第四章免疫球蛋白

第四章免疫球蛋白
第四章免疫球蛋白

第四章 免疫球蛋白

抗体(antibody,Ab)是介导体液免疫的重要效应分子,是B细胞接受抗原刺激后增殖分化为浆细胞所产生的糖蛋白,主要存在于血清等体液中,能与相应抗原特异性地结合,显示免疫功能。早在十九世纪

后期,von Behring及其同事Kitasato就发现白喉或破伤风毒素免疫动物后可产生具有中和毒素作用的物质,称之为抗毒素(antitoxin),随后引入抗体一词来泛指抗毒素类物质。1937年Tiselius和Kabat用电泳方法将血清蛋白分为白蛋白、α1、α2、β及γ球蛋白等组分,并发现抗体活性存在于从α到γ的这一广泛区域(图4-1),但主要存在于γ区,故相当长一段时间内,抗体又被称为γ球蛋白(丙种球蛋白)。1968年和1972年世界卫生组织和国际免疫学会联合会的专门委员会先后决定,将具有抗体活性或化学结构与抗体相似的球蛋白统一命名为免疫球蛋白(immunoglobulin,Ig)。免疫球蛋白可分为分泌型(secreted Ig,SIg)和膜型(membrane Ig, mIg)。前者主要存在于血液及组织液中,具有抗体的各种功能;后者构成B细胞膜上的抗原受体。

第一节 免疫球蛋白的结构

一、免疫球蛋白的基本结构

X射线晶体衍射结构分析发现,免疫球蛋白由四肽链分子组成,各肽链间有数量不等的链间二硫键。结构上Ig可分为三个长度大致相同的片段,其中两个长度完全一致的片段位于分子的上方,通过一易弯曲的区域与主干连接,形成一”Y”字型结构(图4-2),称为Ig单体,构成免疫球蛋白分子的基本单位。

图4?2

(一)重链和轻链

任何一类天然免疫球蛋白分子均含有四条异源性多肽链,其中,分子量较大的称为重链(heavy chain, H),而分子量较小的为轻链(light chain, L)。同一天然Ig 分子中的两条H链和两条L链的氨基酸组成完全相同。

1. 重链 分子量约为50~75kD,由450~550个氨基酸残基组成。各类免疫球蛋白重链恒定区的氨基酸组成和排列顺序不尽相同,因而其抗原性也不同。据此,可将免疫球蛋白分为5类(class)或5个同种型(isotype),即IgM、IgD、IgG、IgA和IgE,其相应的重链分别为μ链、δ链、γ链、α链和ε链。不同类的免疫球蛋白具有不同的特征,如链内和链间二硫键的数目和位置、连接寡糖的数量、结构域的数目以及铰链区的长度等均不完全相同。即使是同一类Ig其铰链区氨基酸组成和重链二硫键的数目、位置也不同,据此又可将同类Ig分为不同的亚类(subclass)。如人IgG可分为IgG1~IgG4;IgA可分为IgA1和IgA2。

IgM、IgD和IgE尚未发现有亚类。

2. 轻链 分子量约为25 kD,由214个氨基酸残基构成。轻链有两种,分别为κ(kappa)链和λ(lambda)链,据此可将Ig分为两型(type),即κ型和λ型。一个天然Ig分子上两条轻链的型别总是相同的,但同一个体内可存在分别带有κ或λ链的抗体分子。5类Ig中每类Ig都可以有κ链或λ链,两型轻链的功能无差异。不同种属生物体内两型轻链的比例不同,正常人血清免疫球蛋白κ:λ约为2:1,而在小鼠则为20:1。κ:λ比例的异常可能反映免疫系统的异常,例如人类免疫球蛋白λ链过多,提示可能有产生λ链的B细胞肿瘤。根据λ链恒定区个别氨基酸的差异,又可分为λ1、λ2、λ3和λ4 四个亚型(subtype)(二)可变区和恒定区

