发动机温度传感器

合集下载

发动机温度传感器原理

发动机温度传感器原理

发动机温度传感器原理发动机温度传感器是一种用于测量发动机温度的装置。

它通常由一个温度敏感元件和一个电路组成。

温度敏感元件根据温度的变化来改变电路中的电阻或电压,从而实现温度的测量。

发动机温度传感器的原理可以分为两大类:电阻温度传感器和热敏电阻温度传感器。

电阻温度传感器的原理是根据温度对电阻值的影响来测量温度。

在一般情况下,电阻温度传感器由一个电阻丝和一个传感器壳体组成。

电阻丝通常由纯金属或合金制成,其电阻值会随着温度的变化而变化。

当电阻温度传感器暴露在高温环境中时,电阻丝的电阻值会增加,反之亦然。

传感器壳体则用于保护电阻丝不受损害。

电阻温度传感器通常与一个电路连接,通过测量电阻值的变化来计算温度。

热敏电阻温度传感器是一种基于热敏体材料的传感器,其原理是热敏体材料的电阻值随温度的变化而改变。

热敏电阻温度传感器通常包括两个电极,其间填充了热敏体材料。

当温度升高时,热敏体材料的电阻值会减小,反之亦然。

通过测量热敏体材料电阻值的变化,可以计算出温度值。

除了以上两种原理外,还有一些其他类型的发动机温度传感器,如热电式温度传感器、热电偶等,它们的原理与电热效应有关。

无论是哪种类型的发动机温度传感器,其核心都是通过测量温度敏感元件的电阻变化或电压变化来计算温度的。

由于不同类型的传感器的温度-电阻或温度-电压曲线不同,因此需要根据具体传感器的特性进行校准。

发动机温度传感器在汽车发动机的正常运行中起着非常重要的作用。

它可以帮助监测发动机的工作温度,及时发现过热或过冷的情况,防止发动机损坏或性能下降。

此外,发动机温度传感器还可以向发动机控制单元提供温度数据,以便进行燃油供给、点火时机和排放控制等参数的调整。

总之,发动机温度传感器通过测量温度敏感元件的电阻或电压变化来计算发动机温度。

它在汽车发动机中起着至关重要的作用,保护发动机免受过热或过冷的损害,确保其正常工作。

汽车水温传感器的检测与故障分析

汽车水温传感器的检测与故障分析

汽车水温传感器的检测与故障分析摘要:本文论述了水温传感器的结构和工作原理、水温传感器的检测、水温传感器的故障分析和相关案例。

关键词:水温传感器;检测;故障分析汽车水温传感器工作性能的好坏对发动机的喷油量有很大影响,进而影响发动机的燃烧性能。

当混合气过浓或过稀时,发动机的燃烧情况变坏,会引起发动机不易启动,运转不平稳,这时应检查水温传感器是否工作正常。

因此,掌握发动机水温传感器的原理与检测方法在汽车检测与故障诊断技术中显得十分重要。

1 水温传感器的结构和工作原理水温传感器内部的核心部件是一个半导体热敏电阻,它具有负温度电阻系数,即水温越高电阻越低,水温越低电阻越高。

在-40时其电阻值约为30kΩ,90度时其电阻值为1KΩ左右。

水温传感器电阻的大小会随着水的温度的变化而变化,那么它也就能够感知水的温度,冷却液的温度首先会引起电阻的变化,继而有引起电路电压的变化,把这个电压信号传给电脑ECU,ECU就可以根据这个电压信号从电脑所存的数据里找到相对应的冷却液的温度。

电脑根据这个温度调整喷油量。

当水温低时,燃油蒸发性差,供给浓的混合气,有利于发动机的冷机启动。

由图1可知水温传感器的两根线与ECU相连接。

其中一根为搭铁线,另一根是传感器的信号线,也是传感器的电源线,所以这根线叫信号和电源线。

水温传感器的信号线和电源线是一根线,共线的原因是发动机ECU内部5V参考电压电路设有分压电阻,因此当接上冷却液温度传感器后,发动机ECU就能根据分压信号判断冷却液冷度传感器与ECU的连接图1 冷却水温却液温度。

