2019-2020学年遵义市中考数学模拟试卷(有标准答案)(Word版)

合集下载

贵州省遵义市2019-2020学年第四次中考模拟考试数学试卷含解析

贵州省遵义市2019-2020学年第四次中考模拟考试数学试卷含解析

贵州省遵义市2019-2020学年第四次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.计算232332x y x y xy ⋅÷的结果是( ). A .55xB .46xC .56xD .46x y2.如图1,一个扇形纸片的圆心角为90°,半径为1.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )A .4233π- B .8433π- C .8233π- D .843π- 3.如图,甲、乙、丙图形都是由大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数.其中主视图相同的是( )A .仅有甲和乙相同B .仅有甲和丙相同C .仅有乙和丙相同D .甲、乙、丙都相同4.如图是我市4月1日至7日一周内“日平均气温变化统计图”,在这组数据中,众数和中位数分别是( )A .13;13B .14;10C .14;13D .13;145.如图,已知l 1∥l 2,∠A=40°,∠1=60°,则∠2的度数为( )A .40°B .60°C .80°D .100°6.已知线段AB=8cm ,点C 是直线AB 上一点,BC=2cm ,若M 是AB 的中点,N 是BC 的中点,则线段MN 的长度为( ) A .5cmB .5cm 或3cmC .7cm 或3cmD .7cm7.如果菱形的一边长是8,那么它的周长是( ) A .16B .32C .16D .328.如图,点P 是菱形ABCD 边上的一动点,它从点A 出发沿在A→B→C→D 路径匀速运动到点D ,设△PAD 的面积为y ,P 点的运动时间为x ,则y 关于x 的函数图象大致为( )A .B .C .D .9.如图,AB 是⊙O 的弦,半径OC ⊥AB 于D ,若CD=2,⊙O 的半径为5,那么AB 的长为( )A .3B .4C .6D .810.为了解某班学生每周做家务劳动的时间,某综合实践活动小组对该班9名学生进行了调查,有关数据如下表.则这9名学生每周做家务劳动的时间的众数及中位数分别是( ) 每周做家务的时间(小时) 0 1 2 3 4 人数(人) 22 311A .3,2.5B .1,2C .3,3D .2,211.如图,已知数轴上的点A 、B 表示的实数分别为a ,b ,那么下列等式成立的是( )A .a b a b +=-B .a b a b +=--C .a b b a +=-D .a b a b +=+12.纳米是一种长度单位,1纳米=10-9米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示该种花粉的直径为( )A .43.510⨯米B .43.510-⨯米C .53.510-⨯米D .93.510-⨯米二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知线段a=4,b=1,如果线段c 是线段a 、b 的比例中项,那么c=_____. 14.计算:31-22的结果是_____. 15.如图,点1A 、2A 、3A ⋯在直线y x =上,点1C ,2C ,3C ⋯在直线y 2x =上,以它们为顶点依次构造第一个正方形1121A C A B ,第二个正方形2232A C A B ⋯,若2A 的横坐标是1,则3B 的坐标是______,第n 个正方形的面积是______.16.如图,在平面直角坐标系中,正方形ABOC 和正方形DOFE 的顶点B ,F 在x 轴上,顶点C ,D 在y 轴上,且S △ADC =4,反比例函数y=kx(x >0)的图像经过点E , 则k=_______ 。

贵州省遵义市2019-2020学年中考数学模拟试题(3)含解析

贵州省遵义市2019-2020学年中考数学模拟试题(3)含解析

贵州省遵义市2019-2020学年中考数学模拟试题(3)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( ) A .47B .37C .34D .132.如图,已知点A (1,0),B (0,2),以AB 为边在第一象限内作正方形ABCD ,直线CD 与y 轴交于点G ,再以DG 为边在第一象限内作正方形DEFG ,若反比例函数xky的图像经过点E ,则k 的值是 ( )(A )33 (B )34 (C )35 (D )363.地球上的陆地面积约为149 000 000千米2,用科学记数法表示为 ( ) A .149×106千米2 B .14.9×107千米2 C .1.49×108千米2 D .0.149×109千24.小颖随机抽样调查本校20名女同学所穿运动鞋尺码,并统计如表:学校附近的商店经理根据统计表决定本月多进尺码为23.0cm 的女式运动鞋,商店经理的这一决定应用的统计量是( ) A .平均数B .加权平均数C .众数D .中位数5.2018 年 1 月份,菏泽市市区一周空气质量报告中某项污染指数的数据是 41, 45,41,44,40,42,41,这组数据的中位数、众数分别是( ) A .42,41B .41,42C .41,41D .42,456.如图,在△ABC 中,∠ABC=90°,AB=8,BC=1.若DE 是△ABC 的中位线,延长DE 交△ABC 的外角∠ACM 的平分线于点F ,则线段DF 的长为( )A.7 B.8 C.9 D.10 7.下列说法正确的是()A.﹣3是相反数B.3与﹣3互为相反数C.3与13互为相反数D.3与﹣13互为相反数8.如图是由长方体和圆柱组成的几何体,它的俯视图是()A.B.C.D.9.如图所示,ABC△的顶点是正方形网格的格点,则sin A的值为()A.12B.5C.25D.101010.下列方程中,是一元二次方程的是()A.2x﹣y=3 B.x2+1x=2 C.x2+1=x2﹣1 D.x(x﹣1)=011.如果,则a的取值范围是( )A.a>0 B.a≥0C.a≤0D.a<0 12.下列说法中正确的是()A.检测一批灯泡的使用寿命适宜用普查.B.抛掷一枚均匀的硬币,正面朝上的概率是12,如果抛掷10次,就一定有5次正面朝上.C.“367人中有两人是同月同日生”为必然事件. D.“多边形内角和与外角和相等”是不可能事件.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.一个扇形的弧长是83π,它的面积是163π,这个扇形的圆心角度数是_____. 14.如果a 是不为1的有理数,我们把11a-称为a 的差倒数如:2的差倒数是1112=--,-1的差倒数是111(1)2=--,已知14a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,…,依此类推,则2019a =___________ .15.用换元法解方程2231512x x x x -+=-,设y=21x x -,那么原方程化为关于y 的整式方程是_____. 16.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?” 译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x 两,每只羊值金y 两,可列方程组为_____.17.如图,在△ABC 中,点E ,F 分别是AC ,BC 的中点,若S 四边形ABFE =9,则S 三角形EFC =________.18.如图,在Rt △ABC 中,∠B =90°,AB =3,BC =4,将△ABC 折叠,使点B 恰好落在边AC 上,与点B′重合,AE 为折痕,则EB′= _______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,某人在山坡坡脚C 处测得一座建筑物顶点A 的仰角为63.4°,沿山坡向上走到P 处再测得该建筑物顶点A 的仰角为53°.已知BC =90米,且B 、C 、D 在同一条直线上,山坡坡度i =5:1. (1)求此人所在位置点P 的铅直高度.(结果精确到0.1米)(2)求此人从所在位置点P 走到建筑物底部B 点的路程(结果精确到0.1米)(测倾器的高度忽略不计,参考数据:tan53°≈43,tan63.4°≈2)20.(6分)如图,在Rt △ABC 中,∠C =90°,以BC 为直径作⊙O 交AB 于点D ,取AC 的中点E ,边结DE ,OE 、OD ,求证:DE 是⊙O 的切线.21.(6分)如图,在平面直角坐标系中,直线l :()0y kx k k =+≠与x 轴,y 轴分别交于A ,B 两点,且点()0,2B ,点P 在y 轴正半轴上运动,过点P 作平行于x 轴的直线y t =.(1)求k 的值和点A 的坐标;(2)当4t =时,直线y t =与直线l 交于点M ,反比例函数()0ny n x=≠的图象经过点M ,求反比例函数的解析式;(3)当4t <时,若直线y t =与直线l 和(2)反比例函数的图象分别交于点C ,D ,当CD 间距离大于等于2时,求t 的取值范围.22.(8分)如图,在Rt △ABC 中∠ABC=90°,AC 的垂直平分线交BC 于D 点,交AC 于E 点,OC=OD . (1)若3sin 4A =,DC=4,求AB 的长; (2)连接BE ,若BE 是△DEC 的外接圆的切线,求∠C 的度数.23.(8分)如图,我们把一个半圆和抛物线的一部分围成的封闭图形称为“果圆”,已知A B C D,,,分别为“果圆”与坐标轴的交点,直线334y x=-与“果圆”中的抛物线234y x bx c=++交于B C、两点(1)求“果圆”中抛物线的解析式,并直接写出“果圆”被y轴截得的线段BD的长;(2)如图,E为直线BC下方“果圆”上一点,连接AE AB BE、、,设AE与BC交于F,BEF△的面积记为BEFSV,ABFV的面积即为ABFS△,求ABFBEFSSVV的最小值(3)“果圆”上是否存在点P,使APC CAB∠=∠,如果存在,直接写出点P坐标,如果不存在,请说明理由24.(10分)如图1,经过原点O的抛物线y=ax2+bx(a≠0)与x轴交于另一点A(32,0),在第一象限内与直线y=x交于点B(2,t).(1)求这条抛物线的表达式;(2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;(3)如图2,若点M在这条抛物线上,且∠MBO=∠ABO,在(2)的条件下,是否存在点P,使得△POC∽△MOB?若存在,求出点P的坐标;若不存在,请说明理由.25.(10分)“不出城郭而获山水之怡,身居闹市而有林泉之致”,合肥市某区不断推进“园林城市”建设,今春种植了四类花苗,园林部门从种植的这批花苗中随机抽取了2000株,将四类花苗的种植株数绘制成扇形统计图,将四类花苗的成活株数绘制成条形统图.经统计这批2000株的花苗总成活率为90%,其中玉兰和月季的成活率较高,根据图表中的信息解答下列问题:扇形统计图中玉兰所对的圆心角为,并补全条形统计图;该区今年共种植月季8000株,成活了约株;园林部门决定明年从这四类花苗中选两类种植,请用列表法或画树状图求恰好选到成活率较高的两类花苗的概率.26.(12分)如图,已知函数kyx(x>0)的图象经过点A、B,点B的坐标为(2,2).过点A作AC⊥x轴,垂足为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图象经过点A、D,与x轴的负半轴交于点E.若AC=32OD,求a、b的值;若BC∥AE,求BC的长.27.(12分)某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”三个等级,并根据调查结果绘制了如下两幅不完整的统计图.这次调查的市民人数为________人,m=________,n=________;补全条形统计图;若该市约有市民100000人,请你根据抽样调查的结果,估计该市大约有多少人对“社会主义核心价值观”达到“A.非常了解”的程度.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.B 【解析】袋中一共7个球,摸到的球有7种可能,而且机会均等,其中有3个红球,因此摸到红球的概率为37,故选B. 2.D 【解析】试题分析:过点E 作EM ⊥OA ,垂足为M ,∵A (1,0),B (0,2),∴OA-1,OB=2,又∵∠AOB=90°,∴AB=22OB OA +=5,∵AB//CD ,∴∠ABO=∠CBG ,∵∠BCG=90°,∴△BCG ∽△AOB ,∴OACBOB CG =,∵BC=AB=5,∴CG=25,∵CD=AD=AB=5,∴DG=35,∴DE=DG=35,∴AE=45,∵∠BAD=90°,∴∠EAM+∠BAO=90°,∵∠BAO+∠ABO=90°,∴∠EAM=∠ABO ,又∵∠EMA=90°,∴△EAM ∽△ABO ,∴OB AMOA EM AB AE ==,即21554AM EM ==,∴AM=8,EM=4,∴AM=9,∴E (9,4),∴k=4×9=36; 故选D .考点:反比例函数综合题.3.C【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.解:149 000 000=1.49×2千米1.故选C.把一个数写成a×10n的形式,叫做科学记数法,其中1≤|a|<10,n为整数.因此不能写成149×106而应写成1.49×2.4.C【解析】【分析】根据众数是一组数据中出现次数最多的数,可能不止一个,对这个鞋店的经理来说,他最关注的是数据的众数.【详解】解:根据商店经理统计表决定本月多进尺码为23.0cm的女式运动鞋,就说明穿23.0cm的女式运动鞋的最多,则商店经理的这一决定应用的统计量是这组数据的众数.故选:C.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的平均数、中位数、众数各有局限性,因此要对统计量进行合理的选择和恰当的运用.5.C【解析】【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.【详解】从小到大排列此数据为:40,1,1,1,42,44,45,数据 1 出现了三次最多为众数,1 处在第 4 位为所以本题这组数据的中位数是 1,众数是 1. 故选C . 【点睛】考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数. 6.B 【解析】 【分析】根据三角形中位线定理求出DE ,得到DF ∥BM ,再证明EC=EF=12AC ,由此即可解决问题. 【详解】在RT △ABC 中,∵∠ABC=90°,AB=2,BC=1, ∴AC=22AB BC +=2286+=10,∵DE 是△ABC 的中位线, ∴DF ∥BM ,DE=12BC=3, ∴∠EFC=∠FCM , ∵∠FCE=∠FCM , ∴∠EFC=∠ECF , ∴EC=EF=12AC=5, ∴DF=DE+EF=3+5=2. 故选B .7.B 【解析】符号不同,绝对值相等的两个数互为相反数,可据此来判断各选项是否正确. 【详解】A 、3和-3互为相反数,错误;B 、3与-3互为相反数,正确;C 、3与13互为倒数,错误; D 、3与-13互为负倒数,错误;故选B . 【点睛】此题考查相反数问题,正确理解相反数的定义是解答此题的关键. 8.A 【解析】分析:根据从上边看得到的图形是俯视图,可得答案. 详解:从上边看外面是正方形,里面是没有圆心的圆, 故选A .点睛:本题考查了简单组合体的三视图,从上边看得到的图形是俯视图. 9.B 【解析】 【分析】连接CD ,求出CD ⊥AB ,根据勾股定理求出AC ,在Rt △ADC 中,根据锐角三角函数定义求出即可. 【详解】解:连接CD (如图所示),设小正方形的边长为1, ∵BD=CD=2211+=2,∠DBC=∠DCB=45°, ∴CD AB ⊥,在Rt △ADC 中,10AC =,2CD =,则25sin 10CD A AC ===.故选B . 【点睛】本题考查了勾股定理,锐角三角形函数的定义,等腰三角形的性质,直角三角形的判定的应用,关键是构造直角三角形.10.D【解析】试题解析:A.含有两个未知数,B.不是整式方程,C没有二次项.故选D.点睛:一元二次方程需要满足三个条件:()1含有一个未知数,()2未知数的最高次数是2,()3整式方程. 11.C【解析】【分析】根据绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,1的绝对值是1.若|-a|=-a,则可求得a的取值范围.注意1的相反数是1.【详解】因为|-a|≥1,所以-a≥1,那么a的取值范围是a≤1.故选C.【点睛】绝对值规律总结:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,1的绝对值是1.12.C【解析】【分析】根据相关的定义(调查方式,概率,可能事件,必然事件)进行分析即可.【详解】A. 检测一批灯泡的使用寿命不适宜用普查,因为有破坏性;B. 抛掷一枚均匀的硬币,正面朝上的概率是12,如果抛掷10次,就可能有5次正面朝上,因为这是随机事件;C. “367人中有两人是同月同日生”为必然事件.因为一年只有365天或366天,所以367人中至少有两个日子相同;D. “多边形内角和与外角和相等”是可能事件.如四边形内角和和外角和相等.故正确选项为:C【点睛】本题考核知识点:对(调查方式,概率,可能事件,必然事件)理解. 解题关键:理解相关概念,合理运用举反例法.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.120°【解析】【分析】设扇形的半径为r ,圆心角为n°.