通过分析不同免疫球蛋白重链和轻链的氨基酸序列,发现重链和轻链靠近N 端的约110个氨基酸的序列变化很大,其他部分氨基酸序列则相对恒定。免疫球蛋白轻链和重链中靠近N端氨基酸序列变化较大的区域称为可变区(variable region, V),分别占重链和轻链的1/4和1/2;而靠近C端氨基酸序列相对稳定的区域,称为恒定区(constant region, C区),分别占重链和轻链的3/4和1/2(图4?2)。

1. 可变区 重链和轻链的V区分别称为V H和V L。V H和V L各有3个区域的氨基酸组成和排列顺序高度可变,称为高变区(hypervariable region, HVR)或互补决定区(complementarity determining region, CDR),分别用HVR1(CDR1)、HVR2(CDR2)和HVR3(CDR3)表示,一般CDR3变化程度更高。V H的3个高变区分别位于29~31、49~58和95~102位氨基酸,V L的3个高变区分别位于28~35、49~56和91~98位氨基酸。V H和V L的3个CDR共同组成Ig的抗原结合部位(antigen-binding site),决定着抗体的特异性,负责识别及结合抗原,从而发挥免疫效应。在V区中,CDR之外区域的氨基酸组成和排列顺序相对不易变化,称为骨架区(framework region,FR)。V H或V L各有FR1、FR2、FR3和FR4四个骨架区,分别用FR1、FR2、FR3和FR4表示。

图4?3

2. 恒定区 重链和轻链的C区分别称为C H和C L。不同型(λ或κ)Ig其C L的长度基本一致,但不同类Ig CH的长度不一,有的包括C H1、C H2和C H3;有的更长,包括C H1、C H2、C H3和C H4。同一种属的个体,所产生针对不同抗原的同一类别Ig,其C区氨基酸组成和排列顺序比较恒定,其免疫原性相同,但V区各异。例如:针对不同抗原的人IgG抗体,它们的V区不同,所以只能与相应的抗原发生特异性结合,但C区是相同的,均含γ链,因此抗人IgG抗体(第二抗体)均能与之结合。再如,针对同一抗原的人IgG和IgM抗体,它们的V区是相同的,所以均能与该抗原特异性结合,但C区是不同的,分别含γ和μ链。

(三)铰链区

铰链区(hinge region)位于C H1与C H2之间,含有丰富的脯氨酸,因此易伸展弯曲,能改变两个结合抗原的Y形臂之间的距离,有利于两臂同时结合两个不同的抗原表位。铰链区易被木瓜蛋白酶、胃蛋白酶等水解,产生不同的水解片段(见水解片段部分)。五类Ig或亚类的铰链区不尽相同,例如人IgG1、IgG2、IgG4和IgA的铰链区较短,而IgG3和IgD的铰链区较长。IgM和IgE无铰链区。 (四)结构域

Ig分子的两条重链和两条轻链都可折叠为数个球形结构域(domain),每个结构域一般具有其相应的功能。轻链有V L和C L两个结构域;IgG、IgA和IgD重链有V H、C H1、C H2和C H3四个结构域;IgM和IgE重链有五个结构域,比IgG多一个C H4。这些结构域的功能虽不同,但其结构相似。每个结构域约由110个氨基酸组成,其氨基酸的序列具有相似性或同源性,二级结构是由几股多肽链折叠形成的两个反向平行的β片层(anti-parallelβsheet),两个β片中心的两个半胱氨酸残基由一个链内二硫键垂直连接,可稳定结构域,形成一个“β桶状(β

barrel)”或“β三明治(β sandwich) ”结构(图4?4)。这种折叠方式称为免疫球蛋白折叠(immunoglobulin folding)。具有这类独特折叠结构的分子不仅有Ig,其它许多膜型和分泌型分子也含有该类结构,因此,这类分子被统称为免疫球蛋白超家族(immunoglobulin superfamily,IgSF)。

二、免疫球蛋白的其他成分

Ig轻链和重链除上述基本结构外,某些类别的Ig还含有其他辅助成分,分别是J链和分泌片。

(一)J链

J链(joining chain)是一富含半胱氨酸的多肽链(图4-5),由浆细胞合成,主要功能是将单体Ig分子连接为多聚体。2个IgA单体由J链相互连接形成二聚体,5个IgM单体由二硫键相互连接,并通过二硫键与J链连接形成五聚体。IgG、IgD和IgE常为单体,无J链。