2 水温传感器的检测2.1 电阻检测2.1.1 检查电阻点火开关置于OFF位置,拆下冷却水温度传感器导线连接器,用数字式高阻抗万用表Ω档测量传感器两端子间的电阻值。

其电阻值与温度的高低成反比。

2.1.2 单件检查电阻拔下冷却水温度传感器接插件,然后从发动机上拆下传感器,将该传感器置于烧杯内的水中,加热杯中的水,同时用万用表Ω档测量在不同水温条件下水温传感器两接线端子间的电阻值。

简述进气温度传感器的检测方法

简述进气温度传感器的检测方法

简述进气温度传感器的检测方法
进气温度传感器是汽车发动机管理系统中重要的传感器之一,用于测量进气系统中空气的温度,从而帮助控制发动机的燃油供给和点火时机。

如果进气温度传感器出现故障,会导致发动机出现燃油过多或者过少、点火不良等问题。

下面介绍进气温度传感器的检测方法:
一、使用万用表检测
1.将万用表的正负极分别连接到进气温度传感器的两个端口上。

2.将发动机打开,让其运转至适当的温度。

3.观察万用表的示数,如果电阻值与规定值相同,则说明传感器工作正常;如果值与规定值不同,则说明传感器可能存在故障。

二、检查传感器电缆
1.将传感器电缆连接到电缆测试仪上。

2.打开发动机,观察测试仪的显示屏,如果显示正常,则说明传感器电缆正常;
如果显示异常,则说明传感器电缆可能存在故障。

三、检查传感器的线圈
1.使用万用表将传感器的线圈连接到正负极上。

2.观察万用表的显示,如果显示正常,则说明传感器线圈正常;如果显示异常,则说明传感器线圈可能存在故障。

以上是进气温度传感器的常见检测方法,如果检测出故障,应及时更换传感器。

进气温度传感器的工作原理

进气温度传感器的工作原理

进气温度传感器的工作原理进气温度传感器(Intake Air Temperature Sensor,简称IAT)是一种用于测量发动机进气气温的传感器。

它在现代汽车发动机的控制系统中扮演着重要的角色。

本文将深入探讨进气温度传感器的工作原理,以及它在发动机控制中的作用。

一、工作原理进气温度传感器基于热敏电阻原理来测量发动机进气气温。

该传感器通常安装在进气道中,以便能够及时感知进气气温的变化。

它由一个热敏电阻组成,该电阻的电阻值会随着温度的变化而变化。

当发动机启动时,进气温度传感器开始监测进气气温。

传感器收集到的数据将发送到发动机控制单元(Engine Control Unit,简称ECU)。

ECU会根据传感器提供的进气温度信息,调整发动机的燃油喷射量和点火时机,以优化燃烧效率和性能。

二、作用进气温度传感器在发动机控制中起到了至关重要的作用。

它的主要作用如下:1. 燃油喷射控制:进气温度的变化会影响空气的密度,从而影响到燃烧过程中所需的燃油量。

传感器通过监测进气温度的变化,向ECU提供实时的数据。

ECU根据这些数据来调整燃油喷射量,以确保最佳的燃烧效果。

2. 点火时机控制:进气温度的变化也会对点火时机产生影响。

冷空气需要更长的时间来燃烧,因此在低温环境下,点火时机需要提前一些。

进气温度传感器通过提供准确的进气温度数据,帮助ECU调整点火时机,以适应不同的工作条件。

3. 发动机保护:进气温度传感器还能够监测到异常的进气温度。

如果进气温度过高,可能会导致发动机过热或气缸爆震。

传感器会将这些信息传递给ECU,并引发相应的故障代码以保护发动机免受损坏。

三、总结与回顾进气温度传感器是一种基于热敏电阻原理工作的传感器,用于测量发动机进气气温。

它通过监测进气温度的变化,向发动机控制单元提供实时的数据,以便调整燃油喷射量和点火时机。

这样可以实现更好的燃烧效率和性能。

进气温度传感器还能够监测异常的进气温度,以保护发动机免受损坏。

汽车冷却系统故障的原因与解决办法

汽车冷却系统故障的原因与解决办法

汽车冷却系统故障的原因与解决办法汽车冷却系统是保持发动机正常运转的关键部件之一。

它通过循环冷却液降低发动机温度,防止过热。

然而,冷却系统也会出现故障,导致发动机过热和其他问题的发生。

本文将探讨汽车冷却系统故障的常见原因和相应的解决办法。

原因一:冷却液泄漏冷却液泄漏是冷却系统故障的常见原因之一。

泄漏会导致冷却液流失过多,无法循环到发动机,从而导致发动机温度升高。

可能的泄漏点包括冷却液管路、水泵密封、散热器或冷凝器的裂缝等。

解决办法:首先,检查冷却液箱和冷却液管路是否存在泄漏的痕迹。

如果发现泄漏,应及时修复或更换受损的部件。

其次,定期检查冷却液液位,确保冷却系统正常工作。

原因二:水泵故障水泵是冷却系统的核心部件,负责将冷却液循环到发动机,并保持循环流畅。

