形反电势的一般方法是采用磁铁的并联式磁化方向。
而梯形反电势则采用径向磁化方向。
最一般的无刷直流电机形式是4极,类梯形反电势波形的表面安装磁铁电机。
23.2 控制原理和控制策略一般的自同步无刷直流电动机逆变器和驱动的结构图如图23.2所示。
图中所示之驱动系统通常较多用于电压源逆变器(VSI)。
电压源逆变器的对应是电流源逆变器(CSI)。
VSI 之所以较为广泛运用是因为其成本、重量、动态性能,以及易于控制均优于CSI[1]。
两种逆变器重量和成本的差异是由于VSI采用电容器进行直流耦合,而CSI须要在整流器和逆变器之间接有笨重的电抗器。
VSI在动态响应能力上也与CSI不同。
由于大的电抗器的作用就是满足CSI作为恒流源的较大的换向重叠角的需要,防止电机绕组中电流的快速变化,抑制电机的高速伺服运行。
这就会加大驱动系统中阻尼器的尺寸。
对于CSI所期望得到的恒流控制和恒转矩控制性能,在VSI中,也可通过其内部的电流控制环中滞后型电流控制而近似得到。
2011-2-01术语“自同步”指的是为了定子相电流脉冲与电机各相反电势一致所需正确的各管导通顺序,驱动电路对即时转子位置信息的要求。
图23.2 基本的无刷直流电动机驱动图23.3是无刷直流电动机一经典的位置和转速控制方案的方框图。
如果仅仅期望转速控制,可以将位置控制器和位置反馈电路去掉。
通常在高性能的位置控制器中位置和转速传感器都是需要的。
如果仅有位置传感器而没有转速传感器,那就要求检测位置信号的差异,在模拟系统中就要导致噪声的放大;而在数字系统中这不是问题。
对于位置和转速控制的无刷直流电动机,位置传感器或者是其他获取转子位置信息的元件是一定要的。
图23.3经典转速和位置控制无刷直流电动机系统方框图许多高性能的应用场合为了转矩控制还需要电流反馈[1]。
至少,需要汇线电流反馈来防止电机和驱动系统过流。
当添加一内电流闭环控制就能实现非常快的电流源逆变器那样的性能,而不需要直流耦合电抗器,它被称为电流调节电压源逆变器(CRVSI)[1]。
驱动中的直流电压调节也可由作用类似直流电源的可控整流器来实现,或者既可通过在变换器中将PWM信号同时加在上下开关,也可通过仅仅加在上开关或下开关来实现。
2011-2-05采用仅通断下开关或仅通断上开关的PWM技术可减少开关损耗,而上下开关同时通断则正相反。
然而,如果运用提前角技术,上下两只管开和关,则由于在一个相臂上导通的开关管与另一相臂上的续流二极管间存在闭合路径,该路径产生的电流会导致负转矩。
不运用一个“斩波”开关来调节直流母线电压可在驱动系统中省去一个开关,但是采用直流调节开关,也仅有一只功率半导体器件承受PWM的较高的载波频率开关损耗。
采用可控整流器来改变直流母线电压要求额外的控制测量,增加开关损耗、驱动系统的原初成本和输电线功率因数控制的复杂性。
当该驱动系统由公用电站供电,通常在整流器后要装一电抗器来降低公共电网的电流谐波含量。
电抗器与直流耦合电容器共同工作形成一低通LC或比例-积分滤波器(CLC),该结构的截止频率足够低,可于一极低频率处封锁PWM的载波频率以及较低频率分量(如果有的话),诸如在调速驱动中。
直流耦合电容给逆变器的高频纹波电流提供了通路,而电抗器则封锁了较高的频率,让平均电流通过。
如果驱动系统由直流电源供电,也可以用一滤波器来减少流过电源的电磁骚扰。
如果没有采用PWM,单独电流控制对于非调节直流母线的高性能转矩控制也是有效的。
图23.3中的控制器方框“位置控制器”和“速度控制器”可以是如何型式的传统控制器,如比例-积分控制器,或是一较为先进的控制器。
“电流控制器和换向定序器”向三相逆变器提供适当的定序栅极信号,而将传感器所测电流与参照电流相比较,以通过滞后(电流斩波)或由一电压源(PWM)型电流控制来维持电流控制。
滞后电流控制可以是恒频滞后控制、频段滞后控制,或电平滞后控制。
电流控制可用来产生正弦电流波形、限制峰值,或产生方波电流波形,尤其工作在较低频率下的电机运行在电机性能曲线的转矩限制区域。
运用位置信息,换向定序器就使得逆变器实现“定子换向”,其作用如同直流电机中的机械换向器[2]。
2011-2-06参考文献3中给出开关的详细说明。
标准设置无刷电动机的换向角以使电动机在转矩角曲线的峰值附近换向。