(二)分泌片

分泌片(secretory piece,SP)又称为分泌成分(secretory component, SC),是分泌型IgA分子上的一个辅助成分,为一种含糖的肽链,由黏膜上皮细胞合成和分泌,以非共价形式结合于IgA二聚体上,使其成为分泌型IgA(SIgA),并一起被分泌到黏膜表面。分泌片具有保护分泌型IgA的铰链区免受蛋白水解酶降解的作用,并介导IgA二聚体从黏膜下通过黏膜等细胞到黏膜表面的转运。

三、免疫球蛋白的水解片段

在一定条件下,免疫球蛋白分子肽链的某些部分易被蛋白酶水解为不同片段。木瓜蛋白酶(papain)和胃蛋白酶(pepsin)是最常用的两种Ig蛋白水解酶,并可籍此研究Ig的结构和功能,分离和纯化特定的Ig多肽片段。

(一)木瓜蛋白酶水解片段

木瓜蛋白酶水解IgG的部位是在铰链区二硫键连接的2条重链的近N端,可将Ig裂解为两个完全相同的Fab段和一个Fc段(图4?6)。Fab段即抗原结合片段(fragment antigen binding, Fab),相当于抗体分子的两个臂,由一条完整的轻链和重链的V H和C H1结构域组成。一个Fab片段为单价,可与抗原结合但不形成凝集反应或沉淀反应; Fc段即可结晶片段(fragment crystallizable,Fc),相当于IgG 的C H2和C H3结构域。Fc无抗原结合活性,是Ig与效应分子或细胞相互作用的部位。

4?6 图

(二)胃蛋白酶水解片段

胃蛋白酶作用于铰链区二硫键所连接的两条重链的近C端,水解Ig后可获片段和一些小片段pFc’ (图4?6)。 F(ab’)2是由两个Fab及铰链得一个F(ab’)

2

片段为双价,可同区组成,由于Ig分子的两个臂仍由二硫键连接,因此F(ab’)

2

时结合两个抗原表位,故与抗原结合可发生凝集反应和沉淀反应,而且,由于片段保留了结合相应抗原的生物学活性,又避免了Fc段免疫原性可能引F(ab’)

2

起的副作用,因而被广泛用作生物制品。如白喉抗毒素、破伤风抗毒素经胃蛋白酶消化后精制提纯的制品,因去掉Fc段而降低发生超敏反应。胃蛋白酶水解Ig 后所产生的pFc’最终被降解,无生物学作用。

第二节 免疫球蛋白的异质性

尽管所有的免疫球蛋白分子在结构上均由V区和C区组成,但不同抗原甚至同一抗原刺激B细胞产生的免疫球蛋白,在其特异性以及类型等诸方面均不尽相同,呈现出明显的异质性(heterogeneity)。免疫球蛋白的异质性可表现为:不同抗原表位刺激机体所产生的不同类型的免疫球蛋白分子,其识别抗原的特异性不同,其重链类别和轻链型别也有差异;不同抗原表位诱导的同一类型的免疫球蛋白(如IgG),其识别抗原的特异性不同。导致免疫球蛋白异质性的因素包括内源性因素和外源性因素。

一、免疫球蛋白的类型

(一)类(class)

在同一种属的所有个体内,Ig重链C区所含抗原表位不同,据此可将重链分为γ、α、μ、δ、ε链5种,与此对应的Ig分为5类,即IgG、IgA、IgM、IgD和IgE。

(二)亚类(subclass)

同一类免疫球蛋白其重链的抗原性及二硫键数目和位置不同,据此可将Ig 又可分为亚类。IgG有IgG1~IgG4四个亚类;IgA有IgA1和IgA2两个亚类;IgM 有IgM1和IgM2两个亚类;IgD和IgE尚未发现亚类。

(三)型(type)

在同一种属所有个体内,根据Ig轻链C区所含抗原表位的不同,可将Ig轻链分为2种:λ和κ,与此对应的免疫球蛋白分为λ和κ两型。

(四)亚型(subtype)