然而,水泵也可能出现故障,例如轴承磨损、叶片断裂或泄漏等。

解决办法:发现水泵故障时,应及时更换新的水泵组件。

此外,定期检查水泵的状态,确保其工作正常。

原因三:散热器堵塞散热器是冷却系统中的散热元件,用于散发发动机产生的热量。

然而,由于沉积物、泥浆或铁锈的存在,散热器可能会被堵塞,导致冷却效果下降。

解决办法:定期清洗散热器,以保持其通畅。

可以使用冲洗剂清洗散热器芯片,将堵塞物冲洗出来。

此外,还可考虑更换老化严重的散热器。

原因四:恶劣工作条件汽车在极端的工作条件下(如高温、拥堵的交通)容易出现冷却系统故障。

这些条件下,发动机的排热效果会减弱,导致冷却系统难以保持正常温度。

解决办法:在恶劣工作条件下驾驶汽车时,可以采取一些措施来减轻冷却系统的负担。

例如,打开汽车的加热器,以增加冷却系统的散热面积;保持足够的行车速度,避免长时间怠速;定期检查冷却系统的状态,确保其工作正常。

原因五:发动机温度传感器故障发动机温度传感器是感知发动机温度的关键组件。

当传感器故障时,无法准确地监测发动机温度,导致冷却系统运行不准确。

解决办法:发现发动机温度传感器故障时,应及时更换新的传感器。

《图解汽车传感器结构原理与检修》课件 7温度传感器

《图解汽车传感器结构原理与检修》课件 7温度传感器

(2)就车检测法 如图7-7所示,拔下进气温度传感器插头, 接通点火开关,测量插头上THA端子与E2端子之间的电压值, 该电压应为5V,若无电压,则应检查ECU插接器上THA端子 与E2端子之间的电压值。若此电压为5V,则表明ECU与传感 器之间的连接线路有故障;若无5V电压,则为ECU有故障。 插回插头,起动发动机,测量传感器THA端子与E2端子之间 在不同温度下的电压值,该电压值应在0.1~4.5V之间变化 (车型不同略有差异,但变化规律基本上是相同的)。如果 测量值与规定值不符,则说明进气温度传感器有故障或者损 坏,应予以更换。
桑塔纳200GLi AFE型发动机进气温度传感器(G72)与进气 压力传感器一体,安装于节气门之后的进气管上。桑塔纳 2000GSi AJR发动机也在进气总管上装有进气温度传感器 (G72),用于修正喷油量和点火提前角。图7-5所示为桑塔 纳2000GSi AJR发动机进气温度传感器安装位置及与ECU的连 接电路。进气温度传感器(G72)的接线端子2通过0.5mm2 导线与J220的T80/67端子相连,是搭铁端;G72的端子1与 控制单元J220的T80/54端子相连为参考电压输出端,同时也 是信号输入端。
(3)EGR(废气再循环)温度传感器 安装在废气再循环管 道上,位于EGR阀之后,用于监测EGR系统的工作。
二、温度传感器的结构
热敏电阻式温度传感器的结构型式如图7-3所示,主要由热敏 电阻、金属引线、接线插座和壳体等组成。
热敏电阻是温度传感器的主要部件,汽车用热敏电阻是在陶 瓷半导体材料中掺入适量金属氧化物,并在1000℃以上的高 温条件下烧结而成。控制掺入氧化物的比例和烧结温度,即 可得到不同特性的热敏电阻,从而满足使用要求。例如,如 果测量发动机冷却液温度,则热敏电阻的工作温度为-30℃~ 130℃;如果发动机的排气温度,热敏电阻的工作温度则为 600~1000℃。

汽车发动机传感器简介

汽车发动机传感器简介

简介汽车发动机上的传感器简介汽车发动机上的传感器发动机管理系统(Engine Man-agement System)简称EMS,采用各种传感器,将发动机吸入空气量、冷却水温度、发动机转速与加减速等状况转换成电信号,送入控制器。

控制器将这些信息与储存信息比较、精确计算后输出控制信号。

EMS不仅可以精确控制燃油供给量,以取代传统的化油器,而且可以控制点火提前角和怠速空气流量等,极大地提高了发动机的性能。

通过喷油和点火的精确控制,可以降低污染物排放50%;如果采用氧传感器和三元催化转化器,在λ=1的一个狭小范围内可以降低排放达90%以上。

在怠速调节范围内,由于采用了怠速调节器,怠速转速降低约100转/分到150转/分,使油耗下降3%~4%。

如果采用爆震控制,在满负荷范围内可提高发动机功率3%~5%,并可适应不同品质的燃油。

汽车维修者之家随着世界范围内排放法规的日益严格,采用EMS系统已成为不可阻挡的潮流,在推进中国汽车工业现代化的进程中,具有广阔的应用前景。

控制系统ME7原理:通过安装在加速踏板上的踏板传感器,将踏板信息传递到电子控制器中的节气门控制模块,节气门控制模块通过一定的处理程序计算出节气门的开度并驱动直流电机完成节气门进气通道面积的调整,从而控制进气量,满足发动机不同工况下的进气需求。