利用扇形面积公式求出r ,再利用弧长公式求出圆心角即可.【详解】设扇形的半径为r ,圆心角为n°. 由题意:1816··233r ππ=, ∴r =4, ∴24163603n ππ= ∴n =120,故答案为120°【点睛】本题考查扇形的面积的计算,弧长公式等知识,解题的关键是掌握基本知识.14.34. 【解析】【分析】利用规定的运算方法,分别算得a 1,a 2,a 3,a 4…找出运算结果的循环规律,利用规律解决问题.【详解】∵a 1=4a 2=11111143a ==---, a 3=211311413a ⎛⎫ ⎪⎝=⎭=---, a 4=31143114a ==--, …数列以4,−1334,三个数依次不断循环, ∵2019÷3=673,∴a 2019=a 3=34,故答案为:34. 【点睛】 此题考查规律型:数字的变化类,倒数,解题关键在于掌握运算法则找到规律.15.6y 2-5y+2=0【解析】【分析】根据y =21x x -,将方程变形即可. 【详解】根据题意得:3y +152y =, 得到6y 2-5y +2=0故答案为6y 2-5y +2=0【点睛】此题考查了换元法解分式方程,利用了整体的思想,将方程进行适当的变形是解本题的关键.16.5210258x y x y +=⎧⎨+=⎩【解析】试题分析:根据“5头牛,2只羊,值金10两;2头牛、5只羊,值金8两.”列方程组即可.考点:二元一次方程组的应用17.3【解析】分析:由已知条件易得:EF ∥AB ,且EF :AB=1:2,从而可得△CEF ∽△CAB ,且相似比为1:2,设S △CEF =x ,根据相似三角形的性质可得方程:194x x =+,解此方程即可求得△EFC 的面积. 详解:∵在△ABC 中,点E ,F 分别是AC ,BC 的中点,∴EF 是△ABC 的中位线,∴EF ∥AB ,EF :AB=1:2,∴△CEF ∽△CAB ,∴S △CEF :S △CAB =1:4,设S △CEF =x ,∵S △CAB =S △CEF +S 四边形ABFE ,S 四边形ABFE =9,∴1 94xx=+,解得:3x=,经检验:3x=是所列方程的解.故答案为:3.点睛:熟悉三角形的中位线定理和相似三角形的面积比等于相似比的平方是正确解答本题的关键. 18.1.5【解析】在Rt△ABC中,5AC=,∵将△ABC折叠得△AB′E,∴AB′=AB,B′E=BE,∴B′C=5-3=1.设B′E=BE=x,则CE=4-x.在Rt△B′CE中,CE1=B′E1+B′C1,∴(4-x)1=x1+11.解之得32x=.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)此人所在P的铅直高度约为14.3米;(2)从P到点B的路程约为17.1米【解析】分析:(1)过P作PF⊥BD于F,作PE⊥AB于E,设PF=5x,在Rt△ABC中求出AB,用含x的式子表示出AE,EP,由tan∠APE,求得x即可;(2)在Rt△CPF中,求出CP的长.详解:过P作PF⊥BD于F,作PE⊥AB于E,∵斜坡的坡度i=5:1,设PF=5x,CF=1x,∵四边形BFPE为矩形,∴BF=PEPF=BE.在RT△ABC中,BC=90,tan∠ACB=AB BC,∴AB=tan63.4°×BC≈2×90=180,∴AE=AB-BE=AB-PF=180-5x,EP=BC+CF≈90+10x.在RT△AEP中,tan∠APE=1805490123 AE xEP x-≈=+,∴x=207,∴PF=5x=10014.3 7≈.答:此人所在P的铅直高度约为14.3米.由(1)得CP =13x ,∴CP =13×207≈37.1,BC +CP =90+37.1=17.1. 答:从P 到点B 的路程约为17.1米.点睛:本题考查了解直角三角形的应用,关键是正确的画出与实际问题相符合的几何图形,找出图形中的相关线段或角的实际意义及所要解决的问题,构造直角三角形,用勾股定理或三角函数求相应的线段长. 20.详见解析.【解析】试题分析:由三角形的中位线得出OE ∥AB ,进一步利用平行线的性质和等腰三角形性质,找出△OCE 和△ODE 相等的线段和角,证得全等得出答案即可.试题解析:证明:∵点E 为AC 的中点,OC=OB ,∴OE ∥AB ,∴∠EOC=∠B ,∠EOD=∠ODB .又∵∠ODB=∠B ,∴∠EOC=∠EOD .在△OCE 和△ODE 中,∵OC=OD ,∠EOC=∠EOD , OE=OE ,∴△OCE ≌△ODE (SAS ),∴∠EDO=∠ECO=90°,∴DE ⊥OD ,∴DE 是⊙O 的切线.点睛:此题考查切线的判定.证明的关键是得到△OCE ≌△ODE .21.(1)2k =,()1,0A -;(2)4y x=;t 的取值范围是:02t <≤. 【解析】【分析】(1)把()0,2代入得出k 的值,进而得出A 点坐标;(2)当4t =时,将4y =代入22y x =+,进而得出x 的值,求出M 点坐标得出反比例函数的解析式;(3)可得2CD =,当y t =向下运动但是不超过x 轴时,符合要求,进而得出t 的取值范围.【详解】解:(1)∵直线l :y kx k =+ 经过点()0,2B ,∴2k =,∴22y x =+,∴()1,0A -;(2)当4t =时,将4y =代入22y x =+,得,1x =,∴()1,4M 代入n y x =得,4n =, ∴4y x=; (3)当2t =时,()0,2B 即()0,2C ,而()2,2D ,如图,2CD =,当y t =向下运动但是不超过x 轴时,符合要求,∴t 的取值范围是:02t <≤.【点睛】本题考查了反比例函数与一次函数的交点,当有两个函数的时候,着重使用一次函数,体现了方程思想,综合性较强.22.(1)372;(2)30° 【解析】【分析】(1)由于DE 垂直平分AC ,那么AE=EC ,∠DEC=90°,而∠ABC=∠DEC=90°,∠C=∠C ,易证,△ABC ∽△DEC ,∠A=∠CDE ,于是sin ∠CDE=sinA =34,AB :AC=DE :DC ,而DC=4,易求EC ,利用勾股定理可求DE ,易知AC=6,利用相似三角形中的比例线段可求AB ;(2)连接OE ,由于∠DEC=90°,那么∠EDC+∠C=90°,又BE 是切线,那么∠BEO=90°,于是∠EOB+∠EBC=90°,而BE 是直角三角形斜边上的中线,那么BE=CE ,于是∠EBC=∠C ,从而有∠EOB=∠EDC ,又OE=OD ,易证△DEO 是等边三角形,那么∠EDC=60°,从而可求∠C .【详解】解:(1)∵AC 的垂直平分线交BC 于D 点,交AC 于E 点,∴∠DEC=90°,AE=EC ,∵∠ABC=90°,∠C=∠C ,∴∠A=∠CDE,△ABC∽△DEC,∴sin∠CDE=3 sin4A=,AB:AC=DE:DC,∵DC=4,∴ED=3,∴DE=227DC EC-=,∴AC=6,∴AB:6=7:4,∴AB=372;(2)连接OE,∵∠DEC=90°,∴∠EDC+∠C=90°,∵BE是⊙O的切线,∴∠BEO=90°,∴∠EOB+∠EBC=90°,∵E是AC的中点,∠ABC=90°,∴BE=EC,∴∠EBC=∠C,∴∠EOB=∠EDC,又∵OE=OD,∴△DOE是等边三角形,∴∠EDC=60°,∴∠C=30°.【点睛】考查了切线的性质、线段垂直平分线的性质、相似三角形的判定和性质、勾股定理、等边三角形的判定和性质.解题的关键是连接OE,构造直角三角形.23.(1)239344y x x=--;6;(2)ABFBEFSSVV有最小值54;(3)103P-(,),23P-(3,).【解析】【分析】(1)先求出点B ,C 坐标,利用待定系数法求出抛物线解析式,进而求出点A 坐标,即可求出半圆的直径,再构造直角三角形求出点D 的坐标即可求出BD ;(2)先判断出要求ABF BEFS S V V 的最小值,只要CG 最大即可,再求出直线EG 解析式和抛物线解析式联立成的方程只有一个交点,求出直线EG 解析式,即可求出CG ,结论得证.(3)求出线段AC ,BC 进而判断出满足条件的一个点P 和点B 重合,再利用抛物线的对称性求出另一个点P .【详解】解:(1) 对于直线y=34x-3,令x=0, ∴y=-3,∴B (0,-3),令y=0, ∴34x-3=0, ∴x=4,∴C (4,0),∵抛物线y=34x 2+bx+c 过B ,C 两点, ∴3164043b c c ⎧⨯++⎪⎨⎪-⎩== ∴943b c ⎧-⎪⎨⎪-⎩=,=∴抛物线的解析式为y=239344x x --; 令y=0, ∴239344x x --=0, ∴x=4或x=-1,∴A (-1,0),∴AC=5,如图2,记半圆的圆心为O',连接O'D ,∴O'A=O'D=O'C=1 2AC=52,∴OO'=OC-O'C=4-52=32,在Rt△O'OD中,OD=22O D OO'-'=2,∴D(0,2),∴BD=2-(-3)=5;(2) 如图3,∵A(-1,0),C(4,0),∴AC=5,过点E作EG∥BC交x轴于G,∵△ABF的AF边上的高和△BEF的EF边的高相等,设高为h,∴S△ABF=12AF•h,S△BEF=12EF•h,∴ABFBEFSSVV=1•21•2AF hEF h=AFEF∵ABFBEFSSVV的最小值,∴AFEF最小,∵CF∥GE,∴AF AC5EF CG CG==∴5CG 最小,即:CG 最大, ∴EG 和果圆的抛物线部分只有一个交点时,CG 最大,∵直线BC 的解析式为y=34x-3, 设直线EG 的解析式为y=34x+m ①, ∵抛物线的解析式为y=34x 2-94x-3②, 联立①②化简得,3x 2-12x-12-4m=0,∴△=144+4×3×(12+4m )=0,∴m=-6,∴直线EG 的解析式为y=34x-6, 令y=0,∴34x-6=0, ∴x=8,∴CG=4,∴ABF BEF S S V V =54AF AC EF CG ==; (3)103P -(,),233P -(,).理由:如图1,∵AC 是半圆的直径,∴半圆上除点A ,C 外任意一点Q ,都有∠AQC=90°, ∴点P 只能在抛物线部分上,∵B (0,-3),C (4,0),∴BC=5,∵AC=5,∴AC=BC ,∴∠BAC=∠ABC ,当∠APC=∠CAB 时,点P 和点B 重合,即:P (0,-3),由抛物线的对称性知,另一个点P 的坐标为(3,-3),即:使∠APC=∠CAB ,点P 坐标为(0,-3)或(3,-3).【点睛】本题是二次函数综合题,考查待定系数法,圆的性质,勾股定理,相似三角形的判定和性质,抛物线的对称性,等腰三角形的判定和性质,判断出CG 最大时,两三角形面积之比最小是解本题的关键. 24.(1)y=2x 2﹣3x ;(2)C (1,﹣1);(3)(4564,316)或(﹣316,4564). 【解析】【分析】(1)由直线解析式可求得B 点坐标,由A 、B 坐标,利用待定系数法可求得抛物线的表达式;(2)过C 作CD ∥y 轴,交x 轴于点E ,交OB 于点D ,过B 作BF ⊥CD 于点F ,可设出C 点坐标,利用C 点坐标可表示出CD 的长,从而可表示出△BOC 的面积,由条件可得到关于C 点坐标的方程,可求得C 点坐标;(3)设MB 交y 轴于点N ,则可证得△ABO ≌△NBO ,可求得N 点坐标,可求得直线BN 的解析式,联立直线BM 与抛物线解析式可求得M 点坐标,过M 作MG ⊥y 轴于点G ,由B 、C 的坐标可求得OB 和OC 的长,由相似三角形的性质可求得OM OP 的值,当点P 在第一象限内时,过P 作PH ⊥x 轴于点H ,由条件可证得△MOG ∽△POH ,由OM MG OG OP PH OH==的值,可求得PH 和OH ,可求得P 点坐标;当P 点在第三象限时,同理可求得P 点坐标.【详解】(1)∵B (2,t )在直线y=x 上,∴t=2,∴B (2,2),把A 、B 两点坐标代入抛物线解析式可得:42293042a b a b +=⎧⎪⎨+=⎪⎩,解得:23a b =⎧⎨=-⎩, ∴抛物线解析式为223y x x =-;(2)如图1,过C 作CD ∥y 轴,交x 轴于点E ,交OB 于点D ,过B 作BF ⊥CD 于点F ,∵点C 是抛物线上第四象限的点,∴可设C (t ,2t 2﹣3t ),则E (t ,0),D (t ,t ),∴OE=t ,BF=2﹣t ,CD=t ﹣(2t 2﹣3t )=﹣2t 2+4t ,∴S △OBC =S △CDO +S △CDB =12CD •OE+12CD•BF=12(﹣2t 2+4t )(t+2﹣t )=﹣2t 2+4t , ∵△OBC 的面积为2,∴﹣2t 2+4t=2,解得t 1=t 2=1,∴C (1,﹣1);(3)存在.设MB 交y 轴于点N ,如图2,∵B (2,2),∴∠AOB=∠NOB=45°,在△AOB 和△NOB 中,∵∠AOB=∠NOB ,OB=OB ,∠ABO=∠NBO ,∴△AOB ≌△NOB (ASA ),∴ON=OA=32, ∴N (0,32), ∴可设直线BN 解析式为y=kx+32,把B 点坐标代入可得2=2k+32,解得k=14, ∴直线BN 的解析式为1342y x =+,联立直线BN 和抛物线解析式可得:2134223y x y x x ⎧=+⎪⎨⎪=-⎩,解得:22x y =⎧⎨=⎩或384532x y ⎧=-⎪⎪⎨⎪=⎪⎩, ∴M (38-,4532), ∵C (1,﹣1),∴∠COA=∠AOB=45°,且B (2,2),∴OB=222,∵△POC ∽△MOB , ∴2OM OB OP OC==,∠POC=∠BOM ,当点P 在第一象限时,如图3,过M 作MG ⊥y 轴于点G ,过P 作PH ⊥x 轴于点H ,如图3∵∠COA=∠BOG=45°,∴∠MOG=∠POH ,且∠PHO=∠MGO ,∴△MOG ∽△POH , ∴2OM MG OG OP PH OH === ∵M (38-,4532), ∴MG=38,OG=4532, ∴PH=12MG=316,OH=12OG=4564, ∴P (4564,316); 当点P 在第三象限时,如图4,过M 作MG ⊥y 轴于点G ,过P 作PH ⊥y 轴于点H ,同理可求得PH=12MG=316,OH=12OG=4564, ∴P (﹣316,4564); 综上可知:存在满足条件的点P ,其坐标为(4564,316)或(﹣316,4564).【点睛】本题为二次函数的综合应用,涉及待定系数法、三角形的面积、二次函数的性质、全等三角形的判定和性质、相似三角形的判定和性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)中用C 点坐标表示出△BOC 的面积是解题的关键,在(3)中确定出点P 的位置,构造相似三角形是解题的关键,注意分两种情况.25. (1)72°,见解析;(2)7280;(3).【解析】【分析】(1)根据题意列式计算,补全条形统计图即可;(2)根据题意列式计算即可;(3)画树状图得出所有等可能的情况数,找出选到成活率较高的两类树苗的情况数,即可求出所求的概率.【详解】(1)扇形统计图中玉兰所对的圆心角为360°×(1-40%-15%-25%)=72°月季的株数为2000×90%-380-422-270=728(株),补全条形统计图如图所示:(2)月季的成活率为所以月季成活株数为8000×91%=7280(株).故答案为:7280.(3)由题意知,成活率较高的两类花苗是玉兰和月季,玉兰、月季、桂花、腊梅分别用A、B、C、D表示,画树状图如下:所有等可能的情况有12种,其中恰好选到成活率较高的两类花苗有2种.∴P(恰好选到成活率较高的两类花苗)【点睛】此题主要考查了条形统计图以及扇形统计图的应用,根据统计图得出正确信息是解题关键.26.(1)a=34,b=2;(2)5【解析】试题分析:(1)首先利用反比例函数图象上点的坐标性质得出k的值,再得出A、D点坐标,进而求出a,b的值;(2)设A点的坐标为:(m,4m),则C点的坐标为:(m,0),得出tan∠ADF=42AF mDF m-=,tan ∠AEC=42AC m EC =,进而求出m 的值,即可得出答案.试题解析:(1)∵点B (2,2)在函数y=k x (x >0)的图象上, ∴k=4,则y=4x, ∵BD ⊥y 轴,∴D 点的坐标为:(0,2),OD=2,∵AC ⊥x 轴,AC=32OD ,∴AC=3,即A 点的纵坐标为:3, ∵点A 在y=4x 的图象上,∴A 点的坐标为:(43,3), ∵一次函数y=ax+b 的图象经过点A 、D , ∴43{32a b b +==, 解得:34a =,b=2; (2)设A 点的坐标为:(m ,4m ),则C 点的坐标为:(m ,0), ∵BD ∥CE ,且BC ∥DE ,∴四边形BCED 为平行四边形,∴CE=BD=2,∵BD ∥CE ,∴∠ADF=∠AEC ,∴在Rt △AFD 中,tan ∠ADF=42AF mDF m-=, 在Rt △ACE 中,tan ∠AEC=42AC m EC =, ∴42m m -=42m ,解得:m=1,∴C 点的坐标为:(1,0),则考点:反比例函数与一次函数的交点问题.27. (1)500,12,32;(2)补图见解析;(3)该市大约有32000人对“社会主义核心价值观”达到“A.非常了解”的程度.【解析】【分析】(1)根据项目B 的人数以及百分比,即可得到这次调查的市民人数,据此可得项目A ,C 的百分比;(2)根据对“社会主义核心价值观”达到“A.非常了解”的人数为:32%×500=160,补全条形统计图;(3)根据全市总人数乘以A项目所占百分比,即可得到该市对“社会主义核心价值观”达到“A非常了解”的程度的人数.【详解】试题分析:试题解析:(1)280÷56%=500人,60÷500=12%,1﹣56%﹣12%=32%,(2)对“社会主义核心价值观”达到“A.非常了解”的人数为:32%×500=160,补全条形统计图如下:(3)100000×32%=32000(人),答:该市大约有32000人对“社会主义核心价值观”达到“A.非常了解”的程度.。

