直流无刷电机的控制系统设计方案
无刷直流电动机控制系统

目录简介错误!未定义书签。
第一章直流无刷电机的工作原理71.根本工作原理72.无刷直流电动机的组成10第二章无刷直流电机的控制121.无刷直流电机的控制原理122.转子的控制143.速度的控制15第三章电机的反应151.电流测量152. RPM转速测量16第四章硬件设计161. LPC2141的使用方法16小结17电气与信息工程系课程设计评分表错误!未定义书签。
简介直流无刷电机:又称"无换向器电机交一直一交系统〞或"直交系统〞。
是将交流电源整流后变成直流,再由逆变器转换成频率可调的交流电,但是,注意此处逆变器是工作在直流斩波方式。
无刷直流电动机Brushless Direct CurrentMotor ,BLDC,采用方波自控式永磁同步电机,以霍尔传感器取代碳刷换向器,以钕铁硼作为转子的永磁材料;产品性能超越传统直流电机的所有优点,同时又解决了直流电机碳刷滑环的缺点,数字式控制,是当今最理想的调速电机。
无刷直流电动机具有上述的三高特性,非常适合使用在24小时连续运转的产业机械及空调冷冻主机、风机水泵、空气压缩机负载;低速高转矩及高频繁正反转不发热的特性,更适合应用于机床工作母机及牵引电机的驱动;其稳速运转精度比直流有刷电机更高,比矢量控制或直接转矩控制速度闭环的变频驱动还要高,性能价格比更好,是现代化调速驱动的最正确选择。
目前,在微小功率畴直流无刷电动机是开展较快的新型电机。
由于各个应用领域需要各自独特的直流无刷电动机,所以直流无刷电动机的类型较多。
大体上有计算机外存储器以及VCD、DVD、CD主轴驱动用扁平式无铁心电机构造,小型通风机用外转子电机构造,家电用多极磁场构造及装式构造,电动自行车用多极、外转子构造等等。
上述直流无刷电动机的电机本身和电路均成一体,使用十分方便,它的产量也非常大。
为了满足大批量、低本钱的市场需要,直流无刷电动机的生产必须要形成规模经济。
因此,直流无刷电动机是一种高投入、高产出的行业。
无刷直流电机控制系统设计与实现

无刷直流电机控制系统设计与实现一、本文概述随着科技的不断进步和电机技术的快速发展,无刷直流电机(Brushless Direct Current, BLDC)因其高效率、低噪音、长寿命等优点,在电动工具、航空航天、汽车电子、家用电器等多个领域得到了广泛应用。
然而,要实现无刷直流电机的高效、稳定运行,离不开先进且可靠的控制系统。
本文旨在对无刷直流电机控制系统的设计与实现进行深入探讨,分析控制策略、硬件构成和软件编程,并结合实例,详细阐述控制系统在实际应用中的表现与优化方向。
通过本文的研究,希望能够为相关领域的学者和工程师提供有价值的参考,推动无刷直流电机控制系统技术的进一步发展和应用。
二、无刷直流电机基本原理无刷直流电机(Brushless DC Motor, BLDCM)是一种采用电子换向器代替传统机械换向器的直流电机。
其基本工作原理与传统的直流电机相似,即利用磁场与电流之间的相互作用产生转矩,从而实现电机的旋转。
但与传统直流电机不同的是,无刷直流电机在结构上取消了碳刷和换向器,采用电子换向技术,通过电子控制器对电机内部的绕组进行通电控制,从而实现电机的旋转。
无刷直流电机通常由定子、转子、电子控制器和位置传感器等部分组成。
定子由铁芯和绕组组成,负责产生磁场;转子则是由永磁体或电磁铁构成,负责在磁场中受力旋转。
电子控制器是无刷直流电机的核心部分,它根据位置传感器提供的转子位置信息,控制电机绕组的通电顺序和通电时间,从而实现电机的连续旋转。
位置传感器则负责检测转子的位置,为电子控制器提供反馈信号。
在无刷直流电机的工作过程中,当电机绕组通电时,会在定子中产生一个旋转磁场。
由于转子上的永磁体或电磁铁与定子磁场之间存在相互作用力,转子会在定子磁场的作用下开始旋转。
当转子旋转到一定位置时,位置传感器会向电子控制器发送信号,电子控制器根据接收到的信号控制电机绕组的通电顺序和通电时间,使定子磁场的方向发生变化,从而驱动转子继续旋转。