同一型免疫球蛋白中,根据其轻链C区N端氨基酸排列的差异,又可分为亚型。例如:λ链190氨基酸为亮氨酸时,称OZ(+);为精氨酸时,称OZ(-)。

二、外源因素所致的异质性——免疫球蛋白的多样性

自然界存在的外源性抗原数目繁多,包括蛋白质、多糖、脂类等。每一种抗原分子的结构又十分复杂,含有多种不同的抗原表位。含多种不同抗原表位的抗原刺激机体免疫系统,导致免疫细胞的活化,产生多种不同特异性的抗体。理论上,每一种抗原表位可诱导产生一种特异性抗体。因此,这些抗原可刺激机体产生的抗体的总数是巨大的,包含针对各种抗原表位的许多不同抗原特异性的抗体,以及针对同一抗原表位的不同类型的抗体。多样性抗原的存在是导致免疫球蛋白异质性(即具有不同的抗原识别特异性)的外源因素,是免疫球蛋白异质性的物质基础。抗体的这种异质性,反映出机体对抗原精细结构的识别和应答。

三、内源因素所致的异质性――免疫球蛋白的血清型

免疫球蛋白既可与相应的抗原发生特异性的结合,其本身又可激发机体产生特异性免疫应答。其结构和功能基础是在免疫球蛋白分子中包含有多种不同的抗原表位,呈现出不同的免疫原性。Ig分子上有三类不同的抗原表位,分别为同种型、同种异型和独特型抗原表位(图4-7)。

(一)同种型(isotype)

存在于同种抗体分子中的抗原表位称为同种型,是同一种属所有个体Ig分子共有的抗原特异性标志,为种属型标志,存在于Ig C区。

(二)同种异型(allotype)

同一种属但不同个体来源的抗体分子也具有免疫原性的不同,也可刺激机体产生特异性免疫应答。这种存在于同种但不同个体中的免疫原性,称为同种异型,是同一种属不同个体间Ig分子所具有的不同抗原特异性标志,为个体型标志,存在于Ig C区和V区。

(三)独特型(idiotype,Id)

即使是同一种属、同一个体来源的抗体分子,主要由于其CDR区的氨基酸序列的不同,可显示不同的免疫原性,称为独特型,是每个免疫球蛋白分子所特有的抗原特异性标志,其表位又称为独特位(idiotope)。抗体分子每一Fab段均存在5~6个独特位,它们存在于V区(图4-7)。独特型表位在异种、同种异体甚至同一个体内均可刺激产生相应抗体,即抗独特型抗体(anti-idiotype antibody,AId)。

第三节 免疫球蛋白的功能

免疫球蛋白的功能与其结构密切相关。同一免疫球蛋白的V区和C区的氨基酸组成和顺序的不同,决定了它们的功能上的差异;许多不同的免疫球蛋白在V 区和C区结构变化的规律性,又使得免疫球蛋白的V区和C区在功能上有各自的共性。V区和C区的作用,构成了免疫球蛋白的生物学功能(图4-8)。

一、Ig V区的功能

识别并特异性结合抗原是免疫球蛋白分子的主要功能,执行该功能的结构是免疫球蛋白V区,其中CDR部位在识别和结合特异性抗原中起决定性作用。免疫球蛋白分子有单体、二聚体和五聚体,因此结合抗原表位的数目也不相同。Ig 结合抗原表位的个数称为抗原结合价。单体Ig可结合2个抗原表位,为双价;分泌型IgA为4价;五聚体IgM理论上为10价,但由于立体构象的空间位阻,一般只能结合5个抗原表位,故为5价。

免疫球蛋白的V区与抗原结合后,借助于C区的作用,在体外可发生各种抗原抗体结合反应,有利于抗原或抗体的检测和功能的判断;在体内,可中和毒素、阻断病原入侵、清除病原微生物或导致免疫病理损伤;B细胞膜表面的IgM和IgD 构成B细胞的抗原识别受体,能特异性识别抗原分子。