贵州省遵义市2019-2020学年第二次中考模拟考试数学试卷含解析

贵州省遵义市2019-2020学年第二次中考模拟考试数学试卷含解析

贵州省遵义市2019-2020学年第二次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在矩形ABCD 中,AB=2,BC=1.若点E 是边CD 的中点,连接AE ,过点B 作BF ⊥AE 交AE 于点F ,则BF 的长为( )A .310B .3105C .10D .35 2.下列几何体是棱锥的是( )A .B .C .D .3.如图:A 、B 、C 、D 四点在一条直线上,若AB =CD ,下列各式表示线段AC 错误的是( )A .AC =AD ﹣CDB .AC =AB+BC C .AC =BD ﹣AB D .AC =AD ﹣AB4.如图,电线杆CD 的高度为h ,两根拉线AC 与BC 互相垂直(A 、D 、B 在同一条直线上),设∠CAB =α,那么拉线BC 的长度为( )A .sin h αB .cos h αC .tan h αD .cot h α5.如果t>0,那么a+t 与a 的大小关系是( )A .a+t>aB .a+t<aC .a+t≥aD .不能确定6.如图,在△ABC 中,∠C=90°,∠B=30°,AD 是△ABC 的角平分线,DE ⊥AB,垂足为点E,DE=1,则BC=( )A .3B .2C .3D .3+27.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45°8.中华人民共和国国家统计局网站公布,2016年国内生产总值约为74300亿元,将74300亿用科学计数法可以表示为( )A .1074310⨯B .1174.310⨯C .107.4310⨯D .127.4310⨯9.下列图形中,既是中心对称图形又是轴对称图形的是 ( ) A . B . C . D .10.将某不等式组的解集13x ≤<-表示在数轴上,下列表示正确的是( )A .B .C .D .11.如图,已知Rt △ABC 中,∠BAC=90°,将△ABC 绕点A 顺时针旋转,使点D 落在射线CA 上,DE 的延长线交BC 于F ,则∠CFD 的度数为( )A .80°B .90°C .100°D .120°12.下列四个图形中既是轴对称图形,又是中心对称图形的是( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如果关于x 的方程2x 2x m 0-+=(m 为常数)有两个相等实数根,那么m =______.14.如图,⊙C 经过原点且与两坐标轴分别交于点 A 与点 B ,点 B 的坐标为(﹣3,0),M 是圆上一点,∠BMO=120°.⊙C 圆心 C 的坐标是_____.15.计算:3a r ﹣(a r ﹣2b r)=____.16.从﹣2,﹣1,2这三个数中任取两个不同的数相乘,积为正数的概率是_____.17.如图,在正方形ABCD 中,对角线AC 与BD 相交于点O ,E 为BC 上一点,5CE =,F 为DE 的中点.若CEF ∆的周长为18,则OF 的长为________.18.函数y=12x -的定义域是________. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在Rt △ABC 中,∠ACB =90°,以点A 为圆心,AC 为半径,作⊙A 交AB 于点D ,交CA 的延长线于点E ,过点E 作AB 的平行线EF 交⊙A 于点F ,连接AF 、BF 、DF(1)求证:BF 是⊙A 的切线.(2)当∠CAB 等于多少度时,四边形ADFE 为菱形?请给予证明. 20.(6分)某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如表:x/元 … 15 20 25 …y/件 … 25 20 15 …已知日销售量y 是销售价x 的一次函数.求日销售量y (件)与每件产品的销售价x (元)之间的函数表达式;当每件产品的销售价定为35元时,此时每日的销售利润是多少元?21.(6分)据某省商务厅最新消息,2018年第一季度该省企业对“一带一路”沿线国家的投资额为10亿美元,第三季度的投资额增加到了14.4亿美元.求该省第二、三季度投资额的平均增长率.22.(8分)在平面直角坐标系中,O 为原点,点A (8,0)、点B (0,4),点C 、D 分别是边OA 、AB 的中点.将△ACD 绕点A 顺时针方向旋转,得△AC′D′,记旋转角为α.(I )如图①,连接BD′,当BD′∥OA 时,求点D′的坐标;(II )如图②,当α=60°时,求点C′的坐标;(III )当点B ,D′,C′共线时,求点C′的坐标(直接写出结果即可).23.(8分)已知抛物线2y x bx c =++过点(0,0),(1,3),求抛物线的解析式,并求出抛物线的顶点坐标.24.(10分)已知关于x 的一元二次方程x 2+2(m ﹣1)x+m 2﹣3=0有两个不相等的实数根.(1)求m 的取值范围;(2)若m 为非负整数,且该方程的根都是无理数,求m 的值.25.(10分)如图,在△ABC 中,∠ACB=90°,O 是边AC 上一点,以O 为圆心,以OA 为半径的圆分别交AB 、AC 于点E 、D ,在BC 的延长线上取点F ,使得BF=EF .(1)判断直线EF 与⊙O 的位置关系,并说明理由;(2)若∠A=30°,求证:DG=12DA ; (3)若∠A=30°,且图中阴影部分的面积等于2233p -,求⊙O 的半径的长.26.(12分)已知:如图,在△OAB 中,OA=OB ,⊙O 经过AB 的中点C ,与OB 交于点D ,且与BO 的延长线交于点E ,连接EC ,CD .(1)试判断AB 与⊙O 的位置关系,并加以证明;(2)若tanE=12,⊙O 的半径为3,求OA 的长.27.(12分)已知AB 是⊙O 的直径,弦CD 与AB 相交,∠BAC =40°.(1)如图1,若D 为弧AB 的中点,求∠ABC 和∠ABD 的度数;(2)如图2,过点D 作⊙O 的切线,与AB 的延长线交于点P ,若DP ∥AC ,求∠OCD 的度数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据S △ABE =12S 矩形ABCD =1=12•AE•BF ,先求出AE ,再求出BF 即可. 【详解】如图,连接BE .∵四边形ABCD 是矩形,∴AB=CD=2,BC=AD=1,∠D=90°,在Rt △ADE 中,22AD DE +2231+10,∵S△ABE=12S矩形ABCD=1=12•AE•B F,∴BF=5.故选:B.【点睛】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.2.D【解析】分析:根据棱锥的概念判断即可.A是三棱柱,错误;B是圆柱,错误;C是圆锥,错误;D是四棱锥,正确.故选D.点睛:本题考查了立体图形的识别,关键是根据棱锥的概念判断.3.C【解析】【分析】根据线段上的等量关系逐一判断即可.【详解】A、∵AD-CD=AC,∴此选项表示正确;B、∵AB+BC=AC,∴此选项表示正确;C、∵AB=CD,∴BD-AB=BD-CD,∴此选项表示不正确;D、∵AB=CD,∴AD-AB=AD-CD=AC,∴此选项表示正确.故答案选:C.【点睛】本题考查了线段上两点间的距离及线段的和、差的知识,解题的关键是找出各线段间的关系. 4.B【解析】根据垂直的定义和同角的余角相等,可由∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,可求得∠CAD=∠BCD,然后在Rt△BCD中cos∠BCD=CDBC,可得BC=cos cosCD hBCDα=∠.故选B.点睛:本题主要考查解直角三角形的应用,熟练掌握同角的余角相等和三角函数的定义是解题的关键.5.A【解析】试题分析:根据不等式的基本性质即可得到结果.t>0,∴a+t>a,故选A.考点:本题考查的是不等式的基本性质点评:解答本题的关键是熟练掌握不等式的基本性质1:不等式两边同时加或减去同一个整式,不等号方向不变.6.C【解析】试题分析:根据角平分线的性质可得CD=DE=1,根据Rt△ADE可得AD=2DE=2,根据题意可得△ADB 为等腰三角形,则DE为AB的中垂线,则BD=AD=2,则BC=CD+BD=1+2=1.考点:角平分线的性质和中垂线的性质.7.A【解析】试题分析:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A.考点:平行线的性质.8.D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:74300亿=7.43×1012,故选:D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.C【解析】试题解析:A. 是轴对称图形,不是中心对称图形,故本选项错误;B. 是轴对称图形,不是中心对称图形,故本选项错误;C. 既是中心对称图又是轴对称图形,故本选项正确;D. 是轴对称图形,不是中心对称图形,故本选项错误.故选C.10.B【解析】分析:本题可根据数轴的性质画出数轴:实心圆点包括该点用“≥”,“≤”表示,空心圆点不包括该点用“<”,“>”表示,大于向右小于向左.点睛:不等式组的解集为−1⩽x<3在数轴表示−1和3以及两者之间的部分:故选B.点睛:本题考查在数轴上表示不等式解集:把每个不等式的解集在数轴上表示出来(>,≥向右画;< ,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.11.B【解析】【分析】根据旋转的性质得出全等,推出∠B=∠D,求出∠B+∠BEF=∠D+∠AED=90°,根据三角形外角性质得出∠CFD=∠B+∠BEF,代入求出即可.【详解】解:∵将△ABC绕点A顺时针旋转得到△ADE,∴△ABC≌△ADE,∴∠B=∠D,∵∠CAB=∠BAD=90°,∠BEF=∠AED,∠B+∠BEF+∠BFE=180°,∠D+∠BAD+∠AED=180°,∴∠B+∠BEF=∠D+∠AED=180°﹣90°=90°,∴∠CFD=∠B+∠BEF=90°,故选:B.【点睛】本题考查了旋转的性质,全等三角形的性质和判定,三角形内角和定理,三角形外角性质的应用,掌握旋转变换的性质是解题的关键.12.D【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】析:本题需先根据已知条件列出关于m的等式,即可求出m的值.解答:解:∵x的方程x2-2x+m=0(m为常数)有两个相等实数根∴△=b2-4ac=(-2)2-4×1?m=04-4m=0m=1故答案为114.12)【解析】【分析】连接AB ,OC ,由圆周角定理可知AB 为⊙C 的直径,再根据∠BMO=120°可求出∠BAO 以及∠BCO 的度数,在Rt △COD 中,解直角三角形即可解决问题;【详解】连接AB ,OC ,∵∠AOB=90°,∴AB 为⊙C 的直径,∵∠BMO=120°,∴∠BAO=60°,∴∠BCO=2∠BAO=120°,过C 作CD ⊥OB 于D ,则OD=12OB ,∠DCB=∠DCO=60°, ∵B (30), ∴BD=OD=32在Rt △COD 中.CD=OD•tan30°=12, ∴C (-32,12), 故答案为C (312). 【点睛】本题考查的是圆心角、弧、弦的关系及圆周角定理、直角三角形的性质、坐标与图形的性质及特殊角的三角函数值,根据题意画出图形,作出辅助线,利用数形结合求解是解答此题的关键.15.2a r +2b r【解析】【分析】根据平面向量的加法法则计算即可.【详解】3a v ﹣(a v ﹣2b v) =3a v ﹣a v +2b v=2a v +2b v ,故答案为:2a v +2b v ,【点睛】本题考查平面向量,熟练掌握平面向量的加法法则是解题的关键.16.13【解析】【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与积为正数的情况,再利用概率公式求解即可求得答案.【详解】列表如下:由表可知,共有6种等可能结果,其中积为正数的有2种结果,所以积为正数的概率为13, 故答案为13. 【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.17.72【解析】【分析】先根据直角三角形的性质求出DE 的长,再由勾股定理得出CD 的长,进而可得出BE 的长,由三角形中位线定理即可得出结论.【详解】解:∵四边形ABCD 是正方形,∴BO DO =,BC CD =,90BCD ︒∠=.在Rt DCE ∆中,F 为DE 的中点, ∴12CF DE EF DF ===. ∵CEF ∆的周长为18,5CE =,∴18513CF EF +=-=,∴13DE DF EF =+=.在Rt DCE ∆中,根据勾股定理,得12DC ==,∴12BC =,∴1257BE =-=.在BDE ∆中,∵BO DO =,F 为DE 的中点,又∵OF 为BDE ∆的中位线, ∴1722OF BE ==. 故答案为:72. 【点睛】本题考查的是正方形的性质,涉及到直角三角形的性质、三角形中位线定理等知识,难度适中. 18.2x ≠【解析】分析:根据分式有意义的条件是分母不为0,即可求解.详解:由题意得:x-2≠0,即x 2≠.故答案为x 2≠点睛:本题考查了使函数有意义的自变量的取值范围的确定.函数是整式型,自变量去全体实数;函数是分式型,自变量是使分母不为0 的实数;根式型的函数的自变量去根号下的式子大于或等于0的实数;当函数关系式表示实际问题时,自变量不仅要使函数关系式有意义,还要使实际问题有意义.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析;(2)当∠CAB=60°时,四边形ADFE 为菱形;证明见解析;【解析】分析(1)首先利用平行线的性质得到∠FAB=∠CAB ,然后利用SAS 证得两三角形全等,得出对应角相等即可;(2)当∠CAB=60°时,四边形ADFE 为菱形,根据∠CAB=60°,得到∠FAB=∠CAB=∠CAB=60°,从而得到EF=AD=AE ,利用邻边相等的平行四边形是菱形进行判断四边形ADFE 是菱形.详解:(1)证明:∵EF ∥AB∴∠FAB=∠EFA ,∠CAB=∠E∵AE=AF∴∠EFA =∠E∴∠FAB=∠CAB∵AC=AF ,AB=AB∴△ABC ≌△ABF∴∠AFB=∠ACB=90°, ∴BF 是⊙A 的切线.(2)当∠CAB=60°时,四边形ADFE 为菱形.理由:∵EF ∥AB∴∠E=∠CAB=60°∵AE=AF∴△AEF 是等边三角形∴AE=EF ,∵AE=AD∴EF=AD∴四边形ADFE 是平行四边形∵AE=EF∴平行四边形ADFE 为菱形.点睛:本题考查了菱形的判定、全等三角形的判定与性质及圆周角定理的知识,解题的关键是了解菱形的判定方法及全等三角形的判定方法,难度不大.20.(1)40y x =-+;(2)此时每天利润为125元.【解析】试题分析:(1) 根据题意用待定系数法即可得解;(2)把x=35代入(1)中的解析式,得到销量,然后再乘以每件的利润即可得.试题解析:(1)设y kx b =+,将15x =,25y =和20x =,20y =代入,得:25152020k b k b =+⎧⎨=+⎩,解得:140k b =-⎧⎨=⎩, ∴40y x =-+;(2)将35x =代入(1)中函数表达式得:35405y =-+=,∴利润()35105125=-⨯=(元),答:此时每天利润为125元.21.第二、三季度的平均增长率为20%.【解析】【分析】设增长率为x ,则第二季度的投资额为10(1+x )万元,第三季度的投资额为10(1+x )2万元,由第三季度投资额为10(1+x )2=14.4万元建立方程求出其解即可.【详解】设该省第二、三季度投资额的平均增长率为x ,由题意,得:10(1+x )2=14.4,解得:x 1=0.2=20%,x 2=﹣2.2(舍去).答:第二、三季度的平均增长率为20%.【点睛】本题考查了增长率问题的数量关系的运用,一元二次方程的解法的运用,解答时根据第三季度投资额为10(1+x )2=14.4建立方程是关键.22.(I )(10,4)或(6,4)(II )C′(6,(III )①C′(8,4)②C′(245,﹣125) 【解析】【分析】(I )如图①,当OB ∥AC′,四边形OBC′A 是平行四边形,只要证明B 、C′、D′共线即可解决问题,再根据对称性确定D″的坐标;(II )如图②,当α=60°时,作C′K ⊥AC 于K .解直角三角形求出OK ,C′K 即可解决问题; (III )分两种情形分别求解即可解决问题;【详解】解:(I )如图①,∵A(8,0),B(0,4),∴OB=4,OA=8,∵AC=OC=AC′=4,∴当OB∥AC′,四边形OBC′A是平行四边形,∵∠AOB=90°,∴四边形OBC′A是矩形,∴∠AC′B=90°,∵∠AC′D′=90°,∴B、C′、D′共线,∴BD′∥OA,∵AC=CO,BD=AD,∴CD=C′D′=12OB=2,∴D′(10,4),根据对称性可知,点D″在线段BC′上时,D″(6,4)也满足条件.综上所述,满足条件的点D坐标(10,4)或(6,4).(II)如图②,当α=60°时,作C′K⊥AC于K.在Rt△AC′K中,∵∠KAC′=60°,AC′=4,∴AK=2,3∴OK=6,∴C′(6,23).(III )①如图③中,当B 、C′、D′共线时,由(Ⅰ)可知,C′(8,4).②如图④中,当B 、C′、D′共线时,BD′交OA 于F ,易证△BOF ≌△AC′F ,∴OF=FC′,设OF=FC′=x ,在Rt △ABC′中,BC′=22AB AC -'=8, 在RT △BOF 中,OB=4,OF=x ,BF=8﹣x ,∴(8﹣x )2=42+x 2,解得x=3,∴OF=FC′=3,BF=5,作C′K ⊥OA 于K ,∵OB ∥KC′,∴KC OB '=FK OF =FC BF', ∴4KC '=3FK =35, ∴K C′=125,KF=95, ∴OK=245,∴C′(245,﹣125). 【点睛】本题考查三角形综合题、旋转变换、矩形的判定和性质、平行线的性质、勾股定理等知识,解题的关键是灵活应用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.23.y=2x +2x ;(-1,-1).【解析】试题分析:首先将两点代入解析式列出关于b 和c 的二元一次方程组,然后求出b 和c 的值,然后将抛物线配方成顶点式,求出顶点坐标.试题解析:将点(0,0)和(1,3)代入解析式得:0{13c b c =++=解得:2{0b c == ∴抛物线的解析式为y=2x +2x ∴y=2x +2x=2(1)x +-1 ∴顶点坐标为(-1,-1).考点:待定系数法求函数解析式.24.(1)m <2;(2)m=1.【解析】【分析】(1)利用方程有两个不相等的实数根,得△=[2(m-1)]2-4(m 2-3)=-8m+2>3,然后解不等式即可; (2)先利用m 的范围得到m=3或m=1,再分别求出m=3和m=1时方程的根,然后根据根的情况确定满足条件的m 的值.【详解】(1)△=[2(m ﹣1)]2﹣4(m2﹣3)=﹣8m+2.∵方程有两个不相等的实数根,∴△>3.即﹣8m+2>3.解得 m <2;(2)∵m <2,且 m 为非负整数,∴m=3 或 m=1,当 m=3 时,原方程为 x 2-2x-3=3,解得 x 1=3,x 2=﹣1(不符合题意舍去), 当 m=1 时,原方程为 x 2﹣2=3,解得 x 1x 2= ,综上所述,m=1.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=3(a≠3)的根与△=b2-4ac有如下关系:当△>3时,方程有两个不相等的实数根;当△=3时,方程有两个相等的实数根;当△<3时,方程无实数根.25.(1)EF是⊙O的切线,理由详见解析;(1)详见解析;(3)⊙O的半径的长为1.【解析】【分析】(1)连接OE,根据等腰三角形的性质得到∠A=∠AEO,∠B=∠BEF,于是得到∠OEG=90°,即可得到结论;(1)根据含30°的直角三角形的性质证明即可;(3)由AD是⊙O的直径,得到∠AED=90°,根据三角形的内角和得到∠EOD=60°,求得∠EGO=30°,根据三角形和扇形的面积公式即可得到结论.【详解】解:(1)连接OE,∵OA=OE,∴∠A=∠AEO,∵BF=EF,∴∠B=∠BEF,∵∠ACB=90°,∴∠A+∠B=90°,∴∠AEO+∠BEF=90°,∴∠OEG=90°,∴EF是⊙O的切线;(1)∵∠AED=90°,∠A=30°,∴ED=12 AD,∵∠A+∠B=90°,∴∠B=∠BEF=60°,∵∠BEF+∠DEG=90°,∴∠DEG=30°,∵∠ADE+∠A=90°,∴∠ADE=60°,∵∠ADE=∠EGD+∠DEG ,∴∠DGE=30°,∴∠DEG=∠DGE ,∴DG=DE ,∴DG=12DA ; (3)∵AD 是⊙O 的直径,∴∠AED=90°,∵∠A=30°,∴∠EOD=60°,∴∠EGO=30°,∵阴影部分的面积2160π2π.23603r r ⋅⨯=⨯-= 解得:r 1=4,即r=1,即⊙O 的半径的长为1.【点睛】本题考查了切线的判定,等腰三角形的性质,圆周角定理,扇形的面积的计算,正确的作出辅助线是解题的关键.26.(1)AB 与⊙O 的位置关系是相切,证明见解析;(2)OA=1.【解析】【分析】(1)先判断AB 与⊙O 的位置关系,然后根据等腰三角形的性质即可解答本题;(2)根据题三角形的相似可以求得BD 的长,从而可以得到OA 的长.【详解】解:(1)AB 与⊙O 的位置关系是相切,证明:如图,连接OC .∵OA=OB ,C 为AB 的中点,∴OC ⊥AB .∴AB 是⊙O 的切线;(2)∵ED 是直径,∴∠ECD=90°.∴∠E+∠ODC=90°.又∵∠BCD+∠OCD=90°,∠OCD=∠ODC,∴∠BCD=∠E.又∵∠CBD=∠EBC,∴△BCD∽△BEC.∴BC BD CD BE BC EC==.∴BC2=BD•BE.∵1 tan2E∠=,∴12 CDEC=.∴12 BD CDBC EC==.设BD=x,则BC=2x.又BC2=BD•BE,∴(2x)2=x(x+6).解得x1=0,x2=2.∵BD=x>0,∴BD=2.∴OA=OB=BD+OD=2+3=1.【点睛】本题考查直线和圆的位置关系、等腰三角形的性质、三角形的相似,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.27.(1)45°;(2)26°.【解析】【分析】(1)根据圆周角和圆心角的关系和图形可以求得∠ABC和∠ABD的大小;(2)根据题意和平行线的性质、切线的性质可以求得∠OCD的大小.【详解】(1)∵AB是⊙O的直径,∠BAC=38°,∴∠ACB=90°,∴∠ABC=∠ACB﹣∠BAC=90°﹣38°=52°,∵D为弧AB的中点,∠AOB=180°,∴∠AOD=90°,∴∠ABD=45°;(2)连接OD,∵DP切⊙O于点D,∴OD⊥DP,即∠ODP=90°,∵DP∥AC,∠BAC=38°,∴∠P=∠BAC=38°,∵∠AOD是△ODP的一个外角,∴∠AOD=∠P+∠ODP=128°,∴∠ACD=64°,∵OC=OA,∠BAC=38°,∴∠OCA=∠BAC=38°,∴∠OCD=∠ACD﹣∠OCA=64°﹣38°=26°.【点睛】本题考查切线的性质、圆周角定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.。