无刷直流电机控制系统设计

无刷直流电机控制系统设计
随着工业自动化及机械自动化的不断发展,无刷直流电机在电动控制中扮演着越来越重要的角色,其结构简单、调节性能好、噪音小、动力大,被广泛应用于变速调速、机械运动及位移控制等领域。
研究与设计一个简单且效果实用的无刷直流电机控制系统具有重要的现实意义。
首先,需要了解无刷直流电机的结构和原理,以及要控制的电机的类型、动力和控制环境,以便明确需要控制的参数,采用相应的控制方法与技术。
其次,构建控制系统结构,包括控制方式、控制器、控制环境和被控对象。
需要选择合适的控制方式,如模糊控制、PID(比例积分微分)控制或其他控制方式,选择正确的控制器,如处理器、交流传感器等;选择合适的控制环境,如上位机控制、模块化控制或单片机控制等;设计合适的传输接口,确保传感器与控制器的连接和信号传输;设计系统调整方式,可根据电机驱动控制需要使用模拟调整或数字调整。
最后,根据电机实际性能进行测试验证,完善无刷直流电机控制系统,以及编写系统操作使用说明文档,以此来推动电机控制系统对更多应用领域的延伸。
综上所述,构建一个完善的无刷直流电机控制系统需要考虑的因素有:了解电机结构及控制原理,构建控制系统的结构,选择实用的控制技术,设计传感器与控制器的接口,执行控制系统的调整,完善和验证系统,以及编写系统文档。
仅通过控制系统的理解与设计,不同应用领域中的无刷直流电机控制系统才能获得更好的控制效果。
直流无刷电机的控制系统设计方案

直流无刷电机的控制系统设计方案1 引言1.1 题目综述直流无刷电机是在有刷直流电机的基础上发展起来的,它不仅保留了有刷直流电机良好的调试性能,而且还克服了有刷直流电机机械换相带来的火花、噪声、无线电干扰、寿命短及制造成本高和维修困难等等的缺点。
与其它种类的电机相比它具有鲜明的特征:低噪声、体积小、散热性能好、调试性能好、控制灵活、高效率、长寿命等一系列优点。
基于这么多的优点无刷直流电机有了广泛的应用。
比如电动汽车的核心驱动部件、电动车门、汽车空调、雨刮刷、安全气囊;家用电器中的DVD、VCD、空调和冰箱的压缩机、洗衣机;办公领域的传真机、复印机、碎纸机等;工业领域的纺织机械、医疗、印刷机和数控机床等行业;水下机器人等等诸多应用[1]。
1.2 国内外研究状况目前,国内无刷直流电机的控制技术已经比较成熟,我国已经制定了GJB1863无刷直流电机通用规范。
外国的一些技术和中国的一些技术大体相当,美国和日本的相对比较先进。
当新型功率半导体器件:GTR、MOSFET、IGBT等的出现,以及钕铁硼、钐鈷等高性能永磁材料的出现,都为直流电机的应用奠定了坚实的基础。
近些年来,计算机和控制技术快速发展。
单片机、DSP、FPGA、CPLD等控制器被应用到了直流电机控制系统中,一些先进控制技术也同时被应用了到无刷直流电机控制系统中,这些发展都为直流电机的发展奠定了坚实的基础。
经过这么多年的发展,我国对无刷电机的控制已经有了很大的提高,但是与国外的技术相比还是相差很远,需要继续努力。
所以对无刷直流电机控制系统的研究学习仍是国内的重要研究内容[2]。
1.3 课题设计的主要内容本文以永磁方波无刷直流电机为控制对象,主要学习了电机的位置检测技术、电机的启动方法、调速控制策略等。
选定合适的方案,设计硬件电路并编写程序调试,最终设计了一套无位置传感器的无刷直流电机调速系统。
本课题涉及的技术概括如下:(1)学习直流无刷电机的基本结构、工作原理、数学模型等是学习电机的前提和首要内容。
无刷直流电机控制系统设计

s i g n a l s a r e a d j u s t e d t o r e a l i z e t h e c l o s e l o o p c o n t r o l f o t h e mo t o r w i t h a p p r o p r i a t e P I a r i t h m e t i c .