二、Ig C区的功能

(一)激活补体

人IgG1~3和IgM与相应抗原结合后,可因构象改变而使其C H2/C H3结构域内的补体结合点暴露,从而通过经典途径激活补体系统,产生多种效应功能,其中IgM、IgG1和IgG3激活补体系统的能力较强,IgG2较弱。IgA、IgE和IgG4本身难于激活补体,但形成聚合物后可通过旁路途径激活补体系统。 通常,IgD 不能激活补体。

(二)结合Fc受体 IgG和IgE可通过其Fc段与表面具有相应受体的细胞结合,产生不同的生物学作用。

1. 调理作用 (opsonization) 指抗体如IgG(特别是IgG1和IgG3)的Fc段与中性粒细胞、巨噬细胞上的IgG Fc受体结合,从而增强吞噬细胞的吞噬作用(图4-9A)。例如,细菌特异性的IgG抗体可以其Fab段与相应的细菌抗原结合后,以其Fc段与巨噬细胞或中性粒细胞表面相应IgG Fc受体结合,通过IgG 的Fab段和Fc段的“桥联”作用,促进吞噬细胞对细菌的吞噬。

2.抗体依赖的细胞介导的细胞毒作用(antibody-dependent cell?mediated cytotoxicity,ADCC)指具有杀伤活性的细胞如NK细胞通过其表面表达的Fc受体识别包被于靶抗原(如病毒感染细胞或肿瘤细胞)上的抗体Fc段,直接杀伤靶抗原(图4-9B)。NK细胞是介导ADCC的主要细胞(详见第九章)。抗体与靶细胞上的抗原结合是特异性的,而表达FcR的细胞其杀伤作用是非特异性的。

3. 介导Ⅰ型超敏反应 IgE为亲细胞抗体,可通过其Fc段与肥大细胞和嗜碱性粒细胞表面的高亲和力IgE Fc受体(FcεRI)结合,并使其致敏,若相同变应原再次进入机体与致敏靶细胞表面特异性IgE结合,即可促使这些细胞合成和释放生物活性物质,引起Ⅰ型超敏反应(详见第十九章)。

(三)穿过胎盘和粘膜

在人类,IgG是惟一能通过胎盘的免疫球蛋白。胎盘母体一侧的滋养层细胞表达一种特异性IgG输送蛋白,称为FcRn。IgG可选择性与FcRn结合,从而转移到滋养层细胞内,并主动进入胎儿血循环中。IgG穿过胎盘的作用是一种重要的自然被动免疫机制,对于新生儿抗感染具有重要意义。另外,分泌型IgA可通过呼吸道和消化道的黏膜(图4-10),是黏膜局部免疫的最主要因素。

此外,免疫球蛋白还对免疫应答有调节作用(详见第十七章)。

第四节 各类免疫球蛋白的特性与功能

一、IgG

IgG于出生后3个月开始合成,3~5岁接近成人水平。是血清和胞外液中含量最高的Ig,约占血清总Ig的75%~80%(表4-1)。人IgG有4个亚类,依其在血清中浓度高低,分别为IgG1、IgG2、IgG3、IgG4。IgG半寿期约20~23天,是再次免疫应答产生的主要抗体,其亲和力高,在体内分布广泛,具有重要的免疫效应,是机体抗感染的“主力军”。IgG1、IgG2、IgG3可穿过胎盘屏障,在新生儿抗感染免疫中起重要作用;IgG1、IgG2和IgG3的C H2能通过经典途径活化补体,并可与巨噬细胞、NK细胞表面Fc受体结合,发挥调理作用、ADCC 作用等;人IgG1、IgG2和IgG4可通过其Fc段与葡萄球菌蛋白A(SPA)结合,藉此可纯化抗体,并用于免疫诊断;某些自身抗体如抗甲状腺球蛋白抗体、抗核抗体,以及引起II、III型超敏反应的抗体也属于IgG。