就一台三角形联结或星形联结三相电动机来说,其换向发生在转矩角曲线峰值的前30º电角度或后30º电角度。
当电机的转子位置在峰值前移动了30º电角度,于是换向传感器就使得相应的定子相通电,其绕组激励后使得转子迅速地移动到相对于下一转矩角曲线峰值的-30º电角度的位置。
转矩曲线既可由线与线间联结的通电激励强迫转子转动,同时测量电机转矩时而得,也可通过施力于转轴,绕组加载,测量不同转子位置的转矩而得[3]。
一台梯形反电势电机的这些曲线的实际形状也应是梯形的。
然而,由于绕组构形、局部饱和、大部分饱和,以及漏磁的原因,梯形(反电势)电机的反电势曲线和转矩角曲线的形状更接近于扁平峰顶的正弦形[4]。
2011-2-08位置传感器通常既可以是一只3元件霍尔效应传感器,也可以是一只光学编码器。
角度控制器是另一选择,它可让电流脉冲相对于转子位置作相位移动(超前),允许电流脉冲在电流脉冲/ 相反电势基准线前接近完全建立,从而能够增加电机的转速范围。
角度的提前是因绕组电气时间常数的要求。
电流脉冲的建立需要一给定的时间值。
在较高的转速下,要求在电流脉冲与反电势一致前电流脉冲建立时间短一点也还可以。
这种形式运行的一个问题是其驱动或会“软”一些,例如在直流电机弱磁运行的场合。
“软”特性驱动是那种具备与正常的硬特性驱动相比在同样给定负载变化下转速变化较大的转速/ 负载转矩特性的驱动。
参考文献5中推断,若考虑系统是正弦系统(永磁同步电动机),或仅仅考虑准方波驱动电流和梯形反电势电压波形的基波,在角度超前运行中所需要的反应功率要增加。
23.3 转矩的产生图23.4给出一台三相、4极、12槽、满距、表面安装磁极、梯形反电势无刷直流电机的剖面图,等值电路图和相应的波形图。
图中的V ab,V bc和V ca是线反电势,它们是由永久磁铁的径向磁通穿过气隙,以与转子转速成正比的速率切割定子线圈而产生的。
波形V an,V bn和V cn是线对电机中性点的反电势,或相反电势电压,它们是由电机等值电路中的电压源来表示的。
定子线圈按标准三相满距集中布置,从而相梯形反电势波形彼此相差120º电角度(120ºe)。
图23.4中所示电流脉冲发生方式是120º电角度通电,60º电角度断电,平均每相电流流通于每360º电气周期的三分之二时间,正向120º电角度,反向120º电角度。
在一相各“通电”期间之间是60º电角度的“断电”时间,在此期间该相标记为“静默相”。
“静默相”期间典型用于无刷直流电机的“无传感器控制”中对反电势进行观测来确定转子位置。
图23.4 三相、4极无刷直流电机剖面图,等值电路图和相应的波形图另一开关规则系统的可能性包括改变电流脉冲的闭锁时间,也就是改变脉冲的“通电”时间。
闭锁时间理论上可以增加至180º电角度,然而,在一带有电感的实际电路中存在换向滞后,所以为换向的交搭,脉冲必须保持一些重叠余地(通常不到15º电角度)。
参考文献6中测定出通过系统地增加闭锁时间角,从低速时的120º电角度开始到高速时的180º电角度,在所有转速下都能获得最大转矩。
要获得最大转矩/ 电流比下的驱动,就得要求线电流脉冲要被特定相的线-中性点反电势电压所交搭。
由转矩产生的基本物理原理,即转矩= 总作用力×力臂,可得出最大转矩输出,式中的作用力由转子磁铁产生的磁通与定子线圈中的电流相互作用而产生。
由洛伦兹力方程式中N = 每相每槽匝数I = 线圈电流B = 磁通密度矢量L = 线圈边有效长在任意给定时间里都有两相通有直流电流。
对于以相同方向流动的电流,一给定极性的径向磁化磁铁在圆周方向上足够宽,足以覆盖两相邻的槽,从而在两槽中的线圈上产生力,这些力相加就形成一极下的总电磁力。
而电机总的力就是所有磁极下的力的总和。
例如,对一台径向磁化磁铁的无刷直流电机,整距绕组,两相同时与方波激励相互作用,磁铁圆周方向的跨距差不多等于磁极极弧,则转矩可由下式给出[7]:式中N p = 工作相的数目N t = 每相每槽匝数N spp = 每相每极槽数P = 磁极数I = 直流电流大小B g = 由磁铁给出的气隙径向磁密L = 定子和转子重合部分的铁心长度R = 转子外圆半径(力臂长)对于一台特定的电机几何形状的最为精确的静态转矩轮廓,在电机制造前,是采用一有限元软件包中的数值方法来确定的。