贵州省遵义市2019-2020学年中考数学模拟试题含解析

贵州省遵义市2019-2020学年中考数学模拟试题含解析

贵州省遵义市2019-2020学年中考数学模拟试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,一个几何体由5个大小相同、棱长为1的正方体搭成,则这个几何体的左视图的面积为()A.5 B.4 C.3 D.22.如图是由若干个相同的小正方体搭成的一个几何体的主视图和俯视图,则所需的小正方体的个数最少是()A.6B.5C.4D.33.“赶陀螺”是一项深受人们喜爱的运动.如图所示是一个陀螺的立体结构图.已知底面圆的直径AB=8 cm,圆柱的高BC=6 cm,圆锥的高CD=3 cm,则这个陀螺的表面积是()A.68π cm2B.74π cm2C.84π cm2D.100π cm24.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,﹣4),顶点C在x轴的负半轴上,函数y=kx(x<0)的图象经过菱形OABC中心E点,则k的值为()A.6 B.8 C.10 D.125.如图,在矩形纸片ABCD中,已知AB3BC=1,点E在边CD上移动,连接AE,将多边形ABCE沿直线AE折叠,得到多边形AFGE,点B、C的对应点分别为点F、G.在点E从点C移动到点D 的过程中,则点F运动的路径长为()A.πB.3πC.3πD.23π6.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()A.19B.16C.13D.237.下列汽车标志中,不是轴对称图形的是()A.B.C.D.8.“嫦娥一号”卫星顺利进入绕月工作轨道,行程约有1800000千米,1800000这个数用科学记数法可以表示为()A.70.1810⨯B.51.810⨯C.61.810⨯D.51810⨯9.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字6、7、8、1.若转动转盘一次,转盘停止后(当指针恰好指在分界线上时,不记,重转),指针所指区域的数字是奇数的概率为()A.B.C.D.10.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为acm宽为bcm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分周长和是()A .4acmB .4()a b cm -C .2()a b cm +D .4bcm11.如图,l 1、l 2、l 3两两相交于A 、B 、C 三点,它们与y 轴正半轴分别交于点D 、E 、F ,若A 、B 、C 三点的横坐标分别为1、2、3,且OD=DE=1,则下列结论正确的个数是( ) ①13EA EC =,②S △ABC =1,③OF=5,④点B 的坐标为(2,2.5)A .1个B .2个C .3个D .4个12.如图,已知线段AB ,分别以A ,B 为圆心,大于12AB 为半径作弧,连接弧的交点得到直线l ,在直线l 上取一点C ,使得∠CAB =25°,延长AC 至点M ,则∠BCM 的度数为( )A .40°B .50°C .60°D .70°二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.已知一组数据:3,3,4,5,5,则它的方差为____________14.关于x 的方程kx 2﹣(2k+1)x+k+2=0有实数根,则k 的取值范围是_____. 15.已知(x-ay)(x+ay)22x 16y =-,那么a=_______16.如图,在四边形ABCD 中,点E 、F 分别是边AB 、AD 的中点,BC=15,CD=9,EF=6,∠AFE=50°,则∠ADC 的度数为_____.17.规定一种新运算“*”:a*b =13a -14b ,则方程x*2=1*x 的解为________. 18.如图是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM =4米,AB =8米,∠MAD =45°,∠MBC =30°,则警示牌的高CD 为_米.(结果精确到0.1米,参考数据:≈1.41,≈1.73)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)如图,一次函数y =kx +b 的图象与反比例函数y =mx的图象交于点A (-3,m +8),B (n ,-6)两点.求一次函数与反比例函数的解析式;求△AOB 的面积.20.(6分)如图,在平面直角坐标系xOy 中,直线16y k x =+与函数()20k y x x=>的图象的两个交点分别为A (1,5),B . (1)求1k ,2k 的值;(2)过点P (n ,0)作x 轴的垂线,与直线16y k x =+和函数()20k y x x=>的图象的交点分别为点M ,N ,当点M 在点N 下方时,写出n 的取值范围.21.(6分)如图,A ,B ,C 三个粮仓的位置如图所示,A 粮仓在 B 粮仓北偏东26°,180 千米处;C 粮仓在 B 粮仓的正东方,A 粮仓的正南方.已知 A ,B 两个粮仓原有存粮共 450 吨,根据灾情需要,现从 A 粮仓运出该粮仓存粮的35支援 C 粮仓,从 B 粮仓运出该粮仓存粮的25支援 C 粮仓,这时 A ,B 两处粮仓的存粮吨数相等.(tan26°=0.44,cos26°=0.90,tan26°=0.49) (1)A ,B 两处粮仓原有存粮各多少吨?(2)C 粮仓至少需要支援 200 吨粮食,问此调拨计划能满足 C 粮仓的需求吗?(3)由于气象条件恶劣,从 B 处出发到 C 处的车队来回都限速以每小时35 公里的速度匀速行驶,而司机小王的汽车油箱的油量最多可行驶 4 小时,那么小王在途中是否需要加油才能安全的回到B 地?请你说明理由.22.(8分)我市304国道通辽至霍林郭勒段在修建过程中经过一座山峰,如图所示,其中山脚A、C两地海拔高度约为1000米,山顶B处的海拔高度约为1400米,由B处望山脚A处的俯角为30°,由B处望山脚C处的俯角为45°,若在A、C两地间打通一隧道,求隧道最短为多少米(结果取整数,参考数据3≈1.732)23.(8分)在“传箴言”活动中,某班团支部对该班全体团员在一个月内所发箴言条数的情况进行了统计,并制成了如图所示的两幅不完整的统计图:求该班团员在这一个月内所发箴言的平均条数是多少?并将该条形统计图补充完整;如果发了3条箴言的同学中有两位男同学,发了4条箴言的同学中有三位女同学.现要从发了3条箴言和4条箴言的同学中分别选出一位参加该校团委组织的“箴言”活动总结会,请你用列表法或树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.24.(10分)计算:4cos30°12+20180+|1325.(10分)在抗洪抢险救灾中,某地粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到没有受洪水威胁的A,B两仓库,已知甲库有粮食100吨,乙库有粮食80吨,而A库的容量为60吨,B库的容量为120吨,从甲、乙两库到A、B两库的路程和运费如表(表中“元/吨•千米”表示每吨粮食运送1千米所需人民币)路程(千米)运费(元/吨•千米)甲库乙库甲库乙库A库20 15 12 12B库25 20 10 8若从甲库运往A库粮食x吨,(1)填空(用含x的代数式表示):①从甲库运往B库粮食吨;②从乙库运往A库粮食吨;③从乙库运往B库粮食吨;(2)写出将甲、乙两库粮食运往A、B两库的总运费y(元)与x(吨)的函数关系式,并求出当从甲、乙两库各运往A、B两库多少吨粮食时,总运费最省,最省的总运费是多少?26.(12分)一艘货轮往返于上下游两个码头之间,逆流而上需要6小时,顺流而下需要4小时,若船在静水中的速度为20千米/时,则水流的速度是多少千米/时?27.(12分)2018年湖南省进入高中学习的学生三年后将面对新高考,高考方案与高校招生政策都将有重大变化.某部门为了了解政策的宣传情况,对某初级中学学生进行了随机抽样调查,根据学生对政策的了解程度由高到低分为A,B,C,D四个等级,并对调查结果分析后绘制了如下两幅图不完整的统计图.请你根据图中提供的信息完成下列问题:(1)求被调查学生的人数,并将条形统计图补充完整;(2)求扇形统计图中的A等对应的扇形圆心角的度数;(3)已知该校有1500名学生,估计该校学生对政策内容了解程度达到A等的学生有多少人?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据左视图是从左面看到的图形求解即可.【详解】从左面看,可以看到3个正方形,面积为3,故选:C.【点睛】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的平面图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图.2.B【解析】【分析】主视图、俯视图是分别从物体正面、上面看,所得到的图形.【详解】综合主视图和俯视图,底层最少有4个小立方体,第二层最少有1个小立方体,因此搭成这个几何体的小正方体的个数最少是5个.故选:B.【点睛】此题考查由三视图判断几何体,解题关键在于识别图形3.C【解析】试题分析:∵底面圆的直径为8cm,高为3cm,∴母线长为5cm,∴其表面积=π×4×5+42π+8π×6=84πcm2,故选C.考点:圆锥的计算;几何体的表面积.4.B【解析】【分析】根据勾股定理得到,根据菱形的性质得到AB=OA=5,AB∥x轴,求得B(-8,-4),得到E(-4,-2),于是得到结论.【详解】∵点A的坐标为(﹣3,﹣4),∴OA=2234+=5,∵四边形AOCB是菱形,∴AB=OA=5,AB∥x轴,∴B(﹣8,﹣4),∵点E是菱形AOCB的中心,∴E(﹣4,﹣2),∴k=﹣4×(﹣2)=8,故选B.【点睛】本题考查了反比例函数图象上点的坐标特征,菱形的性质,勾股定理,正确的识别图形是解题的关键.5.D【解析】【分析】点F的运动路径的长为弧FF'的长,求出圆心角、半径即可解决问题.【详解】如图,点F的运动路径的长为弧FF'的长,在Rt△ABC中,∵tan∠BAC=333BCAB==,∴∠BAC=30°,∵∠CAF=∠BAC=30°,∴∠BAF=60°,∴∠FAF′=120°,∴弧FF'的长=1203231803π=.故选D.本题考查了矩形的性质、特殊角的三角函数值、含30°角的直角三角形的性质、弧长公式等知识,解题的关键是判断出点F运动的路径.6.C【解析】分析:将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.详解:将三个小区分别记为A、B、C,列表如下:由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为31 = 93.故选:C.点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.7.C【解析】【分析】根据轴对称图形的概念求解.【详解】A、是轴对称图形,故错误;B、是轴对称图形,故错误;C、不是轴对称图形,故正确;D、是轴对称图形,故错误.故选C.【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.8.C分析:一个绝对值大于10的数可以表示为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,整数位数减去1即可.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.详解:1800000这个数用科学记数法可以表示为61.810⨯, 故选C .点睛:考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键. 9.A 【解析】 【分析】转盘中4个数,每转动一次就要4种可能,而其中是奇数的有2种可能.然后根据概率公式直接计算即可 【详解】奇数有两种,共有四种情况,将转盘转动一次,求得到奇数的概率为: P (奇数)= = .故此题选A .【点睛】此题主要考查了几何概率,正确应用概率公式是解题关键. 10.D 【解析】 【分析】根据题意列出关系式,去括号合并即可得到结果. 【详解】解:设小长方形卡片的长为x ,宽为y , 根据题意得:x+2y=a ,则图②中两块阴影部分周长和是: 2a+2(b-2y )+2(b-x ) =2a+4b-4y-2x =2a+4b-2(x+2y ) =2a+4b-2a =4b . 故选择:D. 【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键. 11.C【解析】【分析】①如图,由平行线等分线段定理(或分线段成比例定理)易得:13 EA OAEC OC'='=;②设过点B且与y轴平行的直线交AC于点G,则S△ABC=S△AGB+S△BCG,易得:S△AED=12,△AED∽△AGB且相似比=1,所以,△AED≌△AGB,所以,S△AGB=12,又易得G为AC中点,所以,S△AGB=S△BGC=12,从而得结论;③易知,BG=DE=1,又△BGC∽△FEC,列比例式可得结论;④易知,点B的位置会随着点A在直线x=1上的位置变化而相应的发生变化,所以④错误.【详解】解:①如图,∵OE∥AA'∥CC',且OA'=1,OC'=1,∴13 EA OAEC OC'='=,故①正确;②设过点B且与y轴平行的直线交AC于点G(如图),则S△ABC=S△AGB+S△BCG,∵DE=1,OA'=1,∴S△AED=12×1×1=12,∵OE∥AA'∥GB',OA'=A'B',∴AE=AG,∴△AED∽△AGB且相似比=1,∴△AED≌△AGB,∴S△ABG=12,同理得:G为AC中点,∴S△ABG=S△BCG=12,∴S△ABC=1,故②正确;③由②知:△AED≌△AGB,∴BG=DE=1,∵BG∥EF,∴△BGC∽△FEC,∴13 BG CGEF CE==,∴EF=1.即OF=5,故③正确;④易知,点B的位置会随着点A在直线x=1上的位置变化而相应的发生变化,故④错误;故选C.【点睛】本题考查了图形与坐标的性质、三角形的面积求法、相似三角形的性质和判定、平行线等分线段定理、函数图象交点等知识及综合应用知识、解决问题的能力.考查学生数形结合的数学思想方法.12.B【解析】【详解】解:∵由作法可知直线l是线段AB的垂直平分线,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故选B.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.4 5【解析】根据题意先求出这组数据的平均数是:(3+3+4+5+5)÷5=4,再根据方差公式求出这组数据的方差为:1 5×[(3–4)2+(3–4)2+(4–4)2+(5–4)2+(5–4)2]=45.故答案为45.14.k≤14.【解析】【分析】分k=1及k≠1两种情况考虑:当k=1时,通过解一元一次方程可得出原方程有解,即k=1符合题意;等k≠1时,由△≥1即可得出关于k的一元一次不等式,解之即可得出k的取值范围.综上此题得解.【详解】当k=1时,原方程为-x+2=1,解得:x=2,∴k=1符合题意;当k≠1时,有△=[-(2k+1)]2-4k (k+2)≥1,解得:k≤14且k≠1. 综上:k 的取值范围是k≤14. 故答案为:k≤14. 【点睛】 本题考查了根的判别式以及一元二次方程的定义,分k=1及k≠1两种情况考虑是解题的关键. 15.±4【解析】【分析】根据平方差公式展开左边即可得出答案.【详解】∵(x-ay)(x+ay)=()22222x ay x a y -=-又(x-ay)(x+ay)22x 16y =- ∴216a =解得:a=±4 故答案为:±4. 【点睛】本题考查的平方差公式:22()()a b a b a b -=+-.16.140°【解析】【分析】【详解】如图,连接BD ,∵点E 、F 分别是边AB 、AD 的中点,∴EF 是△ABD 的中位线,∴EF ∥BD ,BD=2EF=12,∴∠ADB=∠AFE=50°,∵BC=15,CD=9,BD=12,∴BC2=225,CD2=81,BD2=144,∴CD2+BD2=BC2,∴∠BDC=90°,∴∠ADC=∠ADB+∠BDC=50°+90°=140°. 故答案为:140°.17.10 7【解析】【分析】根据题中的新定义化简所求方程,求出方程的解即可.【详解】根据题意得:13x-14×2=13×1-1x4,7 12x=56,解得:x=10 7,故答案为x=10 7.【点睛】此题的关键是掌握新运算规则,转化成一元一元一次方程,再解这个一元一次方程即可.18.2.9【解析】试题分析:在Rt△AMD中,∠MAD=45°,AM=4米,可得MD=4米;在Rt△BMC中,BM=AM+AB=12米,∠MBC=30°,可求得MC=4米,所以警示牌的高CD=4-4=2.9米.考点:解直角三角形.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)y=-6x,y=-2x-1(2)1【解析】试题分析:(1)将点A坐标代入反比例函数求出m的值,从而得到点A的坐标以及反比例函数解析式,再将点B坐标代入反比例函数求出n的值,从而得到点B的坐标,然后利用待定系数法求一次函数解析式求解;(2)设AB 与x 轴相交于点C ,根据一次函数解析式求出点C 的坐标,从而得到点OC 的长度,再根据S △AOB =S △AOC +S △BOC 列式计算即可得解.试题解析:(1)将A (﹣3,m+8)代入反比例函数y=得,=m+8,解得m=﹣6,m+8=﹣6+8=2,所以,点A 的坐标为(﹣3,2),反比例函数解析式为y=﹣,将点B (n ,﹣6)代入y=﹣得,﹣=﹣6,解得n=1, 所以,点B 的坐标为(1,﹣6),将点A (﹣3,2),B (1,﹣6)代入y=kx+b 得,, 解得,所以,一次函数解析式为y=﹣2x ﹣1;(2)设AB 与x 轴相交于点C ,令﹣2x ﹣1=0解得x=﹣2,所以,点C 的坐标为(﹣2,0),所以,OC=2,S △AOB =S △AOC +S △BOC , =×2×3+×2×1,=3+1,=1.考点:反比例函数与一次函数的交点问题.20.(1)11k =-,25k =;(2)0<n <1或者n >1.【解析】【分析】(1)利用待定系数法即可解决问题;(2)利用图象法即可解决问题;【详解】解:(1)∵A (1,1)在直线16y k x =+上,∴11k =-,∵A (1,1)在()20k y x x=>的图象上, ∴25k =.(2)观察图象可知,满足条件的n 的值为:0<n <1或者n >1.【点睛】此题考查待定系数法求反比例函数与一次函数的解析式,解题关键在于利用数形结合的思想求解. 21.(1)A 、B 两处粮仓原有存粮分别是 270,1 吨;(2)此次调拨能满足 C 粮仓需求;(3)小王途中须加油才能安全回到 B 地.【解析】【分析】(1)由题意可知要求A ,B 两处粮仓原有存粮各多少吨需找等量关系,即A 处存粮+B 处存粮=450吨,A 处存粮的五分之二=B 处存粮的五分之三,据等量关系列方程组求解即可;(2)分别求出A 处和B 处支援C 处的粮食,将其加起来与200吨比较即可;(3)由题意可知由已知可得△ABC 中∠A=26°∠ACB=90°且AB=1Km ,sin ∠BAC=BC AB,要求BC 的长,可以运用三角函数解直角三角形.【详解】(1)设A ,B 两处粮仓原有存粮x ,y 吨 根据题意得:45032(1)(1)55x y x y +⎧⎪⎨--⎪⎩==解得:x=270,y=1.答:A,B两处粮仓原有存粮分别是270,1吨.(2)A粮仓支援C粮仓的粮食是35×270=162(吨),B粮仓支援C粮仓的粮食是25×1=72(吨),A,B两粮仓合计共支援C粮仓粮食为162+72=234(吨).∵234>200,∴此次调拨能满足C粮仓需求.(3)如图,根据题意知:∠A=26°,AB=1千米,∠ACB=90°.在Rt△ABC中,sin∠BAC=BC AB,∴BC=AB•sin∠BAC=1×0.44=79.2.∵此车最多可行驶4×35=140(千米)<2×79.2,∴小王途中须加油才能安全回到B地.【点睛】求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.22.隧道最短为1093米.【解析】【分析】作BD⊥AC于D,利用直角三角形的性质和三角函数解答即可.【详解】如图,作BD⊥AC于D,由题意可得:BD=1400﹣1000=400(米),∠BAC=30°,∠BCA=45°,在Rt△ABD中,∵tan30°=BDAD,即40033AD,∴3(米),在Rt△BCD中,∵tan45°=BDCD,即4001CD=,∴CD=400(米),∴AC=AD+CD=4003+400≈1092.8≈1093(米),答:隧道最短为1093米.【点睛】本题考查了解直角三角形的应用,正确添加辅助线构建直角三角形是解题的关键.23.(1)3,补图详见解析;(2)7 12【解析】【分析】(1)总人数=3÷它所占全体团员的百分比;发4条的人数=总人数-其余人数(2)列举出所有情况,看恰好是一位男同学和一位女同学占总情况的多少即可【详解】由扇形图可以看到发箴言三条的有3名学生且占25%,故该班团员人数为:325%12÷=(人),则发4条箴言的人数为:1222314----=(人),所以本月该班团员所发的箴言共212233441536⨯+⨯+⨯+⨯+⨯=(条),则平均所发箴言的条数是:36123÷=(条).(2)画树形图如下:由树形图可得,所选两位同学恰好是一位男同学和一位女同学的概率为712 P=.【点睛】此题考查扇形统计图,条形统计图,列表法与树状图法和扇形统计图,看懂图中数据是解题关键243【解析】【分析】先代入三角函数值、化简二次根式、计算零指数幂、取绝对值符号,再计算乘法,最后计算加减可得.【详解】原式=411-=11=【点睛】本题主要考查实数的混合运算,解题的关键是熟练掌握实数的混合运算顺序和运算法则及零指数幂、绝对值和二次根式的性质.25.(1)①(100﹣x);②(1﹣x);③(20+x);(2)从甲库运往A库1吨粮食,从甲库运往B库40吨粮食,从乙库运往B库80吨粮食时,总运费最省,最省的总运费是2元.【解析】分析:(Ⅰ)根据题意解答即可;(Ⅱ)弄清调动方向,再依据路程和运费列出y(元)与x(吨)的函数关系式,最后可以利用一次函数的增减性确定“最省的总运费”.详解:(Ⅰ)设从甲库运往A库粮食x吨;①从甲库运往B库粮食(100﹣x)吨;②从乙库运往A库粮食(1﹣x)吨;③从乙库运往B库粮食(20+x)吨;故答案为(100﹣x);(1﹣x);(20+x).(Ⅱ)依题意有:若甲库运往A库粮食x吨,则甲库运到B库(100﹣x)吨,乙库运往A库(1﹣x)吨,乙库运到B库(20+x)吨.则1000600200xxxx≥⎧⎪-≥⎪⎨-≥⎪⎪+≥⎩,解得:0≤x≤1.从甲库运往A库粮食x吨时,总运费为:y=12×20x+10×25(100﹣x)+12×15(1﹣x)+8×20×[120﹣(100﹣x)]=﹣30x+39000;∵从乙库运往A库粮食(1﹣x)吨,∴0≤x≤1,此时100﹣x>0,∴y=﹣30x+39000(0≤x≤1).∵﹣30<0,∴y随x的增大而减小,∴当x=1时,y取最小值,最小值是2.答:从甲库运往A库1吨粮食,从甲库运往B库40吨粮食,从乙库运往B库80吨粮食时,总运费最省,最省的总运费是2元.点睛:本题是一次函数与不等式的综合题,先解不等式确定自变量的取值范围,然后依据一次函数的增减性来确定“最佳方案”.26.1千米/时【解析】【分析】设水流的速度是x千米/时,则顺流的速度为(20+x)千米/时,逆流的速度为(20﹣x)千米/时,根据由货轮往返两个码头之间,可知顺水航行的距离与逆水航行的距离相等列出方程,解方程即可求解.【详解】设水流的速度是x千米/时,则顺流的速度为(20+x)千米/时,逆流的速度为(20﹣x)千米/时,根据题意得:6(20﹣x)=1(20+x),解得:x=1.答:水流的速度是1千米/时.【点睛】本题考查了一元一次方程的应用,读懂题意,找出等量关系,设出未知数后列出方程是解决此类题目的基本思路.27.(1)图见解析;(2)126°;(3)1.【解析】【分析】(1)利用被调查学生的人数=了解程度达到B等的学生数÷所占比例,即可得出被调查学生的人数,由了解程度达到C等占到的比例可求出了解程度达到C等的学生数,再利用了解程度达到A等的学生数=被调查学生的人数-了解程度达到B等的学生数-了解程度达到C等的学生数-了解程度达到D等的学生数可求出了解程度达到A等的学生数,依此数据即可将条形统计图补充完整;(2)根据A等对应的扇形圆心角的度数=了解程度达到A等的学生数÷被调查学生的人数×360°,即可求出结论;(3)利用该校现有学生数×了解程度达到A等的学生所占比例,即可得出结论.【详解】(1)48÷40%=120(人),120×15%=18(人),120-48-18-12=42(人).将条形统计图补充完整,如图所示.(2)42÷120×100%×360°=126°.答:扇形统计图中的A等对应的扇形圆心角为126°.(3)1500×42120=1(人).答:该校学生对政策内容了解程度达到A等的学生有1人.【点睛】本题考查了条形统计图、扇形统计图以及用样本估计总体,观察条形统计图及扇形统计图,找出各数据,再利用各数量间的关系列式计算是解题的关键.。