P WM 信 号 实现 电机 转 速 闭环 控 制 。 关键词 : d s P I C3 O F 4 0 1 1 , 无刷 直 流 电机 , I M1 4 4 0 0, 闭环 控 制
Ab s t ac t T hi s p ape r i n t r o duc e s a br u sh t es s di r ec t c ur r e n t mo t or c on t r o l s y s t em , a n d r ea l i l Th e s y s t em
co ns i s t s o f br u s hl es s di r ec t cu r r en t mo t o r , ds PI C3 0F 4 01 1 m i cr oc on t r o l l er , I M1 4 40 0 dr i v e ci r c ui t 。 et c S y s t e m c om p l e t e s a c qui s i 。 t i on o f h al l p os i t i on s e ns or si gn al , ou t pu t o f mot or c o mmu t a t i o n s i gn a l s , me a su r emen t o f mot or S s pee da nd t h e di gi t al P W M
永磁无刷直流电机控制系统设计

永磁无刷直流电机控制系统设计1.电机模型的建立:建立电机的数学模型是进行控制系统设计的第一步。
永磁无刷直流电机可以使用动态数学模型来描述其动态特性,常用的模型包括简化的转子动态模型和电动机状态空间模型。
简化的转子动态模型以电机的电磁转矩方程为基础,通过建立电机的电流-转速模型来描述电机的动态响应。
这个模型通常用于低频控制和电机启动阶段的设计。
电动机状态空间模型则是通过将电机的状态变量表示为电流和转速变量,用微分方程的形式描述电机的动态特性。
这个模型适用于高频控制和电机稳态响应分析。
2.控制器设计:经典的控制方法包括比例积分控制器(PI)和比例积分微分控制器(PID)。
比例积分控制器是最简单的控制器,通过调节电流的比例增益和积分时间来控制电机的速度。
这种控制器适用于低精度控制和对动态响应要求不高的应用。
比例积分微分控制器在比例积分控制器的基础上增加了微分项,通过调节微分时间来控制系统的阻尼比,提高系统的稳定性和动态响应。
3.参数调节:在控制器设计中,参数调节和整定是非常重要的环节,主要包括根据系统的要求选择合适的控制器参数,并进行优化。
参数调节可以通过试探法、经验法和优化算法等方法进行。
其中,试探法和经验法是相对简单的方法,通过调整控制器的参数值来达到稳定运行或者较好的控制性能。
优化算法可以通过数学模型和计算机仿真的方式进行,通过优化目标函数和约束条件,得到最合适的控制器参数。
总结起来,永磁无刷直流电机控制系统设计主要包括电机模型的建立、控制器设计和参数调节。
在设计过程中,需要根据系统的要求选择合适的控制器,通过参数调节和优化算法来提高系统的稳定性和动态性能。
基于stm32的无刷直流电机控制系统设计

基于STM32的无刷直流电机控制系统设计随着现代工业技术的不断发展,无刷直流电机在各行各业中得到了广泛的应用。
无刷直流电机具有结构简单、效率高、寿命长等优点,因此在工业控制系统中得到了广泛的应用。
为了更好地满足工业生产的需求,研发出一套基于STM32的无刷直流电机控制系统,对于提高工业生产效率、减少人力成本具有非常重要的意义。
1. 系统设计需求1.1 电机控制需求电机控制系统需要能够实现对无刷直流电机的启动、停止、加速、减速等控制功能,以满足不同工业生产环境下的需求。
1.2 控制精度要求控制系统需要具有较高的控制精度,能够实现对电机的精确控制,提高生产效率。
1.3 系统稳定性和可靠性系统需要具有良好的稳定性和可靠性,确保在长时间运行的情况下能够正常工作,减少故障率。
1.4 节能环保控制系统需要具有节能环保的特点,能够有效降低能耗,减少对环境的影响。