表4-1

二、IgM

IgM占血清免疫球蛋白总量的5%~10%,血清浓度约1mg/ml。单体IgM以膜结合型(mIgM)表达于B细胞表面,构成B细胞抗原受体(BCR);分泌型IgM

为五聚体,是分子量最大的Ig,沉降系数为19S,称为巨球蛋白(macroglobulin),一般不能通过血管壁,主要存在于血液中。五聚体IgM含10个Fab段,具有很强的抗原结合能力;含5个Fc段,比IgG更易激活补体。天然的血型抗体为IgM,血型不符的输血,可致严重溶血反应。IgM是个体发育过程中最早合成和分泌的抗体,在胚胎发育晚期的胎儿即能产生IgM,故脐带血IgM升高提示胎儿有宫内感染(如风疹病毒或巨细胞病毒等感染)。IgM也是初次体液免疫应答中最早出现的抗体,是机体抗感染的“先头部队”;血清中检出IgM,提示新近发生感染,可用于感染的早期诊断。膜表面IgM是B细胞抗原受体的主要成分。只表达mIgM 是未成熟B细胞的标志。

三、IgA

IgA分为两型:血清型为单体,主要存在于血清中,仅占血清免疫球蛋白总量的10%~15%;分泌型IgA(secretory IgA,SIgA)为二聚体,由J链连接,含内皮细胞合成的SP,经分泌性上皮细胞分泌至外分泌液中(图4-10)。SIgA合成和分泌的部位在肠道、呼吸道、乳腺、唾液腺和泪腺,因此主要存在于胃肠道和支气管分泌液、初乳、唾液和泪液中。SIgA是外分泌液中的主要抗体类别,参与黏膜局部免疫,通过与相应病原微生物(细菌、病毒等)结合,阻止病原体黏附到细胞表面,从而在局部抗感染中发挥重要作用。SIgA在黏膜表面也有中和毒素的作用。新生儿易患呼吸道、胃肠道感染可能与IgA合成不足有关。婴儿可从母亲初乳中获得SIgA,为一重要的自然被动免疫。

四、IgD

正常人血清IgD浓度很低(约30μg/ml),仅占血清免疫球蛋白总量的0.2%。IgD可在个体发育的任何时间产生。5类Ig中,IgD的铰链区较长,易被蛋白酶水解,故其半寿期很短(仅3天)。IgD分为两型:血清IgD的生物学功能尚不清楚; 膜结合型IgD(mIgD)构成BCR,是B细胞分化发育成熟的标志,未成熟B细胞仅表达mIgM,成熟B细胞可同时表达mIgM和mIgD,称为初始B细胞(naive

B cell);活化的B细胞或记忆B细胞其表面的mIgD逐渐消失。

五、IgE

IgE是正常人血清中含量最少的Ig,血清浓度极低,约为5×10-5 mg/ml。主要由黏膜下淋巴组织中的浆细胞分泌。其重要特征为糖含量高达12%。IgE为亲细胞抗体,其C H2和C H3结构域可与肥大细胞、嗜碱性粒细胞上的高亲和力Fc εRI结合,引起I型超敏反应。此外,IgE可能与机体抗寄生虫免疫有关。

第五节 人工制备抗体

抗体的上述生物学特性使得其在疾病的诊断、免疫防治及其基础研究中发挥作重要作用,人们对抗体的需求也随之增大。人工制备抗体是大量获得抗体的有效途径。以特异性抗原免疫动物,制备相应的抗血清,是早年人工制备抗体的主要方法。1975年,Kohler和Milstein建立的单克隆抗体(monoclonal antibody,mAb)技术,使得规模化制备高特异性、均质性抗体成为可能。但鼠源性mAb在人体反复使用后出现的人抗鼠抗体(human anti-mouse antibody, HAMA),很大程度上限制了mAb的临床应用。近年,随着分子生物学的发展,人们已有可能通过抗体工程技术制备人-鼠嵌合抗体、人源化抗体或人抗体。

一、多克隆抗体

天然抗原分子中常含多种不同抗原特异性的抗原表位,以该抗原物质刺激机体免疫系统,体内多个B细胞克隆被激活,产生的抗体中实际上含有针对多种不同抗原表位的免疫球蛋白,是为多克隆抗体。获得多克隆抗体的途径主要有动物免疫血清、恢复期病人血清或免疫接种人群。多克隆抗体的优势是:作用全面,具有中和抗原、免疫调理、介导补体介导的细胞毒作用(CDC)、ADCC等重要作用、来源广泛、制备容易;其缺点是:特异性不高、易发生交叉反应,也不易大量制备,从而应用受限。