贵州省遵义市2019-2020学年中考数学模拟试题(5)含解析

贵州省遵义市2019-2020学年中考数学模拟试题(5)含解析

贵州省遵义市2019-2020学年中考数学模拟试题(5)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在平行四边形ABCD中,AE:EB=1:2,E为AB上一点,AC与DE相交于点F,S△AEF=3,则S△FCD为()A.6 B.9 C.12 D.272.已知:a、b是不等于0的实数,2a=3b,那么下列等式中正确的是()A .B .C .D .3.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,则可列方程组为()A.100131003x yx y+=⎧⎪⎨+=⎪⎩B.100131003x yx y+=⎧⎪⎨+=⎪⎩C.1003100x yx y+=⎧⎨+=⎩D.1003100x yx y+=⎧⎨+=⎩4.﹣18的相反数是()A.8 B.﹣8 C.18D.﹣185.数据3、6、7、1、7、2、9的中位数和众数分别是()A.1和7 B.1和9 C.6和7 D.6和96.若圆锥的轴截面为等边三角形,则称此圆锥为正圆锥,则正圆锥侧面展开图的圆心角是()A.90°B.120°C.150°D.180°7.已知A、B两地之间铁路长为450千米,动车比火车每小时多行驶50千米,从A市到B市乘动车比乘火车少用40分钟,设动车速度为每小时x千米,则可列方程为()A.4504504050x x-=-B.4504504050x x-=-C.4504502503x x-=+D.4504502503x x-=-8.如图,⊙O的直径AB的长为10,弦AC长为6,∠ACB的平分线交⊙O于D,则CD长为()A.7 B.72C.82D.99.一个三角形框架模型的三边长分别为20厘米、30厘米、40厘米,木工要以一根长为60厘米的木条为一边,做一个与模型三角形相似的三角形,那么另两条边的木条长度不符合条件的是()A.30厘米、45厘米;B.40厘米、80厘米;C.80厘米、120厘米;D.90厘米、120厘米10.如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为()A.O1B.O2C.O3D.O411.一辆慢车和一辆快车沿相同的路线从A地到B地,所行驶的路程与时间的函数图形如图所示,下列说法正确的有()①快车追上慢车需6小时;②慢车比快车早出发2小时;③快车速度为46km/h;④慢车速度为46km/h;⑤A、B两地相距828km;⑥快车从A地出发到B地用了14小时A.2个B.3个C.4个D.5个12.如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,点E是△ABC的内心,过点E作EF∥AB交AC于点F,则EF的长为( )A.52B.154C.83D.103二、填空题:(本大题共6个小题,每小题4分,共24分.)13.不等式组1020xx+≥⎧⎨->⎩的整数解是_____.14.如图,在△ABC中,BA=BC=4,∠A=30°,D是AC上一动点,AC的长=_____;BD+12DC的最小值是_____.15.在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A点的坐标为(a,a).如图,若曲线3(0)y xx=>与此正方形的边有交点,则a的取值范围是________.16.关于x的一元二次方程kx2﹣2x+1=0有两个不相等的实数根,则k的取值范围是.17.2018年3月2日,大型记录电影《厉害了,我的国》登陆全国各大院线.某影院针对这一影片推出了特惠活动:票价每人30元,团体购票超过10人,票价可享受八折优惠,学校计划组织全体教师观看此影片.若观影人数为a(a>10),则应付票价总额为_____元.(用含a的式子表示)18.已知二次函数y=ax2+bx(a≠0)的最小值是﹣3,若关于x的一元二次方程ax2+bx+c=0有实数根,则c的最大值是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,△ABC中,D是AB上一点,DE⊥AC于点E,F是AD的中点,FG⊥BC于点G,与DE 交于点H ,若FG=AF ,AG 平分∠CAB ,连接GE ,GD .求证:△ECG ≌△GHD ;20.(6分)如图,在△ABC 中,已知AB=AC=5,BC=6,且△ABC ≌△DEF ,将△DEF 与△ABC 重合在一起,△ABC 不动,△DEF 运动,并满足:点E 在边BC 上沿B 到C 的方向运动,且DE 始终经过点A ,EF 与AC 交于M 点.(1)求证:△ABE ∽△ECM ;(2)探究:在△DEF 运动过程中,重叠部分能否构成等腰三角形?若能,求出BE 的长;若不能,请说明理由;(3)当线段AM 最短时,求重叠部分的面积.21.(6分)计算:(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2)22.(8分)如图,△ABC 中,点D 在AB 上,∠ACD=∠ABC ,若AD=2,AB=6,求AC 的长.23.(8分)先化简再求值:2()(2)x y y y x -++,其中2x 3y =24.(10分)(1)计算:﹣2212﹣4|+(13)-1+2tan60° (2) 求 不 等 式 组620{21x x x -≥->的 解 集 . 25.(10分)如图,在△ABC 中,(1)求作:∠BAD=∠C ,AD 交BC 于D .(用尺规作图法,保留作图痕迹,不要求写作法). (2)在(1)条件下,求证:AB 2=BD•BC .26.(12分)先化简,再求值:,其中x=1.27.(12分)如图,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上的一点,(1)求证:△ACE≌△BCD;(2)若DE=13,BD=12,求线段AB的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】先根据AE:EB=1:2得出AE:CD=1:3,再由相似三角形的判定定理得出△AEF∽△CDF,由相似三角形的性质即可得出结论.【详解】解:∵四边形ABCD是平行四边形,AE:EB=1:2,∴AE:CD=1:3,∵AB∥CD,∴∠EAF=∠DCF,∵∠DFC=∠AFE,∴△AEF∽△CDF,∵S △AEF =3, ∴AEF FCD S S V V =3FCD S V =(13)2, 解得S △FCD =1.故选D.【点睛】本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键. 2.B【解析】∵2a=3b ,∴ ,∴ ,∴A 、C 、D 选项错误,B 选项正确,故选B.3.B【解析】【分析】设大马有x 匹,小马有y 匹,根据题意可得等量关系:大马数+小马数=100,大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程即可.【详解】解:设大马有x 匹,小马有y 匹,由题意得:100131003x y x y +=⎧⎪⎨+=⎪⎩, 故选:B .【点睛】本题主要考查的是由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.4.C【解析】互为相反数的两个数是指只有符号不同的两个数,所以18-的相反数是18, 故选C .5.C【解析】【分析】如果一组数据有奇数个,那么把这组数据从小到大排列后,排在中间位置的数是这组数据的中位数;如果一组数据有偶数个,那么把这组数据从小到大排列后,排在中间位置的两个数的平均数是这组数据的中位数. 一组数据中出现次数最多的数据叫做众数.【详解】解:∵7出现了2次,出现的次数最多,∴众数是7;∵从小到大排列后是:1,2,3,6,7,7,9,排在中间的数是6,∴中位数是6故选C.【点睛】本题考查了中位数和众数的求法,解答本题的关键是熟练掌握中位数和众数的定义.6.D【解析】试题分析:设正圆锥的底面半径是r,则母线长是2r,底面周长是2πr,设正圆锥的侧面展开图的圆心角是n°,则=2πr,解得:n=180°.故选D.考点:圆锥的计算.7.D【解析】解:设动车速度为每小时x千米,则可列方程为:45050x﹣450x=23.故选D.8.B【解析】【分析】作DF⊥CA,交CA的延长线于点F,作DG⊥CB于点G,连接DA,DB.由CD平分∠ACB,根据角平分线的性质得出DF=DG,由HL证明△AFD≌△BGD,△CDF≌△CDG,得出CF=7,又△CDF是等腰直角三角形,从而求出CD=72.【详解】解:作DF⊥CA,垂足F在CA的延长线上,作DG⊥CB于点G,连接DA,DB.∵CD平分∠ACB,∴∠ACD=∠BCD∴DF=DG,弧AD=弧BD,∴DA=DB.∵∠AFD=∠BGD=90°,∴△AFD≌△BGD,∴AF=BG.易证△CDF≌△CDG,∴CF=CG.∵AC=6,BC=8,∴AF=1,(也可以:设AF=BG=x,BC=8,AC=6,得8-x=6+x,解x=1)∴CF=7,∵△CDF是等腰直角三角形,(这里由CFDG是正方形也可得).∴CD=72.故选B.9.C【解析】当60cm的木条与20cm是对应边时,那么另两条边的木条长度分别为90cm与120cm;当60cm的木条与30cm是对应边时,那么另两条边的木条长度分别为40cm与80cm;当60cm的木条与40cm是对应边时,那么另两条边的木条长度分别为30cm与45cm;所以A、B、D选项不符合题意,C选项符合题意,故选C.10.A【解析】试题分析:因为A点坐标为(-4,2),所以,原点在点A的右边,也在点A的下边2个单位处,从点B 来看,B(2,-4),所以,原点在点B的左边,且在点B的上边4个单位处.如下图,O1符合.考点:平面直角坐标系.11.B【解析】【分析】根据图形给出的信息求出两车的出发时间,速度等即可解答.【详解】解:①两车在276km处相遇,此时快车行驶了4个小时,故错误.②慢车0时出发,快车2时出发,故正确.③快车4个小时走了276km,可求出速度为69km/h,错误.④慢车6个小时走了276km,可求出速度为46km/h,正确.⑤慢车走了18个小时,速度为46km/h,可得A,B距离为828km,正确.⑥快车2时出发,14时到达,用了12小时,错误.故答案选B.【点睛】本题考查了看图手机信息的能力,注意快车并非0时刻出发是解题关键.12.A【解析】【分析】过E作EG∥AB,交AC于G,易得CG=EG,EF=AF,依据△ABC∽△GEF,即可得到EG:EF:GF,根据斜边的长列方程即可得到结论.【详解】过E作EG∥BC,交AC于G,则∠BCE=∠CEG.∵CE平分∠BCA,∴∠BCE=∠ACE,∴∠ACE=∠CEG,∴CG=EG,同理可得:EF=AF.∵BC∥GE,AB∥EF,∴∠BCA=∠EGF,∠BAC=∠EFG,∴△ABC∽△GEF.∵∠ABC=90°,AB=6,BC=8,∴AC=10,∴EG:EF:GF=BC:BC:AC=4:3:5,设EG=4k=AG,则EF=3k=CF,FG=5k.∵AC=10,∴3k+5k+4k=10,∴k=56,∴EF=3k=52.故选A.【点睛】本题考查了相似三角形的判定与性质,等腰三角形的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构相似三角形以及构造等腰三角形.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.﹣1、0、1【解析】【分析】求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,即可得出答案.【详解】1020x x +≥⎧⎨->⎩, Q 解不等式10x +≥得:1x ≥-,解不等式20x ->得:2x <,∴不等式组的解集为12x -≤<,∴不等式组的整数解为-1,0,1.故答案为:-1,0,1.【点睛】本题考查的知识点是一元一次不等式组的整数解,解题关键是注意解集范围从而得出整数解.14.(Ⅰ)AC = (Ⅱ).【解析】【分析】(Ⅰ)如图,过B 作BE ⊥AC 于E ,根据等腰三角形的性质和解直角三角形即可得到结论;(Ⅱ)如图,作BC 的垂直平分线交AC 于D ,则BD =CD ,此时BD+12DC 的值最小,解直角三角形即可得到结论.【详解】解:(Ⅰ)如图,过B 作BE ⊥AC 于E ,∵BA =BC =4,∴AE =CE ,∵∠A =30°,∴AE =,∴AC =2AE =(Ⅱ)如图,作BC 的垂直平分线交AC 于D ,。