2. 系统设计方案2.1 选用STM32微控制器选用STM32系列微控制器作为控制系统的核心,STM32系列微控制器具有性能强大、低功耗、丰富的外设接口等优点,能够满足对控制系统的各项要求。
2.2 传感器选型选用合适的传感器对电机运行状态进行监测,以实现对电机的精确控制,提高控制系统的稳定性和可靠性。
2.3 驱动电路设计设计合适的驱动电路,能够实现对无刷直流电机的启动、停止、加速、减速等控制,并且具有较高的控制精度。
2.4 控制算法设计设计优化的控制算法,能够实现对电机的精确控制,提高控制系统的稳定性和可靠性,同时具有节能环保的特点。
3. 系统实现与测试3.1 硬件设计按照系统设计方案,完成硬件设计,并且进行相应的电路仿真和验证。
3.2 软件设计编写控制系统的软件程序,包括控制算法实现、传感器数据采集和处理、驱动电路控制等方面。
3.3 系统测试对设计好的控制系统进行各项功能测试,包括启动、停止、加速、减速等控制功能的测试,以及系统稳定性和可靠性的测试。
无刷直流电机控制系统的设计——毕业设计

无刷直流电机控制系统的设计——毕业设计学号:1008421057本科毕业论文(设计)(2014届)直流无刷电机控制系统的设计院系电子信息工程学院专业电子信息工程姓名胡杰指导教师陆俊峰陈兵兵高工助教2014年4月摘要无刷直流电机的基础是有刷直流电机,无刷直流电机是在其基础上发展起来的。
现在无刷直流电机在各种传动应用中虽然还不是主导地位,但是无刷直流电机已经受到了很大的关注。
自上世纪以来,人们的生活水平在不断地提高,人们在办公、工业、生产、电器等领域设备中越来越趋于小型化、智能化、高效率化,而作为所有领域的执行设备电机也在不断地发展,人们对电机的要求也在不断地改变。
现阶段的电机的要求是高效率、高速度、高精度等,由此无刷直流电机的应用也在随着人们的要求的转变而不断地迅速的增长。
本系统的设计主要是通过一个控制系统来驱动无刷直流电机,主要以DSPIC30F2010芯片作为主控芯片,通过控制电路采集电机反馈的霍尔信号和比较电平然后通过编程的方式来控制直流无刷电机的速度和启动停止。
关键词:控制系统;DSPIC30F2010芯片;无刷直流电机AbstractBrushless dc motor is the basis of brushless dc motor, brushless dc motor is developed on the basis of its. Now in all kinds of brushless dc motor drive applications while it is not the dominant position, but the brushless dc motor has been a great deal of attention.Since the last century, constantly improve the people's standard of living, people in the office, industrial, manufacturing, electrical appliances and other fields increasingly tend to be miniaturization, intelligence, high efficiency, and as all equipment in the field of motor is in constant development, people on the requirements of the motor is in constant change. At this stage of the requirements of the motor is high efficiency, high speed, high precision and so on, so is the application of brushless dc motor as the change of people's requirements and continuously rapid growth.The