特点:-取消了机械传动装置,更易于模块化和标准化。

-系统具有自学习功能,可实现巡航控制。

-怠速进气可通过控制模块驱动节气门体完成,而不需旁通通道和怠速调节器。

-由于进气精确可控,故可实现低排放控制。

-驾驶性能更优。

爆震传感器KS功能:检测发动机缸体振动情况,以供电子控制器识别发动机爆震工况。

原理:爆震传感器是一种振动加速度传感器。

它装在发动机气缸体上,可装一只或多只。

传感器的敏感元件为一压电晶体,发动机爆震时,发动机振动通过传感器内的质块传递到晶体上。

压电晶体由于受质块振动产生的压力,在两个极面上产生电压,把振动转化为电压信号输出。

发动机温度传感器的工作原理

发动机温度传感器的工作原理

发动机温度传感器的工作原理发动机温度传感器是一种用来监测发动机温度的装置,它在汽车发动机中起着至关重要的作用。

它通过测量发动机的温度来保护发动机免受过热的损害,并提供准确的温度数据供车辆控制系统使用。

发动机温度传感器的工作原理是基于热电效应和电阻效应。

它通常由两个主要部分组成:热敏电阻和电路。

热敏电阻是发动机温度传感器中的核心组件。

它是一种电阻器,其电阻值随温度的变化而变化。

在发动机温度传感器中,热敏电阻的电阻值随温度的升高而减小。

这是因为热敏电阻的材料具有负温度系数,即随温度升高,电阻值下降。

发动机温度传感器的电路部分则用于测量热敏电阻的电阻值,并将其转换为相应的电信号。

它通常由一个电压源、一个电阻和一个电压测量装置组成。

当电流通过电阻时,会产生一个电压降。

通过测量这个电压降,就可以确定热敏电阻的电阻值,从而得到发动机的温度。

具体来说,当发动机温度升高时,热敏电阻的电阻值减小。

这导致电路中的电流增加,进而导致电压测量装置测量到一个较低的电压。

相反,当发动机温度降低时,热敏电阻的电阻值增加,电路中的电流减小,电压测量装置测量到一个较高的电压。

发动机温度传感器将测量到的电压信号发送给车辆控制系统,系统根据这个信号来判断发动机的温度。

如果温度过高,系统将采取相应的措施,如减少燃油供应或提醒驾驶员注意。

这样可以保护发动机免受过热的损害,并提高车辆的安全性和可靠性。

需要注意的是,发动机温度传感器的工作原理可能因不同的车辆和传感器类型而有所不同。

有些传感器可能采用其他原理来实现温度的测量,但无论采用何种原理,其主要目的都是测量发动机的温度并提供准确的温度数据。

发动机温度传感器是汽车发动机中至关重要的一个部件,它通过测量发动机的温度来保护发动机免受过热的损害,并提供准确的温度数据供车辆控制系统使用。

它的工作原理是基于热电效应和电阻效应,通过测量热敏电阻的电阻值来确定发动机的温度,并将其转换为相应的电信号。

这样可以确保发动机在正常的温度范围内运行,提高车辆的安全性和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
范围一般为―50~150℃。
铜电阻的阻值与温度之间的关系为
Rt R0 (1 t)
• 优 点:

温度范围内线性关系好,灵敏度比铂电阻高,容易提纯、
加工,价格便宜,复制性能好。
• 缺 点:

易于氧化,一般只用于150℃以下的低温测量和没有水分
及无侵蚀性介质的温度测量。

与铂相比,铜的电阻率低,所以铜电阻的体积较大。
T0——环境温度; △T——热敏电阻的温升。
三、 热敏电阻的外形
MF12型 NTC热敏电阻
聚脂塑料封装热敏 电阻
其他形式的热敏电阻
玻璃封装 NTC热敏电阻
MF58 型热敏电阻
其他形式的热敏电阻
带安装孔的热敏电阻 大功率PTC热敏电阻
其他形式的热敏电阻(续)
贴片式NTC热敏 电阻
其他形式的热敏电阻(续)
4.稳定性好
商品化产品已有30多年历史,加之近年在材料与工艺上不 断得到改进。据报道,在0.01℃的小温度范围内,其稳定性可 达0.0002℃的精度。相比之下,优于其它各种温度传感器。
5.原料资源丰富,价格低廉
烧结表面均已经玻璃封装。故可用于较恶劣环境条件;另 外由于热敏电阻材料的迁移率很小,故其性能受磁场影响很小, 这是十分可贵的特点。
• 应用范围很广,可在宇宙航船、医学、工业及家 用电器等方面用作测温、控温、温度补偿、流速测量、 液面指示等。
一、金属热电阻传感器
• 工业广泛使用,-200~+500℃范围温度测量。 • 在特殊情况下,测量的低温端可达3.4K,甚至更低,
1K左右。高温端可测到1000℃。 • 温度测量的特点:精度高、适于测低温。 • 传感器的测量电路:经常使用电桥 • 精度较高的是自动电桥。 • 为消除由于连接导线电阻随环境温度变化而造成的测
RT/Ω 106 105
104
2
3
4
103 1
102
101
100 铂丝 0 40 60 120 160 温度T/ºC
热敏电阻的电阻--温度特性曲线 1-NTC;2-CTR; 3-4 PTC
热敏电阻材料的分类(1)
大分类
小分类
代表例子
NTC
单晶 多晶
玻璃
金刚石、Ge、Si
迁移金属氧化物复合烧 结体 、无缺陷形金属氧 化烧结体多结晶单体 、 固溶体形多结晶氧化物 SiC系
2. 温度传感器的种类及特点
接触式温度传感器 非接触式温度传感器
接触式温度传感器的特点:传感器直接与被测物体接触进 行温度测量,由于被测物体的热量传递给传感器,降低了 被测物体温度,特别是被测物体热容量较小时,测量精度 较低。因此采用这种方式要测得物体的真实温度的前提条 件是被测物体的热容量要足够大。
热力学温标 国际实用温标 摄氏温标 华氏温标
二、温度传感器的特点与分类
1 温度传感器的物理原理(11)
随物体的热膨胀相对变化而引起的体积变化;
蒸气压的温度变化; 电极的温度变化 热电偶产生的电动势; 光电效应 热电效应 介电常数、导磁率的温度变化; 物质的变色、融解; 强性振动温度变化; 热放射; 热噪声。
量误差,常采用三线制和四线制连接法。
三线制
工业用热电阻一般采用三线制
G——检流计,R1 ,R2 ,R3——固定电阻, R a——零位调节电阻, R t ——热电阻
热电阻测温电桥的三线制接法
四线制接法
精密测量中,采用四线制接法
r1 r2 r3 r4