2019-2020年最新贵州省遵义市中考数学模拟试卷(二)及答案解析

2019-2020年最新贵州省遵义市中考数学模拟试卷(二)及答案解析

贵州省遵义市中考数学模拟试卷(二)一、选择题(本题共12小题,每小题3分,共36分.)1.下列数中能同时被2、3整除的是()A.1.2 B.15 C.16 D.182.将6.18×10﹣3化为小数的是()A.0.000618 B.0.00618 C.0.0618 D.0.6183.一个几何体的三视图如图,那么这个几何体是()A.B.C.D.4.计算的结果是()A.﹣3 B.3 C.﹣9 D.95.直尺与三角尺按如图所示的方式叠放在一起,在图中所标记的角中,与∠1互余的角有几个()A.2个 B.3个 C.4个 D.6个6.如果关于x的一元二次方程x2+px+q=0的两根分别为x1=2,x2=﹣1,那么p,q的值分别是()A.1,﹣2 B.﹣1,﹣2 C.﹣1.2 D.1,27.一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是()A.6 B.7 C.8 D.98.如图,AB是⊙O的直径,∠ACD=15°,则∠BAD的度数为()A.15°B.30°C.60°D.75°9.已知关于x的方程mx+2=2(m﹣x)的解满足|x﹣|﹣1=0,则m的值是()A.10或B.10或﹣C.﹣10或D.﹣10或﹣10.一个布袋里装有5个球,其中3个红球,2个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是红球的概率是()A.B.C.D.11.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°12.如图,在平行四边形ABCD中,E、F分别是边AD、BC的中点,AC分别交BE、DF于点M、N.下面结论错误的是()A.△ABM≌△CDN B.AM=AC C.DN=2NF D.△AME∽△DNC二、填空题(本题共6小题,每小题4分,共24分.)13.分解因式:n2﹣2n+1﹣m2= .14.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a ﹣b|=2013,且AO=2BO,则a+b的值为.15.分式方程:的解x= .16.著名画家达芬奇不仅画艺超群,同时还是一个数学家、发明家.他曾经设计过一种圆规如图所示,有两个互相垂直的滑槽(滑槽宽度忽略不计),一根没有弹性的木棒的两端A、B能在滑槽内自由滑动,将笔插入位于木棒中点P处的小孔中,随着木棒的滑动就可以画出一个圆来.若AB=20cm,则画出的圆的半径为cm.17.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=5,AC=2,则DF 的长为.18.如图,点P在双曲线y=(x>0)上,以P为圆心的⊙P与两坐标轴都相切,点E为y轴负半轴上的一点,过点P作PF⊥PE交x轴于点F,若OF﹣OE=6,则k的值是.三、解答题(本题共9小题,共90分.)19.解方程组:.20.先化简,再求值:(1﹣)÷﹣,其中x满足x2﹣x﹣1=0.21.某海域有两个海拔均为200米的海岛A和海岛B,一勘测飞机在距离海平面垂直高度为1100米的空中飞行,飞行到点C处时测得正前方一海岛顶端A的俯角是60°,然后沿平行与AB的方向水平飞行1.99×104米到达点D处,在D处测得正前方另一海岛顶端B的俯角是45°,求两海岛间的距离AB.22.在一个不透明的盒子里,装有三个分别标有1、2、3的小球,它们的形状、大小、质地等完全相同.小明和小红做一个游戏,小明先摸出一球,记着编号后放入,小红再摸出一球,记住编号.(1)求小明和小红都摸出2号球的概率;(2)若小明摸出的球的编号与小红摸出的球的编号的乘积是质数,则小明获胜,是合数,则小红胜,既不是质数又不是合数,则重新游戏.你认为这个游戏规则合理吗?请说明理由.23.王老师对本校九年级学生期中数学测试的成绩,进行统计分析:(1)王老师通过计算得出九(1)班,选择题的平均得分是23.2分,填空题的平均得分是26.2分,解答题的得分是82.6分.则九(1)班数学平均得分是多少?(试题共三种题型)(2)王老师对解答题第28题的得分进行了抽样调查,将所得分数x分为三级:A级:x≥8,B级:4≤x<8;C级:0≤x<4,并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:①此次抽样调查中,共调查了名学生,将图①补充完整;②求出图②中C级所占的圆心角的度数;③根据抽样调查结果,请你估计我校1200名九年级学生中大约共有多少名学生对28题的解答达到A级和B级?24.如图,在△ABC中,∠C=60°,⊙O是△ABC的外接圆,点P在直径BD的延长线上,且AB=AP.(1)求证:PA是⊙O的切线;(2)若AB=2,求图中阴影部分的面积.(结果保留π和根号)25.某商店购进甲、乙两种型号的滑板车,共花费13000元,所购进甲型车的数量不少于乙型车数量的二倍,但不超过乙型车数量的三倍.现已知甲型车每辆进价200元,乙型车每辆进价400元,设商店购进乙型车x辆.(1)商店有哪几种购车方案?(2)若商店将购进的甲、乙两种型号的滑板车全部售出,并且销售甲型车每辆获得利润70元,销售乙型车每辆获得利润50元,写出此商店销售这两种滑板车所获得的总利润y(元)与购进乙型车的辆数x(辆)之间的函数关系式?并求出商店购进乙型车多少辆时所获得的利润最大?26.如图1,已知正方形ABCD的边CD在正方形DEFG的边DE上,连接AE,GC.(1)试猜想AE与GC有怎样的位置关系,并证明你的结论;(2)将正方形DEFG绕点D按顺时针方向旋转,使点E落在BC边上,如图2,连接AE和GC.你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.27.如图所示,已知实数m是方程x2﹣8x+16=0的一个实数根,抛物线y=x2+bx+c交x轴于点A(m,0)和点B,交y轴于点C(0,m).(1)求这个抛物线的解析式;(2)设点D为线段AB上的一个动点,过D作DE∥BC交AC于点E,又过D作DF∥AC交BC于点F,当四边形DECF的面积最大时,求点D的坐标;(3)设△AOC的外接圆为⊙G,若M是⊙G的优弧ACO上的一个动点,连接AM、OM,问在这个抛物线位于y轴左侧的图象上是否存在点N,使得∠NOB=∠AMO?若存在,试求出点N的坐标;若不存在,请说明理由.贵州省遵义市中考数学模拟试卷(二)参考答案与试题解析一、选择题(本题共12小题,每小题3分,共36分.)1.下列数中能同时被2、3整除的是()A.1.2 B.15 C.16 D.18【考点】有理数的除法.【专题】计算题.【分析】用各项中的数字分别除以2和3即可得到正确的选项.【解答】解:∵18能被2、3整除,∴能同时被2、3整除的是可以是18.故选:D.【点评】此题考查了有理数的除法,熟练掌握除法法则是解本题的关键.2.将6.18×10﹣3化为小数的是()A.0.000618 B.0.00618 C.0.0618 D.0.618【考点】科学记数法—原数.【分析】科学记数法的标准形式为a×10n(1≤|a|<10,n为整数).本题把数据“6.18×10﹣3中6.18的小数点向左移动3位就可以得到.【解答】解:把数据“6.18×10﹣3中6.18的小数点向左移动3位就可以得到为0.00618.故选:B.【点评】本题考查写出用科学记数法表示的原数.将科学记数法a×10﹣n表示的数,“还原”成通常表示的数,就是把a的小数点向左移动n位所得到的数.把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.3.一个几何体的三视图如图,那么这个几何体是()A.B.C.D.【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:由于俯视图为圆形可得几何体为球、圆柱或圆锥,再根据主视图和左视图可知几何体为圆柱与圆锥的组合体.故选:D.【点评】考查学生对圆锥三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.4.计算的结果是()A.﹣3 B.3 C.﹣9 D.9【考点】二次根式的性质与化简.【专题】计算题.【分析】原式利用二次根式的化简公式计算即可得到结果.【解答】解:原式=|﹣3|=3.故选:B.【点评】此题考查了二次根式的性质与化简,熟练掌握二次根式的化简公式是解本题的关键.5.直尺与三角尺按如图所示的方式叠放在一起,在图中所标记的角中,与∠1互余的角有几个()A.2个 B.3个 C.4个 D.6个【考点】余角和补角.【专题】计算题.【分析】本题要注意到∠1与∠2互余,并且直尺的两边互相平行,可以考虑平行线的性质.【解答】解:与∠1互余的角有∠2,∠3,∠4;一共3个.故选:B.【点评】正确观察图形,由图形联想到学过的定理是数学学习的一个基本要求.6.如果关于x的一元二次方程x2+px+q=0的两根分别为x1=2,x2=﹣1,那么p,q的值分别是()A.1,﹣2 B.﹣1,﹣2 C.﹣1.2 D.1,2【考点】根与系数的关系.【专题】计算题.【分析】根据根与系数的关系得2+(﹣1)=﹣p,2×(﹣1)=q,然后解方程即可.【解答】解:根据题意得2+(﹣1)=﹣p,2×(﹣1)=q,所以p=﹣1,q=﹣2.故选:B.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=.7.一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是()A.6 B.7 C.8 D.9【考点】中位数.【分析】根据中位数的概念求解.【解答】解:这组数据按照从小到大的顺序排列为:6,7,8,9,9,则中位数为:8.故选:C.【点评】本题考查了中位数的知识:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.8.如图,AB是⊙O的直径,∠ACD=15°,则∠BAD的度数为()A.15°B.30°C.60°D.75°【考点】圆周角定理.【专题】压轴题.【分析】由AB是圆的直径,则∠ADB=90°,由圆周角定理知,∠ABD=∠ACD=15°,即可求∠BAD=90°﹣∠B=75°.【解答】解:连接BD,∵AB是圆的直径,∴∠ADB=90°,∴∠ABD=∠ACD=15°,∴∠BAD=90°﹣∠ABD=75°.故选:D.【点评】本题考查了直径对的圆周角定理是直角和圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9.已知关于x的方程mx+2=2(m﹣x)的解满足|x﹣|﹣1=0,则m的值是()A.10或B.10或﹣C.﹣10或D.﹣10或﹣【考点】含绝对值符号的一元一次方程.【专题】计算题.【分析】解此题分两步:(1)求出|x﹣|﹣1=0的解;(2)把求出的解代入方程mx+2=2(m﹣x),把未知数转化成已知数,方程也同时转化为关于未知系数的方程,解方程即可.【解答】解:先由|x﹣|﹣1=0,得出x=或﹣;再将x=和x=﹣分别代入mx+2=2(m﹣x),求出m=10或故选:A.【点评】解答本题时要格外注意,|x﹣|﹣1=0的解有两个.解出x的值后,则可把已知解代入方程的未知数中,使未知数转化为已知数,从而建立起未知系数的方程,通过未知系数的方程求出未知数系数,这种解题方法叫做待定系数法,是数学中的一个重要方法,以后在函数的学习中将大量用到这种方法.10.一个布袋里装有5个球,其中3个红球,2个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是红球的概率是()A.B.C.D.【考点】概率公式.【分析】用红球的个数除以球的总个数即可.【解答】解:∵布袋里装有5个球,其中3个红球,2个白球,∴从中任意摸出一个球,则摸出的球是红球的概率是:.故选:D.【点评】本题考查了概率公式:概率=所求情况数与总情况数之比.11.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°【考点】全等三角形的判定与性质.【分析】易证△ACD≌△BCE,由全等三角形的性质可知:∠A=∠B,再根据已知条件和四边形的内角和为360°,即可求出∠BPD的度数.【解答】解:在△ACD和△BCE中,,∴△ACD≌△BCE(SSS),∴∠A=∠B,∠BCE=∠ACD,∴∠BCA=∠ECD,∵∠ACE=55°,∠BCD=155°,∴∠BCA+∠ECD=100°,∴∠BCA=∠ECD=50°,∵∠ACE=55°,∴∠ACD=105°∴∠A+∠D=75°,∴∠B+∠D=75°,∵∠BCD=155°,∴∠BPD=360°﹣75°﹣155°=130°,故选:C.【点评】本题考查了全等三角形的判定和性质、三角形的内角和定理以及四边形的内角和定理,解题的关键是利用整体的数学思想求出∠B+∠D=75°.12.如图,在平行四边形ABCD中,E、F分别是边AD、BC的中点,AC分别交BE、DF于点M、N.下面结论错误的是()A.△ABM≌△CDN B.AM=AC C.DN=2NF D.△AME∽△DNC【考点】相似三角形的判定与性质;全等三角形的判定;平行四边形的性质.【专题】压轴题.【分析】由在平行四边形ABCD中,E、F分别是边AD、BC的中点,可证得四边形BFDE是平行四边形,继而可利用AAS判定△ABM≌△CDN;易证得△AME∽△CMB,△AND∽△CNF,然后由相似三角形的对应边成比例,证得AM=AC,DN=2NF.【解答】解:∵四边形ABCD是平行四边形,∴∠ABC=∠ADC,AB=CD,AD=BC,∵E、F分别是边AD、BC的中点,∴DE=BF,∴四边形BFDE是平行四边形,∴∠AMB=∠ANF=∠CND,∠EBF=∠EDF,∴∠ABM=∠CDN,在△ABM和△CDN中,,∴△ABM≌△CDN(AAS);故A正确;∵AD∥BC,∴△AME∽△CMB,∴AE:BC=AM:CM=1:2,∴AM=AC;故B正确;∵AD∥BC,∴△AND∽△CNF,∴AD:CF=DN:NF=2,∴DN=2NF;故C正确;∵AB∥CD,AD∥BC,∴△AME∽△CMB∽△CNF∽△AND,△ABM∽△CND,但△AME与△DNC不一定相似.故D错误.由于该题选择错误的,故选:D.【点评】此题考查了相似三角形的判定与性质、全等三角形的判定与性质以及平行四边形的性质.此题难度适中,注意掌握数形结合思想的应用.二、填空题(本题共6小题,每小题4分,共24分.)13.分解因式:n2﹣2n+1﹣m2= (n﹣1+m)(n﹣1﹣m).【考点】因式分解-分组分解法.【分析】当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中有n的二次项,n 的一次项,有常数项.所以要考虑后三项n2﹣2n+1为一组.【解答】解:n2﹣2n+1﹣m2=(n2﹣2n+1)﹣m2=(n﹣1)2﹣m2=(n﹣1+m)(n﹣1﹣m).故答案为:(n﹣1+m)(n﹣1﹣m).【点评】此题主要考查了分组分解法分解因式,难点是采用两两分组还是三一分组.比如本题有n的二次项,n的一次项,有常数项,所以首要考虑的就是三一分组.14.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a﹣b|=2013,且AO=2BO,则a+b的值为﹣671 .【考点】数轴;绝对值;两点间的距离.【分析】根据已知条件可以得到a<0<b.然后通过取绝对值,根据两点间的距离定义知b﹣a=2013,a=﹣2b,则易求b=671.所以a+b=﹣2b+b=﹣b=﹣671.【解答】解:如图,a<0<b.∵|a﹣b|=2013,且AO=2BO,∴b﹣a=2013,①a=﹣2b,②由①②,解得b=671,∴a+b=﹣2b+b=﹣b=﹣671.故答案是:﹣671.【点评】本题考查了数轴、绝对值以及两点间的距离.根据已知条件得到a<0<b是解题的关键.15.分式方程:的解x= 2 .【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2=x2+x﹣2,解得:x=2,经检验x=2是分式方程的解.故答案为:2.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.16.著名画家达芬奇不仅画艺超群,同时还是一个数学家、发明家.他曾经设计过一种圆规如图所示,有两个互相垂直的滑槽(滑槽宽度忽略不计),一根没有弹性的木棒的两端A、B能在滑槽内自由滑动,将笔插入位于木棒中点P处的小孔中,随着木棒的滑动就可以画出一个圆来.若AB=20cm,则画出的圆的半径为10 cm.【考点】直角三角形斜边上的中线.【专题】压轴题.【分析】连接OP,根据直角三角形斜边上的中线等于斜边的一半可得OP的长,画出的圆的半径就是OP长.【解答】解:连接OP,∵△AOB是直角三角形,P为斜边AB的中点,∴OP=AB,∵AB=20cm,∴OP=10cm,故答案为:10.【点评】此题主要考查了直角三角形的性质,关键是掌握直角三角形斜边上的中线等于斜边的一半.17.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=5,AC=2,则DF 的长为.【考点】三角形中位线定理;等腰三角形的判定与性质.【专题】压轴题.【分析】延长CF交AB于点G,证明△AFG≌△AFC,从而可得△AC G是等腰三角形,GF=FC,点F是CG中点,判断出DF是△CBG的中位线,继而可得出答案.【解答】解:延长CF交AB于点G,∵AE平分∠BAC,∴∠GAF=∠CAF,∵AF垂直CG,∴∠AFG=∠AFC,在△AFG和△AFC中,∵,∴△AFG≌△AFC(ASA),∴AC=AG,GF=CF,又∵点D是BC中点,∴DF是△CBG的中位线,∴DF=BG=(AB﹣AG)=(AB﹣AC)=.故答案为:.【点评】本题考查了三角形的中位线定理,解答本题的关键是作出辅助线,同学们要注意培养自己的敏感性,一般出现即是角平分线又是高的情况,我们就需要寻找等腰三角形.18.如图,点P在双曲线y=(x>0)上,以P为圆心的⊙P与两坐标轴都相切,点E为y轴负半轴上的一点,过点P作PF⊥PE交x轴于点F,若OF﹣OE=6,则k的值是9 .【考点】反比例函数综合题.【专题】计算题;压轴题.【分析】过P点作x轴、y轴的垂线,垂足为A、B,根据⊙P与两坐标轴都相切可知,PA=PB,由∠APB=∠EPF=90°可证△BPE≌△APF,得BE=AF,利用OF﹣OE=6,求圆的半径,根据k=OA×PA求解.【解答】解:如图,过P点作x轴、y轴的垂线,垂足为A、B,∵⊙P与两坐标轴都相切,∴PA=PB,四边形OAPB为正方形,∵∠APB=∠EPF=90°,∴∠BPE=∠APF,∴Rt△BPE≌Rt△APF,∴BE=AF,∵OF﹣OE=6,∴(OA+AF)﹣(BE﹣OB)=6,即2OA=6,解得OA=3,∴k=OA×PA=3×3=9.故答案为:9.【点评】本题考查了反比例函数的综合运用.关键是根据圆与坐标轴相切的关系作辅助线,构造全等三角形,正方形,将有关线段进行转化.三、解答题(本题共9小题,共90分.)19.解方程组:.【考点】解二元一次方程组.【专题】计算题.【分析】方程组利用加减消元法求出解即可.【解答】解:,①×3﹣②×5得:52y=88,即y=,将y=代入①得:5x﹣=11,解得:x=,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.先化简,再求值:(1﹣)÷﹣,其中x满足x2﹣x﹣1=0.【考点】分式的化简求值.【分析】原式第一项括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分后,两项通分并利用同分母分式的减法法则计算得到最简结果,已知方程变形后代入计算即可求出值.【解答】解:原式=•﹣=•﹣=x﹣=,∵x2﹣x﹣1=0,∴x2=x+1,则原式=1.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.21.某海域有两个海拔均为200米的海岛A和海岛B,一勘测飞机在距离海平面垂直高度为1100米的空中飞行,飞行到点C处时测得正前方一海岛顶端A的俯角是60°,然后沿平行与AB的方向水平飞行1.99×104米到达点D处,在D处测得正前方另一海岛顶端B的俯角是45°,求两海岛间的距离AB.【考点】解直角三角形的应用-仰角俯角问题.【分析】首先过点A作AE⊥CD于点E,过点B作BF⊥CD于点F,易得四边形ABFE为矩形,根据矩形的性质,可得AB=EF,AE=BF.由题意可知:AE=BF=1100﹣200=900(米),CD=1.99×104米,然后分别在Rt△AEC与Rt△BFD中,利用三角函数即可求得CE与DF的长,继而求得两海岛间的距离AB.【解答】解:过点A作AE⊥CD于点E,过点B作BF⊥CD于点F,∵AB∥CD,∴∠AEF=∠EFB=∠ABF=90°,∴四边形ABFE为矩形.∴AB=EF,AE=BF.由题意可知:AE=BF=1100﹣200=900(米),CD=1.99×104米=19900米.在Rt△AEC中,∠C=60°,AE=900米.∴CE==300(米).在Rt△BFD中,∠BDF=60°,BF=900米.∴DF===900(米).∴AB=EF=CD+DF﹣CE=19900﹣300+900=20800﹣300(米).答:两海岛间的距离AB为(20800﹣300)米.【点评】此题考查了俯角的定义、解直角三角形与矩形的性质.注意能借助俯角构造直角三角形并解直角三角形是解此题的关键,注意数形结合思想的应用.22.在一个不透明的盒子里,装有三个分别标有1、2、3的小球,它们的形状、大小、质地等完全相同.小明和小红做一个游戏,小明先摸出一球,记着编号后放入,小红再摸出一球,记住编号.(1)求小明和小红都摸出2号球的概率;(2)若小明摸出的球的编号与小红摸出的球的编号的乘积是质数,则小明获胜,是合数,则小红胜,既不是质数又不是合数,则重新游戏.你认为这个游戏规则合理吗?请说明理由.【考点】游戏公平性;列表法与树状图法.【分析】(1)用列表法或树形图法求出所有可能的结果,再看一下小明和小红都摸出2号球的数目,进而求出其概率;(2)游戏公平,求出是质数和是合数的概率比较大小即可,【解答】解:(1)列表得:(1,3)(2,3)(3,3)(1,2)(2,2)(3,2)(1,1)(2,1)(3,1)∴一共有9种情况,两次取出小球上的数字为2的有一种,∴;(2)公平.理由如下:∵;P(乘积是合数)=;P(乘积是质数)=P(乘积是合数)∴这个游戏规则公平.【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.23.王老师对本校九年级学生期中数学测试的成绩,进行统计分析:(1)王老师通过计算得出九(1)班,选择题的平均得分是23.2分,填空题的平均得分是26.2分,解答题的得分是82.6分.则九(1)班数学平均得分是多少?(试题共三种题型)(2)王老师对解答题第28题的得分进行了抽样调查,将所得分数x分为三级:A级:x≥8,B级:4≤x<8;C级:0≤x<4,并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:①此次抽样调查中,共调查了200 名学生,将图①补充完整;②求出图②中C级所占的圆心角的度数;③根据抽样调查结果,请你估计我校1200名九年级学生中大约共有多少名学生对28题的解答达到A级和B级?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据三种题型的平均分,分别相加求出总平均分即可;(2)①用A的人数除以所占的百分比,计算即可得解,用总人数减去A、B两级的人数,求出C级的人数,然后补全图形即可;②先求出C级所占的百分比,然后乘以360°计算即可;③用总人数乘以A级和B级的总百分比,计算即可.【解答】解:(1)∵九(1)班,选择题的平均得分是23.2分,填空题的平均得分是26.2分,解答题的得分是82.6分,∴九(1)班数学平均得分是:23.2+26.2+82.6=132(分);(2)①此次抽样调查中,共调查了:50÷25%=200(人),C级人数为:200﹣50﹣120=30(人);如图所示:②图②中C级所占的圆心角的度数为:360°×(1﹣60%﹣25%)=54°,③1200×=1020(人).【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.如图,在△ABC中,∠C=60°,⊙O是△ABC的外接圆,点P在直径BD的延长线上,且AB=AP.(1)求证:PA是⊙O的切线;(2)若AB=2,求图中阴影部分的面积.(结果保留π和根号)【考点】切线的判定;扇形面积的计算.【分析】(1)如图,连接OA;证明∠OAP=90°,即可解决问题.(2)如图,作辅助线;求出OM=1,OA=2;求出△AOB、扇形AOB的面积,即可解决问题.【解答】解:(1)如图,连接OA;∵∠C=60°,∴∠AOB=120°;而OA=OB,∴∠OAB=∠OBA=30°;而AB=AP,∴∠P=∠ABO=30°;∵∠AOB=∠OAP+∠P,∴∠OAP=120°﹣30°=90°,∴PA是⊙O的切线.(2)如图,过点O作OM⊥AB,则AM=BM=,∵tan30°=,sin30°=,∴OM=1,OA=2;∴=××1=,=,∴图中阴影部分的面积=.【点评】该题主要考查了切线的判定、扇形的面积公式及其应用问题;解题的关键是作辅助线;灵活运用圆周角定理及其推论、垂径定理等几何知识点来分析、判断、解答.25.某商店购进甲、乙两种型号的滑板车,共花费13000元,所购进甲型车的数量不少于乙型车数量的二倍,但不超过乙型车数量的三倍.现已知甲型车每辆进价200元,乙型车每辆进价400元,设商店购进乙型车x辆.(1)商店有哪几种购车方案?(2)若商店将购进的甲、乙两种型号的滑板车全部售出,并且销售甲型车每辆获得利润70元,销售乙型车每辆获得利润50元,写出此商店销售这两种滑板车所获得的总利润y(元)与购进乙型车的辆数x(辆)之间的函数关系式?并求出商店购进乙型车多少辆时所获得的利润最大?【考点】一次函数的应用;一元一次不等式组的应用.【专题】压轴题.【分析】(1)设商店购进乙型车x辆.则甲型是:辆.根据所购进甲型车的数量不少于乙型车数量的二倍,但不超过乙型车数量的三倍,即可得到关于x的不等式组,从而求得x的范围,然后根据甲、乙的辆数都是正整数,即可确定x的值,从而确定方案;(2)根据总获利=甲型的获利+乙型的获利,即可得到函数解析式,然后利用函数的性质即可确定商店购进乙型车多少辆时所获得的利润最大.【解答】解:(1)设商店购进乙型车x辆.则甲型是:辆.根据题意得:,解得:13≤x≤,∵x是正整数,是正整数.∴x=13或14或15或16.则有4种方案:方案一:乙13辆,甲39辆;方案二:乙14辆,甲37辆;方案三:乙15辆,甲35辆;方案四:乙16辆,甲33辆.(2)y=70×+50x,即y=﹣90x+4550.∵﹣90<0,则y随x的增大而减小,∴当x=13时,y最大.答:当乙型车购进13辆时所获得的利润最大.【点评】本题考查了一次函数的应用,一元一次不等式组的应用.解决本题的关键是读懂题意,找到所求量的等量关系,及符合题意的不等关系式.要会利用函数的单调性结合自变量的取值范围求得利润的最大值.26.如图1,已知正方形ABCD的边CD在正方形DEFG的边DE上,连接AE,GC.(1)试猜想AE与GC有怎样的位置关系,并证明你的结论;(2)将正方形DEFG绕点D按顺时针方向旋转,使点E落在BC边上,如图2,连接AE和GC.你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.【考点】旋转的性质;直角三角形全等的判定;正方形的性质.【专题】证明题;压轴题;探究型.【分析】(1)观察图形,AE、CG的位置关系可能是垂直,下面着手证明.由于四边形ABCD、DEFG都是正方形,易证得△ADE≌△CDG,则∠1=∠2,由于∠2、∠3互余,所以∠1、∠3互余,由此可得AH⊥CG.(2)题(1)的结论仍然成立,参照(1)题的解题方法,可证△ADE≌△CDG,得∠5=∠4,由于∠4、∠7互余,而∠5、∠6互余,那么∠6=∠7;由图知∠AEB=∠CEH=90°﹣∠6,即∠7+∠CEH=90°,由此得证.【解答】解:(1)答:AE⊥G C;证明:延长GC交AE于点H,在正方形ABCD与正方形DEFG中,AD=DC,∠ADE=∠CDG=90°,DE=DG,∴△ADE≌△CDG,∴∠1=∠2;∵∠2+∠3=90°,∴∠1+∠3=90°,∴∠AHG=180°﹣(∠1+∠3)=180°﹣90°=90°,∴AE⊥GC.(2)答:成立;证明:延长AE和GC相交于点H,在正方形ABCD和正方形DEFG中,AD=DC,DE=DG,∠ADC=∠DCB=∠B=∠BAD=∠EDG=90°,∴∠1=∠2=90°﹣∠3;∴△ADE≌△CDG,∴∠5=∠4;又∵∠5+∠6=90°,∠4+∠7=180°﹣∠DCE=180°﹣90°=90°,∴∠6=∠7,又∵∠6+∠AEB=90°,∠AEB=∠CEH,∴∠CEH+∠7=90°,∴∠EHC=90°,∴AE⊥GC.【点评】本题主要考查旋转的性质以及全等三角形的判定和性质.需要注意的是:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.27.如图所示,已知实数m是方程x2﹣8x+16=0的一个实数根,抛物线y=x2+bx+c交x轴于点A(m,0)和点B,交y轴于点C(0,m).(1)求这个抛物线的解析式;(2)设点D为线段AB上的一个动点,过D作DE∥BC交AC于点E,又过D作DF∥AC交BC于点F,当四边形DECF的面积最大时,求点D的坐标;(3)设△AOC的外接圆为⊙G,若M是⊙G的优弧ACO上的一个动点,连接AM、OM,问在这个抛物线位于y轴左侧的图象上是否存在点N,使得∠NOB=∠AMO?若存在,试求出点N的坐标;若不存在,请说明理由.。

贵州省遵义市名校2019-2020学年中考数学模拟试卷

贵州省遵义市名校2019-2020学年中考数学模拟试卷

贵州省遵义市名校2019-2020学年中考数学模拟试卷一、选择题1.如图,在平面直角坐标中,正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13,点A ,B ,E 在x 轴上,若正方形BEFG 的边长为12,则C 点坐标为( )A.(6,4)B.(6,2)C.(4,4)D.(8,4)2.一艘轮船在长江航线上往返于甲、乙两地.若轮船在静水中的速度不变,轮船先从甲地顺水航行到乙地,停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用时间为t (小时),航行的路程为S (千米),则S 与t 的函数图象大致是( )A. B.C. D.3.已知二次函数()221y ax a x =++-(a 为常数,且0a ≠),( )A .若0a >,则1x <-,y 随x 的增大而增大;B .若0a >,则1x <-,y 随x 的增大而减小;C .若0a <,则1x <-,y 随x 的增大而增大;D .若0a <,则1x <-,y 随x 的增大而减小;4.在刚刚结束的中考英语听力、口语测试中,某班口语成绩情况如图所示,则下列说法正确的是( )A .中位数是9B .众数为16C .平均分为7.78D .方差为25.适合下列条件的△ABC 中,直角三角形的个数为( ) ①a 13=,b 14=,c 15=②a=6,∠A=45°;③∠A=32°,∠B=58°;④a=7,b=24,c=25⑤a=2,b=2,c=4. A .2个B .3个C .4个D .5个6.如图图中,不能用来证明勾股定理的是( )A .B .C .D .7.A 、B 、C 、D 四名同学随机分为两组,两个人一组去參加辩论赛,问A 、B 两人恰好分到一组的概率( ) A .14B .13C .16D .128.如图,P 是抛物线y =x 2﹣x ﹣4在第四象限的一点,过点P 分别向x 轴和y 轴作垂线,垂足分别为A 、B ,则四边形OAPB 周长的最大值为( )A .10B .8C .7.5D .9.2019年春节联欢晚会在某网站取得了同时在线人数超34200000的惊人成绩,创下了全球单平台网络直播记录,将数34200000用科学记数法表示为( ) A .80.34210⨯B .73.4210⨯C .83.4210⨯D .634.210⨯10.如图,某同学用一扇形纸板为一个玩偶制作一个圆锥形帽子,已知扇形半径OA=13cm ,扇形的弧长为10πcm ,那么这个圆锥形帽子的高是( )cm .(不考虑接缝)A.5B.12C.13D.1411.如图直线y =mx 与双曲线y=kx交于点A 、B ,过A 作AM ⊥x 轴于M 点,连接BM ,若S △AMB =2,则k 的值是( )A .1B .2C .3D .412.如图,点A 是反比例函数y=-kx 图象上一点,过点A 作AC ⊥x 轴于点C ,交反比例函数2y x=-的图象于点B ,连接OA 、OB ,若△OAB 的面积为3,则k 的值为( )A .8B .﹣4C .5D .﹣8二、填空题13.将抛物线y =-2(x +1)2-3先向左平移2个单位,再向上平移5个单位后,所得抛物线的表达式为 _________.14.如图,在△ABC 中,∠ACB=120°,按顺时针方向旋转,使得点E 在AC 上,得到新的三角形记为△DCE .则①旋转中心为点__;②旋转角度为__.15.某学习小组为了探究函数y =x 2﹣|x|的图象和性质,根据以往学习函数的经验,列表确定了该函数图象上一些点的坐标,表格中的m =_____.16.用一组的值说明命题“若,则”是错误的,这组值可以是a=___.17.某学校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,至少买一个排球,在购买资金恰好用尽的情况下,购买方案有_____种.18.如图,九宫格中横向、纵向、对角线上的三个数之和均相等,请用含x 的代数式表示y ,y =____.三、解答题19101122260()tan -+----20.先化简,再求值:21111xx x ⎛⎫+÷ ⎪-+⎝⎭,其中x = 21.△ABC 在平面直角坐标系xOy 中的位置如图所示.(1)若△A 1B 1C 1与△ABC 关于原点O 成中心对称,则点A 1的坐标为_____ ; (2)将△ABC 向右平移4个单位长度得到△A 2B 2C 2,则点B 2的坐标为_____ ;(3)画出△ABC 绕O 点顺时针方向旋转90°得到的△A 3B 3C 3,并求点C 走过的路径长。