design of this system mainly through a control system to drive the brushless dc motor, mainly dspic30f2010 chips as the main control chip, through collecting motor feedback control circuit of hall signal and compare and then programmatically to control the speed of brushless motor and started to stop.Keywords: Control system; dspic30f2010 chip; brushless DC motor目录摘要 (I)Abstract (III)目录 (IV)1 引言 01.1 研究背景及意义 01.2 国内外研究现状 (1)1.3 设计任务与要求 (1)2 基本理论 (1)2.1 无刷直流电机的结构以及基本原理 (1)2.2 无刷直流电机的运行特性 (4)2.3 无刷直流电机的应用 (5)3 直流无刷直流电机控制系统的设计 (6)3.1 无刷直流电动机系统的组成部分 (6)3.2 无刷直流电机控制系统的设计 (8)4 直流无刷电机的电路设计 (9)4.1 开关电路的设计 (9)4.2 保护电路的设计 (9)4.3 驱动电路的设计 (10)4.4 反馈电路的设计 (10)4.5 电源电路的设计 (11)5 直流无刷电机控制系统的软件设计 (11)5.1 系统功能的实现 (12)5.2 软件流程图 (12)6 实物成果及展望 (13)致谢 (16)参考文献 (16)附录 (19)1 引言近年来随着微电子技术自动控制技术和新型永磁材料的发展,无刷直流电机的应用越来越广泛。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直流无刷电机的控制系统设计方案1 引言1.1 题目综述直流无刷电机是在有刷直流电机的基础上发展起来的,它不仅保留了有刷直流电机良好的调试性能,而且还克服了有刷直流电机机械换相带来的火花、噪声、无线电干扰、寿命短及制造成本高和维修困难等等的缺点。
与其它种类的电机相比它具有鲜明的特征:低噪声、体积小、散热性能好、调试性能好、控制灵活、高效率、长寿命等一系列优点。
基于这么多的优点无刷直流电机有了广泛的应用。
比如电动汽车的核心驱动部件、电动车门、汽车空调、雨刮刷、安全气囊;家用电器中的DVD、VCD、空调和冰箱的压缩机、洗衣机;办公领域的传真机、复印机、碎纸机等;工业领域的纺织机械、医疗、印刷机和数控机床等行业;水下机器人等等诸多应用[1]。
1.2 国外研究状况目前,国无刷直流电机的控制技术已经比较成熟,我国已经制定了GJB1863无刷直流电机通用规。
外国的一些技术和中国的一些技术大体相当,美国和日本的相对比较先进。
当新型功率半导体器件:GTR、MOSFET、IGBT等的出现,以及钕铁硼、钐鈷等高性能永磁材料的出现,都为直流电机的应用奠定了坚实的基础。
近些年来,计算机和控制技术快速发展。
单片机、DSP、FPGA、CPLD等控制器被应用到了直流电机控制系统中,一些先进控制技术也同时被应用了到无刷直流电机控制系统中,这些发展都为直流电机的发展奠定了坚实的基础。
经过这么多年的发展,我国对无刷电机的控制已经有了很大的提高,但是与国外的技术相比还是相差很远,需要继续努力。
所以对无刷直流电机控制系统的研究学习仍是国的重要研究容[2]。
1.3 课题设计的主要容本文以永磁方波无刷直流电机为控制对象,主要学习了电机的位置检测技术、电机的启动方法、调速控制策略等。
选定合适的方案,设计硬件电路并编写程序调试,最终设计了一套无位置传感器的无刷直流电机调速系统。
本课题涉及的技术概括如下:(1)学习直流无刷电机的基本结构、工作原理、数学模型等是学习电机的前提和首要容。
(2)直流无刷电机的转子位置检测技术,我选用最常用的反电势检测技术,本文分析了反电势法的原理,并设计了反电势的硬件实电路,进行了焊接与调试。