1 T

1 T0

热敏电阻的电阻温度系数
• 热敏电阻在其本身温度变化1℃时,电阻值的相对变化量
1 dRT B
RT dT
T2
B和α值是表征热敏电阻材料性能的两个重要参数, 热敏电阻的电阻温度系数比金属丝的高很多, 所以它的灵敏度很高。
2、伏安特性(U—I)
热敏电阻器伏安特性表示加在其两端的电压和通过的电流, 在热敏电阻器和周围介质热平衡(即加在元件上的电功率和耗 散功率相等)时的互相关系。
MF58型(珠形)高精度 负温度系数热敏电阻
MF5A-3型热敏电阻
非标热敏电阻
非标热敏电阻(续)
非标热敏电阻(续)
热敏电阻温度面板表
热敏电 阻
LCD
热敏电阻体温表
§2.2.3 热电阻式传感器的应用
• 金属热电阻传感器

-200~+500℃范围的温度测量

特点:精度高、适于测低温。
• 半导体热敏电阻传感器
U/V Um
b
a
U0
β
c d
该曲线是在环境温度为T0时的静态介 质中测出的静态U—I曲线。
热敏电阻的端电压UT和通过它的电流 I有如下关系:
α
UT

IRT

IR0
exp
BN

1 T

1 T0


IR0
exp
BN

T T T0

I0 Im
I/mA
NTC热敏电阻的静态伏安特性
(二)热敏电阻的分类
热敏电阻的种类很多,分类方法也不相同。按热敏电阻的 阻值与温度关系这一重要特性可分为:
1.正温度系数热敏电阻器(PTC) 电阻值随温度升高而增大的电阻器,简称PTC热敏阻器。 它的主要材料是掺杂的BaTiO3半导体陶瓷。 2.负温度系数热敏电阻器(NTC) 电阻值随温度升高而下降的热敏电阻器简称NTC热敏电阻 器。它的材料主要是一些过渡金属氧化物半导体陶瓷。 3.突变型负温度系数热敏电阻器(CTR) 该类电阻器的电阻值在某特定温度范围内随温度升高而降低 3~4个数量级,即具有很大负温度系数。其主要材料是VO2并 添加一些金属氧化物。

T
0
0
式中 RT , R0——热敏电阻在绝对温度T,T0时的阻值(R); T0, T ——介质的起始温度和变化温度(K); t0 , t ——介质的起始温度和变化温度(℃); B ——热敏电阻材料常数,一般为2000~6000K, 其大小取决于热敏电阻的材料。
B
ln