贵州省遵义市2019-2020学年中考数学五月模拟试卷含解析

贵州省遵义市2019-2020学年中考数学五月模拟试卷含解析

贵州省遵义市2019-2020学年中考数学五月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知a m =2,a n =3,则a 3m+2n 的值是( )A .24B .36C .72D .6 2.在12,0,-1,12-这四个数中,最小的数是( ) A .12 B .0 C .12- D .-13.运用图形变化的方法研究下列问题:如图,AB 是⊙O 的直径,CD ,EF 是⊙O 的弦,且AB ∥CD ∥EF ,AB=10,CD=6,EF=8.则图中阴影部分的面积是( )A .252πB .10πC .24+4πD .24+5π4.若关于x 的一元二次方程x 2﹣2x+m=0有两个不相等的实数根,则m 的取值范围是( ) A .m <﹣1 B .m <1 C .m >﹣1 D .m >15.4-的相反数是( )A .4B .4-C .14-D .146.如果1∠与2∠互补,2∠与3∠互余,则1∠与3∠的关系是( )A .13∠=∠B .11803∠=-∠oC .1903∠=+∠oD .以上都不对7.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x 两,每枚白银重y 两,根据题意得( )A .11910813x y y x x y =⎧⎨+-+=⎩()() B .10891311y x x y x y +=+⎧⎨+=⎩C .91181013x y x y y x ()()=⎧⎨+-+=⎩ D .91110813x y y x x y =⎧⎨+-+=⎩()() 8.已知m =12+,n =12-,则代数式223m n mn +-的值为 ( )A .±3B .3C .5D .99.等腰三角形的一个外角是100°,则它的顶角的度数为( )A .80°B .80°或50°C .20°D .80°或20° 10.如图,将函数21(3)12y x =++的图象沿y 轴向上平移得到一条新函数的图象,其中点A (-4,m ),B (-1,n ),平移后的对应点分别为点A'、B'.若曲线段AB 扫过的面积为9(图中的阴影部分),则新图象的函数表达式是 ( )A . 21(3)22y x =+- B . 21(3)72y x =++ C . 21325y x =+-() D . 21342y x =++() 11.方程x 2﹣3x =0的根是( )A .x =0B .x =3C .10x =,23x =-D .10x =,23x =12.在Rt ABC ∆中,90︒∠=C ,2AC =,下列结论中,正确的是( )A .2sin AB A =B .2cos AB A =C .2tan BC A =D .2cot BC A =二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,数轴上不同三点、、A B C 对应的数分别为a b c 、、,其中4, 3,||||a =AB =b =c -,则点C 表示的数是__________.14.边长为3的正方形网格中,⊙O 的圆心在格点上,半径为3,则tan ∠AED=_______.15.科学家发现,距离地球2540000光年之遥的仙女星系正在向银河系靠近.其中2540000用科学记数法表示为_____.16.一元二次方程x2﹣4=0的解是._________17.某校“百变魔方”社团为组织同学们参加学校科技节的“最强大脑”大赛,准备购买A,B两款魔方.社长发现若购买2个A款魔方和6个B款魔方共需170元,购买3个A款魔方和购买8个B款魔方所需费用相同. 求每款魔方的单价.设A款魔方的单价为x元,B款魔方的单价为y元,依题意可列方程组为_______. 18.如图,已知AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF,若∠1=50°,则∠2的度数为_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某区教育局为了解今年九年级学生体育测试情况,随机抽查了某班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下(1)样本中D级的学生人数占全班学生人数的百分比是;(2)扇形统计图中A级所在的扇形的圆心角度数是;(3)请把条形统计图补充完整;(4)若该校九年级有500名学生,请你用此样本估计体育测试中A级和B级的学生人数之和.20.(6分)讲授“轴对称”时,八年级教师设计了如下:四种教学方法:①教师讲,学生听③教师引导学生画图发现规律④教师让学生对折纸,观察发现规律,然后画图为调查教学效果,八年级教师将上述教学方法作为调研内容发到全年级8个班420名同学手中,要求每位同学选出自己最喜欢的一种.他随机抽取了60名学生的调查问卷,统计如图(1) 请将条形统计图补充完整;(2) 计算扇形统计图中方法③的圆心角的度数是;(3) 八年级同学中最喜欢的教学方法是哪一种?选择这种教学方法的约有多少人?21.(6分)三辆汽车经过某收费站下高速时,在2个收费通道A,B中,可随机选择其中的一个通过.(1)三辆汽车经过此收费站时,都选择A通道通过的概率是;(2)求三辆汽车经过此收费站时,至少有两辆汽车选择B通道通过的概率.22.(8分)如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.(1)求证:四边形ACDF是平行四边形;(2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.23.(8分)根据函数学习中积累的知识与经验,李老师要求学生探究函数y=1x+1的图象.同学们通过列表、描点、画图象,发现它的图象特征,请你补充完整.(1)函数y=1x+1的图象可以由我们熟悉的函数的图象向上平移个单位得到;(2)函数y=1x+1的图象与x轴、y轴交点的情况是:;(3)请你构造一个函数,使其图象与x轴的交点为(2,0),且与y轴无交点,这个函数表达式可以是.24.(10分)某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?25.(10分)问题探究(1)如图①,点E 、F 分别在正方形ABCD 的边BC 、CD 上,∠EAF=45°,则线段BE 、EF 、FD 之间的数量关系为 ;(2)如图②,在△ADC 中,AD=2,CD=4,∠ADC 是一个不固定的角,以AC 为边向△ADC 的另一侧作等边△ABC ,连接BD ,则BD 的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由;问题解决(3)如图③,在四边形ABCD 中,AB=AD ,∠BAD=60°,BC=42,若BD ⊥CD ,垂足为点D ,则对角线AC 的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由.26.(12分)如图,在ABC △中,以AB 为直径的⊙O 交AC 于点D ,过点D 作DE BC ⊥于点E ,且BDE A ∠=∠.(1)判断DE 与⊙O 的位置关系并说明理由;(2)若16AC =,3tan 4A =,求⊙O 的半径.27.(12分)(2016山东省烟台市)某中学广场上有旗杆如图1所示,在学习解直角三角形以后,数学兴趣小组测量了旗杆的高度.如图2,某一时刻,旗杆AB 的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC 为4米,落在斜坡上的影长CD 为3米,AB ⊥BC ,同一时刻,光线与水平面的夹角为72°,1米的竖立标杆PQ 在斜坡上的影长QR 为2米,求旗杆的高度(结果精确到0.1米).(参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】试题解析:∵a m=2,a n=3,∴a3m+2n=a3m•a2n=(a m)3•(a n)2=23×32=8×9=1.故选C.2.D【解析】试题分析:因为负数小于0,正数大于0,正数大于负数,所以在12,0,-1,12这四个数中,最小的数是-1,故选D.考点:正负数的大小比较.3.A【解析】【分析】作直径CG,连接OD、OE、OF、DG,则根据圆周角定理求得DG的长,证明DG=EF,则S扇扇形OCD+S扇形ODG=S半圆,即可求解.【详解】作直径CG,连接OD、OE、OF、DG.∵CG是圆的直径,∴∠CDG=90°,则DG=2222106CG CD-=-=8,又∵EF=8,∴DG=EF,∴¼»DG EF=,∴S扇形ODG=S扇形OEF,∵AB∥CD∥EF,∴S△OCD=S△ACD,S△OEF=S△AEF,∴S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆=12π×52=252π,故选A.【点睛】本题考查扇形面积的计算,圆周角定理.本题中找出两个阴影部分面积之间的联系是解题的关键.4.B【解析】【分析】根据方程有两个不相等的实数根结合根的判别式即可得出△=4-4m>0,解之即可得出结论.【详解】∵关于x的一元二次方程x2-2x+m=0有两个不相等的实数根,∴△=(-2)2-4m=4-4m>0,解得:m<1.故选B.【点睛】本题考查了根的判别式,熟练掌握“当△>0时,方程有两个不相等的两个实数根”是解题的关键.5.A【解析】直接利用相反数的定义结合绝对值的定义分析得出答案.【详解】-1的相反数为1,则1的绝对值是1.故选A.【点睛】本题考查了绝对值和相反数,正确把握相关定义是解题的关键.6.C【解析】【分析】根据∠1与∠2互补,∠2与∠1互余,先把∠1、∠1都用∠2来表示,再进行运算.【详解】∵∠1+∠2=180°∴∠1=180°-∠2又∵∠2+∠1=90°∴∠1=90°-∠2∴∠1-∠1=90°,即∠1=90°+∠1.故选C.【点睛】此题主要记住互为余角的两个角的和为90°,互为补角的两个角的和为180度.7.D【解析】【分析】根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)-(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.【详解】设每枚黄金重x两,每枚白银重y两,由题意得:91110813x yy x x y=⎧⎨+-+=⎩()(),故选:D.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.8.B【分析】 由已知可得:2,(12)(12)1m n mn +==+-=-,223m n mn +-=2()5m n mn +-.【详解】由已知可得:2,(12)(12)1m n mn +==+-=-,原式=22()525(1)93m n mn +-=-⨯-==故选:B【点睛】考核知识点:二次根式运算.配方是关键.9.D【解析】【分析】根据邻补角的定义求出与外角相邻的内角,再根据等腰三角形的性质分情况解答.【详解】∵等腰三角形的一个外角是100°,∴与这个外角相邻的内角为180°−100°=80°,当80°为底角时,顶角为180°-160°=20°,∴该等腰三角形的顶角是80°或20°. 故答案选:D.【点睛】本题考查了等腰三角形的性质,解题的关键是熟练的掌握等腰三角形的性质.10.D【解析】分析:过A 作AC ∥x 轴,交B′B 的延长线于点C ,过A′作A′D ∥x 轴,交B′B 的于点D ,则C (-1,m ),AC=-1-(-1)=3,根据平移的性质以及曲线段AB 扫过的面积为9(图中的阴影部分),得出AA′=3,然后根据平移规律即可求解.详解:过A 作AC ∥x 轴,交B′B 的延长线于点C ,过A′作A′D ∥x 轴,交B′B 的于点D ,则C (-1,m ),∵曲线段AB扫过的面积为9(图中的阴影部分),∴矩形ACD A′的面积等于9,∴AC·AA′=3AA′=9,∴AA′=3,∴新函数的图是将函数y=12(x-2)2+1的图象沿y轴向上平移3个单位长度得到的,∴新图象的函数表达式是y=12(x-2)2+1+3=12(x-2)2+1.故选D.点睛:此题主要考查了二次函数图象变换以及矩形的面积求法等知识,根据已知得出AA′的长度是解题关键.11.D【解析】【分析】先将方程左边提公因式x,解方程即可得答案.【详解】x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3,故选:D.【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.12.C【解析】【分析】直接利用锐角三角函数关系分别计算得出答案.【详解】∴2cos AC A AB AB==, ∴2cos AB A =, 故选项A ,B 错误,∵tan 2BC BC A AC ==, ∴2tan BC A =,故选项C 正确;选项D 错误.故选C .【点睛】此题主要考查了锐角三角函数关系,熟练掌握锐角三角函数关系是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1 【解析】【分析】根据两点间的距离公式可求B 点坐标,再根据绝对值的性质即可求解.【详解】∵数轴上不同三点A 、B 、C 对应的数分别为a 、b 、c ,a=-4,AB=3,∴b=3+(-4)=-1,∵|b|=|c|,∴c=1.故答案为1.【点睛】考查了实数与数轴,绝对值,关键是根据两点间的距离公式求得B 点坐标.14.12【解析】【分析】根据同弧或等弧所对的圆周角相等知∠AED=∠ABD,所以tan ∠AED 的值就是tanB 的值.【详解】解: ∵∠AED=∠ABD (同弧所对的圆周角相等),∴tan∠AED=tanB=12 ADAB=.故答案为:1 2 .【点睛】本题主要考查了圆周角定理、锐角三角函数的定义.解答网格中的角的三角函数值时,一般是将所求的角与直角三角形中的等角联系起来,通过解直角三角形中的三角函数值来解答问题.15.2.54×1【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】2540000的小数点向左移动6位得到2.54,所以,2540000用科学记数法可表示为:2.54×1,故答案为2.54×1.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16.x=±1【解析】移项得x1=4,∴x=±1.故答案是:x=±1.17.26170 {?38x yx y+==【解析】分析:设A款魔方的单价为x元,B魔方单价为y元,根据“购买两个A款魔方和6个B款魔方共需170元,购买3个A款魔方和购买8个B款魔方所需费用相同”,即可得出关于x,y的二元一次方程组,此题得解.解:设A魔方的单价为x元,B款魔方的单价为y元,根据题意得:26170 38x yx y+=⎧⎨=⎩故答案为26170 38x yx y+=⎧⎨=⎩点睛:本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.18.65°【解析】因为AB∥CD,所以∠BEF=180°-∠1=130°,因为EG平分∠BEF,所以∠BEG=65°,因为AB∥CD,所以∠2=∠BEG=65°.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)10%; (2)72; (3)5,见解析; (4)330.【解析】【分析】【详解】解:(1)根据题意得:D级的学生人数占全班人数的百分比是:1-20%-46%-24%=10%;(2)A级所在的扇形的圆心角度数是:20%×360°=72°;(3)∵A等人数为10人,所占比例为20%,∴抽查的学生数=10÷20%=50(人),∴D级的学生人数是50×10%=5(人),补图如下:(4)根据题意得:体育测试中A级和B级的学生人数之和是:500×(20%+46%)=330(名),答:体育测试中A级和B级的学生人数之和是330名.【点睛】本题考查统计的知识,要求考生会识别条形统计图和扇形统计图.20.解:(1)见解析;(2) 108°;(3) 最喜欢方法④,约有189人.【解析】【分析】(1)由题意可知:喜欢方法②的学生有60-6-18-27=9(人);(2)求方法③的圆心角应先求所占比值,再乘以360°;(3)根据条形的高低可判断喜欢方法④的学生最多,人数应该等于总人数乘以喜欢方法④所占的比例;【详解】(1)方法②人数为60−6−18−27=9(人);补条形图如图:(2)方法③的圆心角为18 36010860⨯=o o;故答案为108°(3)由图可以看出喜欢方法④的学生最多,人数为2742018960⨯=(人);【点睛】考查扇形统计图,条形统计图,用样本估计总体,比较基础,难度不大,是中考常考题型.21.(1)18;(2)12【解析】【分析】(1)用树状图分3次实验列举出所有情况,再看3辆车都选择A通道通过的情况数占总情况数的多少即可;(2)由(1)可知所有可能的结果数目,再看至少有两辆汽车选择B通道通过的情况数占总情况数的多少即可.【详解】解:(1)画树状图得:共8种情况,甲、乙、丙三辆车都选择A通道通过的情况数有1种,所以都选择A通道通过的概率为18,故答案为:18;(2)∵共有8种等可能的情况,其中至少有两辆汽车选择B通道通过的有4种情况,∴至少有两辆汽车选择B通道通过的概率为41 82 =.【点睛】考查了概率的求法;用到的知识点为:概率=所求情况数与总情况数之比;得到所求的情况数是解决本题的关键.22.(1)证明见解析;(2)BC=2CD,理由见解析.【解析】分析:(1)利用矩形的性质,即可判定△FAE≌△CDE,即可得到CD=FA,再根据CD∥AF,即可得出四边形ACDF是平行四边形;(2)先判定△CDE是等腰直角三角形,可得CD=DE,再根据E是AD的中点,可得AD=2CD,依据AD=BC,即可得到BC=2CD.详解:(1)∵四边形ABCD是矩形,∴AB∥CD,∴∠FAE=∠CDE,∵E是AD的中点,∴AE=DE,又∵∠FEA=∠CED,∴△FAE≌△CDE,∴CD=FA,又∵CD∥AF,∴四边形ACDF是平行四边形;(2)BC=2CD.证明:∵CF平分∠BCD,∴∠DCE=45°,∵∠CDE=90°,∴△CDE是等腰直角三角形,∴CD=DE,∵E是AD的中点,∴AD=2CD,∵AD=BC,∴BC=2CD.点睛:本题主要考查了矩形的性质以及平行四边形的判定与性质,要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的.23.(1)1yx,1;(2)与x轴交于(﹣1,0),与y轴没交点;(3)答案不唯一,如:y=﹣2x+1.【解析】【分析】(1)根据函数图象的平移规律,可得答案;(2)根据自变量与函数值的对应关系,可得答案;(3)根据点的坐标满足函数解析式,可得答案.【详解】(1)函数11yx=+的图象可以由我们熟悉的函数1yx=的图象向上平移1个单位得到,故答案为:1yx=,1;(2)函数11yx=+的图象与x轴、y轴交点的情况是:与x轴交于(﹣1,0),与y轴没交点,故答案为:与x轴交于(﹣1,0),与y轴没交点;(3)请你构造一个函数,使其图象与x轴的交点为(2,0),且与y轴无交点,这个函数表达式可以是:y=﹣2x+1,答案不唯一,故答案为:y=﹣2x+1.【点睛】本题考查了函数图像的平移变换,函数自变量的取值范围,函数图象与坐标轴的交点等知识,利用函数图象的平移规律是解题关键.24.(1)y=﹣30x+1;(2)每件售价定为55元时,每星期的销售利润最大,最大利润2元;(3)该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.【解析】【分析】(1) 每星期的销售量等于原来的销售量加上因降价而多销售的销售量, 代入即可求解函数关系式;(2) 根据利润=销售量⨯(销售单价-成本) , 建立二次函数, 用配方法求得最大值.(3) 根据题意可列不等式, 再取等将其转化为一元二次方程并求解, 根据每星期的销售利润所在抛物线开口向下求出满足条件的x的取值范围, 再根据(1) 中一元一次方程求得满足条件的x的取值范围内y的最小值即可.【详解】(1)y=300+30(60﹣x)=﹣30x+1.(2)设每星期利润为W元,W=(x﹣40)(﹣30x+1)=﹣30(x﹣55)2+2.∴x=55时,W最大值=2.∴每件售价定为55元时,每星期的销售利润最大,最大利润2元.(3)由题意(x﹣40)(﹣30x+1)≥6480,解得52≤x≤58,当x=52时,销售300+30×8=540,当x=58时,销售300+30×2=360,∴该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.【点睛】本题主要考查一次函数的应用和二次函数的应用,注意综合运用所学知识解题.25.(1)BE+DF=EF;(2)存在,BD的最大值为6;(3)存在,AC的最大值为.【解析】【分析】(1)作辅助线,首先证明△ABE≌△ADG,再证明△AEF≌△AEG,进而得到EF=FG问题即可解决;(2)将△ABD绕着点B顺时针旋转60°,得到△BCE,连接DE,由旋转可得,CE=AD=2,BD=BE,∠DBE=60°,可得DE=BD,根据DE<DC+CE,则当D、C、E三点共线时,DE存在最大值,问题即可解决;(3)以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,由旋转的性质得△DBE是等边三角形,则DE=AC,根据在等边三角形BCE中,EF⊥BC,可求出BF,EF,以BC为直径作⊙F,则点D在⊙F上,连接DF,可求出DF,则AC=DE≤DF+EF,代入数值即可解决问题.【详解】(1)如图①,延长CD至G,使得DG=BE,∵正方形ABCD中,AB=AD,∠B=∠AFG=90°,∴△ABE≌△ADG,∴AE=AG,∠BAE=∠DAG,∵∠EAF=45°,∠BAD=90°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠GAF=∠EAF,又∵AF=AF,∴△AEF≌△AEG,∴EF=GF=DG+DF=BE+DF,故答案为:BE+DF=EF;(2)存在.在等边三角形ABC中,AB=BC,∠ABC=60°,如图②,将△ABD绕着点B顺时针旋转60°,得到△BCE,连接DE.由旋转可得,CE=AD=2,BD=BE,∠DBE=60°,∴△DBE是等边三角形,∴DE=BD,∴在△DCE中,DE<DC+CE=4+2=6,∴当D、C、E三点共线时,DE存在最大值,且最大值为6,∴BD的最大值为6;(3)存在.如图③,以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,∵AB=BD,∠ABC=∠DBE,BC=BE,∴△ABC≌△DBE,∴DE=AC,∵在等边三角形BCE中,EF⊥BC,∴BF=BC=2,∴EF=BF=×2=2,以BC为直径作⊙F,则点D在⊙F上,连接DF,∴DF=BC=×4=2,∴AC=DE≤DF+EF=2+2,即AC的最大值为2+2.【点睛】本题考查了全等三角形的判定与性质以及旋转的性质,解题的关键是熟练的掌握全等三角形的判定与性质以及旋转的性质.26.(1)DE与⊙O相切,详见解析;(2)5【解析】【分析】(1) 根据直径所对的圆心角是直角,再结合所给条件∠BDE=∠A,可以推导出∠ODE =90°,说明相切的位置关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