(3)由于无刷直流电机在静止或者转速很低的时候,其产生的反电势为零或者很小很不容易检测到,因此直流无刷电机的启动是一个难点。
(4)分析了速度换的单闭环控制策略,并用matlab guide设计了上位机界面来实现PID参数的实时整定。
(5)在确定无刷直流电机控制系统的硬件总体方案时,经过对比选择STM32芯片,选智能功率模块FSBB30CH60C为驱动芯片,并设计了无刷直流电机控制驱动电路、反电势转子位置检测电路及电流电压采样电路等。
(6)最后对整套控制系统进行了实验调试,包括软、硬件的调试,并对调试结果进行了分析。
2 系统设计目标和设计方案2.1系统设计目标直流无刷电机因为调试性能好、低噪声、体积小、控制灵活、高效率、散热性能好、寿命长等一系列的优点,本课题设计目标如下:(1)能够驱动直流无刷电机的运转并有电路保护以免器件烧坏。
(2)能够实时准确的检测到直流无刷电机转子的位置。
(3)能够实现对电机启动和停止的控制。
(4)能够通过滑动变阻器来实现直流无刷电机的无极调速。
(5)电路具有电流、电压保护,以免对电路产生不良影响。
2.2控制系统结构总体框图的设计直流无刷无感电机的控制系统能够实现的主要功能:能够准确实时的检测到无刷直流电机转子的位置、能够用三段式技术使电机能够很好的启动、PID调节技术、速度环的控制、电压保护、电流保护等主要关键的控制技术。
电机调速原理框图如下图1所示。
图1 电机调速原理框图2.3硬件系统方案论证为了能够实现无刷直流电机的可靠运转、无极调速等一系列的优点,需要选择合适的元器件来满足本课题设计的需求。
2.3.1 控制器芯片选型对直流无刷电机控制所用微处理器的选型要重点考虑以下几个方面:(1)微处理器的运行频率和运算速度得满足控制系统要求(2)微处理器片资源是否足够,主要是I/O口的数量和电平兼容性、A/D路数及位数。
(3)微处理器的体积、工作温度等是否满足系统要求。
(4)微处理器的可靠性、生产厂商、数量和价格、上市时间等因素也需要考虑,这关系到产品的后续更新换代,以及采用该处理器开发的难易程度。
基于ARM Corte-M3核32位单片机STM32,时钟频率最大可达72MHZ,在数字处理上经过了优化,所以本设计选用STM32F103ZET6单片机。
2.3.2 无刷直流电机的选型在选用直流无刷电机的时候,必须根据它的参数来判断其驱动电路,无刷电机的参数如表1所示:表1 无刷直流电机的参数外转无刷电机KV 最大效率电流无负载流/10v最大电流最大效率y轴径(mm)重量电阻尺寸(mm)A2212/13 KV1000 4~10A 0.5A 12A/60s 80% 3.17 47g 90mΩ27.5*30 新西达无刷电机/2212KV1000 如图2。
图2 直流无刷电机2.3.3驱动电路的选型智能功率模块选择的是FSBB30CH60C,它把驱动电路和开关电路集成在了一起,部有欠压、过压、过流故障检测电路,CPU可以进行实时的检测。
还包括三个HVIC、一个LVIC(门极驱动低压集成电路)、六个先进技术的IGBT、六个FRD。
智能功率模块的元器件图如图3所示。
图3 智能功率模块2.3.4位置检测器件选型反电势过零点检测原理是模拟中性点和端电压的值相等得到,由STM32端口和连接霍尔传感器接口的关系,需用三路比较电路,LM339N由四路比较电路组成,可选用LM339N 比较电路实现。
LM339N部框图如图4所示:图4 比较器LM339N3控制系统的工作原理和硬件设计3.1直流无刷电机的工作原理本设计选用的电机类型为三相星型连接。
控制器产生六路PWM波控制驱动电路,位置检测用的反电势过零点技术。
工作原理如图5所示。
图5 直流电机工作原理图在图5中,当转子顺时针转到(a)时,反电势过零信号延时30°电角度后,输出的信号送往单片机,单片机输出信号让T1、T6 导通。
这时电流从电源正极流出,经T1流往A相绕组,再由B相绕组流出,经T6回到电源的负极,此时由于定子和转子磁场的相互作用,使电机的转子顺时针转动。
当转子转过60电角度,即到(b)时,反电势过零信号延时30°电角度后,输出的信号送往单片机,单片机让T1、T2导通,这时电流从电源的正极流出,经T1流往A相绕组,再由C相绕组流出,经T2回到电源负极。