RT R0

第二章 温度传感器
§2.1 概 §2.2 §2.3 §2.4
论 热电阻温度传感器 热电偶温度传感器 温度传感器在汽车上的应用
§2.1 概 论
一、温度的基本概念
热平衡:温度是描述热平衡系统冷热程度的物理量。 分子物理学:温度反映了物体内部分子无规则运动的剧 烈程度。 能量:温度是描述系统不同自由度间能量分配状况的物 理量。 表示温度大小的尺度是温度的标尺,简称温标。
§2.2.1 金属热电阻
一、 常用热电阻
• ⑴ 铂热电阻

主要作为标准电阻温度计,广泛应用于温度基准、标准的传递。

长时间稳定的复现性可达10-4 K ,是目前测温复现性最好的一种温
度计。
铂电阻的精度与铂的提纯程度有关电阻比W (100 ) R100 R0
W(100)越高,表示铂丝纯度越高,国际实用温标规定,作为基准 器的铂电阻,W(100)≥1.3925,目前技术水平已达到W(100)= 1.3930,工业用铂电阻的纯度W(100)为1.387~1.390。
±5℃ 体集成电路传感器、可控硅
§2.2 热电阻式传感器
• 热电阻传感器是利用导体或半导体的电阻率随温 度变化而变化的原理制成的,实现了将温度变化 转化为元件电阻的变化。
• 按其制造材料来分,有金属(铂、铜、镍)热电 阻及半导体热电阻(热敏电阻)。
作为热电阻的材料要求:
• 电阻温度系数要大,以提高热电阻的灵敏度; • 电阻率尽可能大,以便减小电阻体尺寸; • 热容量要小,以便提高热电阻的响应速度; • 在测量范围内,应具有稳定的物理和化学性能; • 电阻与温度的关系最好接近于线性; • 应有良好的可加工性,且价格便宜。 • 使用最广泛的热电阻材料是铂和铜 。
热电阻的主要技术性能
二、 热电阻的结构
普 通 工 业 用 热 电 阻 式 温 度 传 感 器
铜热电阻结构示意图 铂热电阻结构示意图
§2.2.2 半导体热敏电阻

热敏电阻是利用某种半导体材料的电阻率随温度变化
而变化的性质制成的,由金属氧化物和化合物按不同的配
方比例烧结。
一、热敏电阻的特点与分类
低温用 传感器
-250~0℃
晶体管、热敏电阻、 压力式玻璃温度计
极低温用 传感器
-270~-250℃
BaSrTiO3陶瓷
热电偶、测温电阻器、热敏电阻、感温铁氧体、石英晶体振 动器、双金属温度计、压力式温度计、玻璃制温度计、辐射 传感器、晶体管、二极管、半导体集成电路传感器、可控硅
温度传感器分类(2)
V、P、(Ba·Sr)氧化物 Ag2S–CuS
二、NTC热敏电阻的主要特性
• 1、 温度特性 • 2、 伏安特性
1、 温度特性
NTC型热敏电阻具有负温度系数,成指数关系,
电阻-温度特性为:
R R e R e B

1 T
1
T0

B

1 273 t

1 273 t0
(一)热敏电阻的特点
1.电阻温度系数的范围宽 有正、负温度系数和在某一特定温度区域内阻值突变的三
种热敏电阻元件。电阻温度系数的绝对值比金属大10~100倍左 右。
2.材料加工容易、性能好 可根据使用要求加工成各种形状,特别是能够作到小型化。 目前,最小的珠状热敏电阻其直径仅为 0.2mm。 3.阻值在1~10M之间可供自由选择 使用时,一般可不必考虑线路引线电阻的影响;由于其功 耗小、故不需采取冷端温度补偿,所以适合于远距离测温和控 温使用。
相关文档
最新文档