贵州省遵义市中考数学试卷(解析版)一、选择题(本大题共12小题,每小题3分,共36分)1.﹣3的相反数是()A.﹣3 B.3 C.D.【考点】14:相反数.【分析】依据相反数的定义解答即可.【解答】解:﹣3的相反数是3.故选:B.2.2017年遵义市固定资产总投资计划为2580亿元,将2580亿元用科学记数法表示为()A.2.58×1011B.2.58×1012C.2.58×1013D.2.58×1014【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将2580亿用科学记数法表示为:2.58×1011.故选:A.3.把一张长方形纸片按如图①,图②的方式从右向左连续对折两次后得到图③,再在图③中挖去一个如图所示的三角形小孔,则重新展开后得到的图形是()A.B.C.D.【考点】P9:剪纸问题.【分析】解答该类剪纸问题,通过自己动手操作即可得出答案.【解答】解:重新展开后得到的图形是C,故选C.4.下列运算正确的是()A.2a5﹣3a5=a5B.a2•a3=a6 C.a7÷a5=a2D.(a2b)3=a5b3【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据合并同类项、同底数幂的乘除法以及幂的乘方与积的乘方的计算法则进行解答.【解答】解:A、原式=﹣a5,故本选项错误;B、原式=a5,故本选项错误;C、原式=a2,故本选项正确;D、原式=a6b3,故本选项错误;故选:C.5.我市连续7天的最高气温为:28°,27°,30°,33°,30°,30°,32°,这组数据的平均数和众数分别是()A.28°,30° B.30°,28° C.31°,30° D.30°,30°【考点】W5:众数;W1:算术平均数.【分析】根据平均数和众数的定义及计算公式分别进行解答,即可求出答案.【解答】解:数据28°,27°,30°,33°,30°,30°,32°的平均数是(28+27+30+33+30+30+32)÷7=30,30出现了3次,出现的次数最多,则众数是30;故选D.6.把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为()A.45°B.30°C.20°D.15°【考点】JA:平行线的性质.【分析】先根据平行线的性质,可得∠4的度数,再根据三角形外角性质,即可得到∠2的度数.【解答】解:∵∠1=30°,∴∠3=90°﹣30°=60°,∵直尺的对边平行,∴∠4=∠3=60°,又∵∠4=∠2+∠5,∠5=45°,∴∠2=60°﹣45°=15°,故选:D.7.不等式6﹣4x≥3x﹣8的非负整数解为()A.2个B.3个C.4个D.5个【考点】C7:一元一次不等式的整数解.【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数即可.【解答】解:移项得,﹣4x﹣3x≥﹣8﹣6,合并同类项得,﹣7x≥﹣14,系数化为1得,x≤2.故其非负整数解为:0,1,2,共3个.故选B.8.已知圆锥的底面积为9πcm2,母线长为6cm,则圆锥的侧面积是()A.18πcm2 B.27πcm2 C.18cm2D.27cm2【考点】MP:圆锥的计算.【分析】首先根据圆锥的底面积求得圆锥的底面半径,然后代入公式求得圆锥的侧面积即可.【解答】解:∵圆锥的底面积为9πcm2,∴圆锥的底面半径为3,∵母线长为6cm,∴侧面积为3×6π=18πcm2,故选A;9.关于x的一元二次方程x2+3x+m=0有两个不相等的实数根,则m的取值范围为()A.m≤B.m C.m≤D.m【考点】AA:根的判别式.【分析】利用判别式的意义得到△=32﹣4m>0,然后解不等式即可.【解答】解:根据题意得△=32﹣4m>0,解得m<.故选B.10.如图,△ABC的面积是12,点D,E,F,G分别是BC,AD,BE,CE的中点,则△AFG的面积是()A.4.5 B.5 C.5.5 D.6【考点】KX:三角形中位线定理;K3:三角形的面积.【分析】根据中线的性质,可得△AEF的面积=×△ABE的面积=×△ABD的面积=×△ABC 的面积=,△AEG的面积=,根据三角形中位线的性质可得△EFG的面积=×△BCE的面积=,进而得到△AFG的面积.【解答】解:∵点D,E,F,G分别是BC,AD,BE,CE的中点,∴AD是△ABC的中线,BE是△ABD的中线,CF是△ACD的中线,AF是△ABE的中线,AG是△ACE的中线,∴△AEF的面积=×△ABE的面积=×△ABD的面积=×△ABC的面积=,同理可得△AEG的面积=,△BCE的面积=×△ABC的面积=6,又∵FG是△BCE的中位线,∴△EFG的面积=×△BCE的面积=,∴△AFG的面积是×3=,故选:A.11.如图,抛物线y=ax2+bx+c经过点(﹣1,0),对称轴l如图所示,则下列结论:①abc>0;②a﹣b+c=0;③2a+c<0;④a+b<0,其中所有正确的结论是()A.①③B.②③C.②④D.②③④【考点】H4:二次函数图象与系数的关系.【分析】①根据开口向下得出a<0,根据对称轴在y轴右侧,得出b>0,根据图象与y轴的交点在y轴的正半轴上,得出c>0,从而得出abc<0,进而判断①错误;②由抛物线y=ax2+bx+c经过点(﹣1,0),即可判断②正确;③由图可知,x=2时,y<0,即4a+2b+c<0,把b=a+c代入即可判断③正确;④由图可知,x=2时,y<0,即4a+2b+c<0,把c=b﹣a代入即可判断④正确.【解答】解:①∵二次函数图象的开口向下,∴a<0,∵二次函数图象的对称轴在y轴右侧,∴﹣>0,∴b>0,∵二次函数的图象与y轴的交点在y轴的正半轴上,∴c>0,∴abc<0,故①错误;②∵抛物线y=ax2+bx+c经过点(﹣1,0),∴a﹣b+c=0,故②正确;③∵a﹣b+c=0,∴b=a+c.由图可知,x=2时,y<0,即4a+2b+c<0,∴4a+2(a+c)+c<0,∴6a+3c<0,∴2a+c<0,故③正确;④∵a﹣b+c=0,∴c=b﹣a.由图可知,x=2时,y<0,即4a+2b+c<0,∴4a+2b+b﹣a<0,∴3a+3b<0,∴a+b<0,故④正确.故选D.12.如图,△ABC中,E是BC中点,AD是∠BAC的平分线,EF∥AD交AC于F.若AB=11,AC=15,则FC的长为()A.11 B.12 C.13 D.14【考点】JA:平行线的性质;KF:角平分线的性质.【分析】根据角平分线的性质即可得出==,结合E是BC中点,即可得出=,由EF∥AD即可得出==,进而可得出CF=CA=13,此题得解.【解答】解:∵AD是∠BAC的平分线,AB=11,AC=15,∴==.∵E是BC中点,∴==.∵EF∥AD,∴==,∴CF=CA=13.故选C.二、填空题(本大题共6小题,每小题4分,共24分)13.计算: = 3.【考点】78:二次根式的加减法.【分析】先进行二次根式的化简,然后合并.【解答】解: =2+=3.故答案为:3.14.一个正多边形的一个外角为30°,则它的内角和为1800°.【考点】L3:多边形内角与外角.【分析】先利用多边形的外角和等于360度计算出多边形的边数,然后根据多边形的内角和公式计算.【解答】解:这个正多边形的边数为=12,所以这个正多边形的内角和为(12﹣2)×180°=1800°.故答案为1800°.15.按一定规律排列的一列数依次为:,1,,,,,…,按此规律,这列数中的第100个数是.【考点】37:规律型:数字的变化类.【分析】根据按一定规律排列的一列数依次为:,,,,,,…,可得第n个数为,据此可得第100个数.【解答】解:按一定规律排列的一列数依次为:,,,,,,…,按此规律,第n个数为,∴当n=100时, =,即这列数中的第100个数是,故答案为:.16.明代数学家程大位的《算法统宗》中有这样一个问题(如图),其大意为:有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,请问:所分的银子共有46 两.(注:明代时1斤=16两,故有“半斤八两”这个成语)【考点】8A:一元一次方程的应用.【分析】可设有x人,根据有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,根据所分的银子的总两数相等可列出方程,求解即可.【解答】解:设有x人,依题意有7x+4=9x﹣8,解得x=6,7x+4=42+4=46.答:所分的银子共有46两.故答案为:46.17.如图,AB是⊙O的直径,AB=4,点M是OA的中点,过点M的直线与⊙O交于C,D两点.若∠CMA=45°,则弦CD的长为.【考点】M2:垂径定理;KQ:勾股定理;KW:等腰直角三角形.【分析】连接OD,作OE⊥CD于E,由垂径定理得出CE=DE,证明△OEM是等腰直角三角形,由勾股定理得出OE=OM=,在Rt△ODE中,由勾股定理求出DE=,得出CD=2DE=即可.【解答】解:连接OD,作OE⊥CD于E,如图所示:则CE=DE,∵AB是⊙O的直径,AB=4,点M是OA的中点,∴OD=OA=2,OM=1,∵∠OME=∠CMA=45°,∴△OEM是等腰直角三角形,∴OE=OM=,在Rt △ODE 中,由勾股定理得:DE==,∴CD=2DE=; 故答案为:.18.如图,点E ,F 在函数y=的图象上,直线EF 分别与x 轴、y 轴交于点A 、B ,且BE :BF=1:3,则△EOF 的面积是.【考点】G5:反比例函数系数k 的几何意义.【分析】证明△BPE ∽△BHF ,利用相似比可得HF=4PE ,根据反比例函数图象上点的坐标特征,设E 点坐标为(t ,),则F 点的坐标为(3t ,),由于S △OEF +S △OFD =S △OEC +S 梯形ECDF ,S △OFD =S △OEC =1,所以S △OEF =S 梯形ECDF ,然后根据梯形面积公式计算即可.【解答】解:作EP ⊥y 轴于P ,EC ⊥x 轴于C ,FD ⊥x 轴于D ,FH ⊥y 轴于H ,如图所示: ∵EP ⊥y 轴,FH ⊥y 轴, ∴EP ∥FH , ∴△BPE ∽△BHF , ∴=,即HF=3PE ,设E 点坐标为(t ,),则F 点的坐标为(3t ,),∵S △OEF +S △OFD =S △OEC +S 梯形ECDF ,而S△OFD =S△OEC=×2=1,∴S△OEF =S梯形ECDF=(+)(3t﹣t)=;故答案为:.三、解答题(本大题共9小题,共90分)19.计算:|﹣2|+(4﹣π)0﹣+(﹣1)﹣2017.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:|﹣2|+(4﹣π)0﹣+(﹣1)﹣2017=2+1﹣2﹣1=020.化简分式:(﹣)÷,并从1,2,3,4这四个数中取一个合适的数作为x的值代入求值.【考点】6D:分式的化简求值.【分析】利用分式的运算,先对分式化简单,再选择使分式有意义的数代入求值即可.【解答】解:(﹣)÷=[﹣)÷=(﹣)÷=×=x+2,∵x2﹣4≠0,x﹣3≠0,∴x≠2且x≠﹣2且x≠3,∴可取x=1代入,原式=3.21.学校召集留守儿童过端午节,桌上摆有甲、乙两盘粽子,每盘中盛有白粽2个,豆沙粽1个,肉粽1个(粽子外观完全一样).(1)小明从甲盘中任取一个粽子,取到豆沙粽的概率是;(2)小明在甲盘和乙盘中先后各取了一个粽子,请用树状图或列表法求小明恰好取到两个白粽子的概率.【考点】X6:列表法与树状图法;X4:概率公式.【分析】(1)由甲盘中一共有4个粽子,其中豆沙粽子只有1个,根据概率公式求解可得;(2)根据题意画出树状图,由树状图得出一共有16种等可能结果,其中恰好取到两个白粽子有4种结果,根据概率公式求解可得.【解答】解:(1)∵甲盘中一共有4个粽子,其中豆沙粽子只有1个,∴小明从甲盘中任取一个粽子,取到豆沙粽的概率是,故答案为:;(2)画树状图如下:由树状图可知,一共有16种等可能结果,其中恰好取到两个白粽子有4种结果,∴小明恰好取到两个白粽子的概率为=.22.乌江快铁大桥是快铁渝黔线的一项重要工程,由主桥AB和引桥BC两部分组成(如图所示),建造前工程师用以下方式做了测量;无人机在A处正上方97m处的P点,测得B处的俯角为30°(当时C处被小山体阻挡无法观测),无人机飞行到B处正上方的D处时能看到C处,此时测得C处俯角为80°36′.(1)求主桥AB的长度;(2)若两观察点P、D的连线与水平方向的夹角为30°,求引桥BC的长.(长度均精确到1m,参考数据:≈1.73,sin80°36′≈0.987,cos80°36′≈0.163,tan80°36′≈6.06)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】(1)在Rt△ABP中,由AB=可得答案;(2)由∠ABP=30°、AP=97知PB=2PA=194,再证△PBD是等边三角形得DB=PB=194m,根据BC=可得答案.【解答】解:(1)由题意知∠ABP=30°、AP=97,∴AB====97≈168m,答:主桥AB的长度约为168m;(2)∵∠ABP=30°、AP=97,∴PB=2PA=194,又∵∠DBC=∠DBA=90°、∠PBA=30°,∴∠DBP=∠DPB=60°,∴△PBD是等边三角形,∴DB=PB=194,在Rt△BCD中,∵∠C=80°36′,∴BC==≈32,答:引桥BC的长约为32m.23.贵州省是我国首个大数据综合试验区,大数据在推动经济发展、改善公共服务等方面日益显示出巨大的价值,为创建大数据应用示范城市,我市某机构针对市民最关心的四类生活信息进行了民意调查(被调查者每人限选一项),下面是部分四类生活信息关注度统计图表,请根据图中提供的信息解答下列问题:(1)本次参与调查的人数有1000 人;(2)关注城市医疗信息的有150 人,并补全条形统计图;(3)扇形统计图中,D部分的圆心角是144 度;(4)说一条你从统计图中获取的信息.【考点】VC:条形统计图;VB:扇形统计图.【分析】(1)由C类别人数占总人数的20%即可得出答案;(2)根据各类别人数之和等于总人数可得B类别的人数;(3)用360°乘以D类别人数占总人数的比例可得答案;(4)根据条形图或扇形图得出合理信息即可.【解答】解:(1)本次参与调查的人数有200÷20%=1000(人),故答案为:1000;(2)关注城市医疗信息的有1000﹣=150人,补全条形统计图如下:故答案为:150;(3)扇形统计图中,D部分的圆心角是360°×=144°,故答案为:144;(4)由条形统计图可知,市民关注交通信息的人数最多.24.如图,PA、PB是⊙O的切线,A、B为切点,∠APB=60°,连接PO并延长与⊙O交于C点,连接AC,BC.(1)求证:四边形ACBP是菱形;(2)若⊙O半径为1,求菱形ACBP的面积.【考点】MC:切线的性质;LA:菱形的判定与性质.【分析】(1)连接AO,BO,根据PA、PB是⊙O的切线,得到∠OAP=∠OBP=90°,PA=PB,∠APO=∠BPO=∠APB=30°,由三角形的内角和得到∠AOP=60°,根据三角形外角的性质得到∠ACO=30°,得到AC=AP,同理BC=PB,于是得到结论;(2)连接AB交PC于D,根据菱形的性质得到AD⊥PC,解直角三角形即可得到结论.【解答】解:(1)连接AO,BO,∵PA、PB是⊙O的切线,∴∠OAP=∠OBP=90°,PA=PB,∠APO=∠BPO=∠APB=30°,∴∠AOP=60°,∵OA=OC,∴∠OAC=∠OCA,∴∠AOP=∠CAO+∠ACO,∴∠ACO=30°,∴∠ACO=∠APO,∴AC=AP,同理BC=PB,∴AC=BC=BP=AP,∴四边形ACBP是菱形;(2)连接AB交PC于D,∴AD⊥PC,∴OA=1,∠AOP=60°,∴AD=OA=,∴PD=,∴PC=3,AB=,∴菱形ACBP的面积=A B•PC=.25.为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区,某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A、B两型自行车各50辆,投放成本共计7500元,其中B型车的成本单价比A型车高10元,A、B两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值.【考点】B7:分式方程的应用;9A:二元一次方程组的应用.【分析】问题1:设A型车的成本单价为x元,则B型车的成本单价为(x+10)元,根据成本共计7500元,列方程求解即可;问题2:根据两个街区共有15万人,列出分式方程进行求解并检验即可.【解答】解:问题1设A型车的成本单价为x元,则B型车的成本单价为(x+10)元,依题意得50x+50(x+10)=7500,解得x=70,∴x+10=80,答:A、B两型自行车的单价分别是70元和80元;问题2由题可得,×1000+×1000=150000,解得a=15,经检验:a=15是所列方程的解,故a的值为15.26.边长为2的正方形ABCD中,P是对角线AC上的一个动点(点P与A、C不重合),连接BP,将BP绕点B顺时针旋转90°到BQ,连接QP,QP与BC交于点E,QP延长线与AD(或AD 延长线)交于点F.(1)连接CQ,证明:CQ=AP;(2)设AP=x,CE=y,试写出y关于x的函数关系式,并求当x为何值时,CE=BC;(3)猜想PF与EQ的数量关系,并证明你的结论.【考点】LO:四边形综合题.【分析】(1)证出∠ABP=∠CBQ,由SAS证明△BAP≌△BCQ可得结论;(2)如图1证明△APB∽△CEP,列比例式可得y与x的关系式,根据CE=BC计算CE的长,即y的长,代入关系式解方程可得x的值;(3)如图3,作辅助线,构建全等三角形,证明△PGB≌△QEB,得EQ=PG,由F、A、G、P四点共圆,得∠FGP=∠FAP=45°,所以△FPG是等腰直角三角形,可得结论.如图4,当F在AD的延长线上时,同理可得结论.【解答】(1)证明:如图1,∵线段BP绕点B顺时针旋转90°得到线段BQ,∴BP=BQ,∠PBQ=90°.∵四边形ABCD是正方形,∴BA=BC,∠ABC=90°.∴∠ABC=∠PBQ.∴∠ABC﹣∠PBC=∠PBQ﹣∠PBC,即∠ABP=∠CBQ.在△BAP和△BCQ中,∵,∴△BAP≌△BCQ(SAS).∴CQ=AP;(2)解:如图1,∵四边形ABCD是正方形,∴∠BAC=∠BAD=45°,∠BCA=∠B CD=45°,∴∠APB+∠ABP=180°﹣45°=135°,∵DC=AD=2,由勾股定理得:AC==4,∵AP=x,∴PC=4﹣x,∵△PBQ是等腰直角三角形,∴∠BPQ=45°,∴∠APB+∠CPQ=180°﹣45°=135°,∴∠CPQ=∠ABP,∵∠BAC=∠ACB=45°,∴△APB∽△CEP,∴,∴,∴y=x(4﹣x)=﹣x(0<x<4),由CE=BC==,∴y=﹣x=,x2﹣4x=3=0,(x﹣3)(x﹣1)=0,x=3或1,∴当x=3或1时,CE=BC;(3)解:结论:PF=EQ,理由是:如图3,当F在边AD上时,过P作PG⊥FQ,交AB于G,则∠GPF=90°,∵∠BPQ=45°,∴∠GPB=45°,∴∠GPB=∠PQB=45°,∵PB=BQ,∠ABP=∠CBQ,∴△PGB≌△QEB,∴EQ=PG,∵∠BAD=90°,∴F、A、G、P四点共圆,连接FG,∴∠FGP=∠FAP=45°,∴△FPG是等腰直角三角形,∴PF=PG,∴PF=EQ.当F在AD的延长线上时,如图4,同理可得:PF=PG=EQ.27.如图,抛物线y=ax2+bx﹣a﹣b(a<0,a、b为常数)与x轴交于A、C两点,与y轴交于B点,直线AB的函数关系式为y=x+.(1)求该抛物线的函数关系式与C点坐标;(2)已知点M(m,0)是线段OA上的一个动点,过点M作x轴的垂线l分别与直线AB和抛物线交于D、E两点,当m为何值时,△BDE恰好是以DE为底边的等腰三角形?(3)在(2)问条件下,当△BDE恰好是以DE为底边的等腰三角形时,动点M相应位置记为点M′,将OM′绕原点O顺时针旋转得到ON(旋转角在0°到90°之间);i:探究:线段OB上是否存在定点P(P不与O、B重合),无论ON如何旋转,始终保持不变,若存在,试求出P点坐标;若不存在,请说明理由;ii:试求出此旋转过程中,(NA+NB)的最小值.【考点】HF:二次函数综合题.【分析】(1)根据已知条件得到B(0,),A(﹣6,0),解方程组得到抛物线的函数关系式为:y=﹣x 2﹣x+,于是得到C (1,0);(2)由点M (m ,0),过点M 作x 轴的垂线l 分别与直线AB 和抛物线交于D 、E 两点,得到D (m , m+),当DE 为底时,作BG ⊥DE 于G ,根据等腰三角形的性质得到EG=GD=ED ,GM=OB=,列方程即可得到结论;(3)i :根据已知条件得到ON=OM′=4,OB=,由∠NOP=∠BON ,特殊的当△NOP ∽△BON 时,根据相似三角形的性质得到=,于是得到结论;ii :根据题意得到N 在以O 为圆心,4为半径的半圆上,由(i )知,=,得到NP=NB ,于是得到(NA+NB )的最小值=NA+NP ,此时N ,A ,P 三点共线,根据勾股定理得到结论.【解答】解:(1)在y=x+中,令x=0,则y=,令y=0,则x=﹣6,∴B (0,),A (﹣6,0), 把B (0,),A (﹣6,0)代入y=ax 2+bx ﹣a ﹣b 得, ∴,∴抛物线的函数关系式为:y=﹣x 2﹣x+,令y=0,则=﹣x 2﹣x+=0, ∴x 1=﹣6,x 2=1,∴C (1,0); (2)∵点M (m ,0),过点M 作x 轴的垂线l 分别与直线AB 和抛物线交于D 、E 两点, ∴D (m , m+),当DE 为底时,作BG ⊥DE 于G ,则EG=GD=ED ,GM=OB=,∴m+(﹣m 2﹣m++m+)=, 解得:m 1=﹣4,m 2=9(不合题意,舍去),∴当m=﹣4时,△BDE 恰好是以DE 为底边的等腰三角形;...(3)i:存在,∵ON=OM′=4,OB=,∵∠NOP=∠BON,∴当△NOP∽△BON时, =,∴不变,即OP==3,∴P(0,3)ii:∵N在以O为圆心,4为半径的半圆上,由(i)知, =,∴NP=NB,∴(NA+NB)的最小值=NA+NP,∴此时N,A,P三点共线,∴(NA+NB)的最小值==3....。

相关文档
最新文档