此时由于定子和转子磁场的相互作用,使电机的转子继续顺时针转动。
同样按照这个方式,电机可以顺利的转动起来。
电机有六种磁状态,每种状态导通120度,每次由两相导通,无刷电机就是两相导通星型三相六状态的工作方式[3]。
3.2无刷电机的反电势法位置检测原理观察转子位置和反电势之间的关系如图6所示,转子状态由a)变为b)过程中反电势波形和转子位置之间的关系,反电势波形为B相绕组的反电势,当转子由a)初始状态转过30°电角度时,转子的磁场方向正好和B相绕组轴线重合,不切割B相绕组导线,此时B相绕组的反电势正好为零。
由图可知,由b)到c)要进行换相动作,因此可利用反电势过零点确定转子的位置,进而控制电机的换相,这就是直流无刷无感电机反电势检测及控制换相的原理[4]。
图6 电机反电势位置检测图3.3电源模块由于STM32F103所需供电电压是3.3V,图7是把5V转换成3.3V电压的电路。
图7 STM32103的供电电源3.4 MCU控制模块MCU主控电路是整个无刷直流电机控制系统的控制中心,负责控制逆变器六个桥臂的通断、采集电压、采集电流、检测直流无刷无感电机的位置(电机的反电势检测)、PID的运算、无刷直流电机启动的控制、JTAG调试下载等。
STM32最小系统由STM32F103芯片、复位电路、晶振电路和JTAG接口电路组成(1)STM32F103芯片电路如图8所示:图8 STM32芯片(2)复位电路和晶振电路STM32有两个外部晶振电路和两个部晶振电路。
两个部晶振电路需要程序配置编程即可,但外部的晶振电路需要晶振电路元器件搭建而成。
如图所示的32.768K和8M 的晶振电路。
晶振和复位电路如图9所示。
图9 晶振和复位电路(3)JTAG接口电路JTAG接口电路实现了程序下载及程序的在线调试仿真,使用它可以方便调试程序,缩短了开发周期。
由于STM32F103ZET6的JTAG输入引脚部嵌入了上拉或下拉电阻,因而可以直接连接电路到芯片相应引脚。
JTAG接口电路如图10所示。
图10 JTAG 接口电路(4)USB接口电路这里的USB单纯的是供电用的。
如图11所示:图11 USB接口电路3.5 IPM功率模块(1)MUC-IPM驱动信号接口电路FSBB30CH60C置HVIC,无需光耦就可以用MCU驱动IPM的六个桥臂。
STM32的高级定时器TIM1功能强大,利用COM事件控制产生6路H_PWM_L_PWM的换相。
这6个控制桥臂引脚要和STM32的PE8、PE9、PE10、PE11、PE12、PE13、PE15相连。
驱动信号接口电路如图12所示。
图12 MUC-IPM驱动信号接口电路(2)短路电流保护电路IPM具有置短路电流保护的功能,要在芯片引脚Csc上外加一个分流电阻。
IPM 检测Csc管脚的电压,当电压超过模块指定的Vsc(0.5V)时,IPM产生一个故障信号IPM通过电阻R16来检测N恻电流环节的线路电流,这里设定瞬时电流保护值为30A,检测电阻R16选取阻值为10mΩ,功率为10W的无感电阻。
R32、C40构成滤波电路。
另外检测电阻R16需要并联一个小电容,作用是消除上电瞬时大电流导致的电流保护误动作。
(3)故障输出报警电路C38为0.22uf的高频无感电容,作用是防止浪涌电流破坏,Vof是IPM故障输出报警引脚。
TIM1_BKIN引脚是刹车功能引脚,和此处的Vfo引脚相连,在IPM出现故障时通过此脚输出低电平到STM32,配合TIM1刹车功能可以实现系统保护功能。
所加的电容C18是用来消除噪声干扰,确保出现故障时及时报警。
故障输出信号脉宽是有引脚Cfod的外接电容C24决定的,具体计算公式是t=C24/(),这里通常选取C24为33nF,此时t=1.8ms。
3.6反电势位置检测模块反电势位置检测电路如图13所示。
这里选用响应时间为1.3us的LM339芯片。
定子三相绕组端电压A、B、C经滤波和分压电路,送到比较器LM339N的输入端,与参考电压比较,获得各相反电势的过零点。
反电势过零点延时30°电角度后的信号用于电机的换相,进而去控制电机的转动。