解决多克隆抗体特异性不高的理想方法是制备单一表位特异性的抗体。如能获得仅针对单一表位的浆细胞克隆,使其在体外扩增并分泌抗体,就有可能获得单一表位特异性的抗体。然而,浆细胞在体外的寿命较短,也难以培养。为克服此缺点,Kohler和Milstein将可产生特异性抗体但短寿的B细胞与不应抗原特异性Ab但长寿的骨髓瘤细胞融合,建立了可产生单克隆抗体的杂交瘤细胞和单克隆抗体技术(图4-11)。通过该技术融合形成的杂交细胞系(杂交瘤,hybridoma),既有骨髓瘤细胞大量扩增和永生的特性,又具有免疫B细胞合成和分泌特异性抗体的能力。每个杂交瘤细胞由一个B细胞融合而成,而每个B细胞克隆仅识别一种抗原表位,故经筛选和克隆化的杂交瘤细胞仅能合成及分泌抗单一抗原表位的特异性抗体,是为单克隆抗体。其优点是结构均一、纯度高、特异性强、效价高、血清交叉反应少或无、制备成本低;缺点是其鼠源性对人具有较强的免疫原性,反复人体使用后可诱导产生人抗鼠的免疫应答,从而削弱了其作用,甚至导致机体组织细胞的免疫病理损伤。

既保持单克隆抗体均一性、特异性强的优点,又能克服其为鼠源性的不足,是拓展mAb广泛人体使用的重要思路。DNA重组技术发展,使得有可能制备部分或全人源化的基因工程抗体(genetic engineering antibody),如人-鼠嵌合抗体(chimeric antibody)、改型抗体(reshaped antibody)、双特异性抗体(bispecific antibody)、小分子抗体及人源抗体等(表4-2)。基因工程抗体制备的基本思路是将部分或全部人源抗体的编码基因,或克隆到真核或原核表达系统中,体外表达人-鼠嵌合或人源化抗体;或转基因至自身抗体编码基因剔除的小鼠体内,主动免疫诱生人源抗体。因此,基因工程抗体的根本出发点是解决抗体的鼠源性问题,其优点是人源化或完全人的、均一性强、可工业化生产;不足是其亲和力弱,效价不高。

小结

抗体(Ab),亦称免疫球蛋白(Ig),是介导体液免疫的重要效应分子,由B细胞接受抗原刺激后增殖分化为浆细胞所产生。Ig由两条重链和两条轻链经链间二硫键连接形成一“Y”字型结构。重链包括μ链、δ链、γ链、α链和ε链,其组成的Ig分别为IgM、IgD、IgG、IgA和IgE等5类或5个同种型;轻链有两种,分别为κ链和λ链,据此可将Ig分为两型,即κ型和λ型。Ig可分可变区、恒定区和铰链区。可变区为靠近N端的氨基酸序列变化较大的区域,重链和轻链可变区各有3个高变区,共同组成Ig的抗原结合部位,决定着抗体的特异性,负责识别及结合抗原;和恒定区则为靠近C端氨基酸序列相对稳定的区域,具有激活补体、结合Fc受体和穿过胎盘和黏膜的功能。铰链区位于C H1与C H2之间,含有丰富的脯氨酸,使Ig易伸展弯曲,也是木瓜蛋白酶和胃蛋白酶的水解部位。Ig分子经木瓜蛋白酶水解后裂解为两个完全相同的Fab段和一个Fc段,而经胃蛋白酶作用后可获得一个F(ab’)2片段和一些小片段pFc’。此外,某些类别的Ig还含有J链和分泌片等辅助成分。

Ig具有明显的异质性。不仅可分为5类和2型,而且包含有多种亚类和亚型。导致Ig 异质性的因素包括内源性因素和外源性因素。外源抗原多样性的存在是导致Ig异质性的外源因素,而Ig分子内部不同抗原表位的存在是Ig血清型的物质基础(内源因素)。Ig血清型有同种型、同种异型和独特型。

Ig的功能与其结构密切相关。识别并特异性结合抗原是V区的主要功能,而C区则通过激活补体、结合Fc受体和穿过胎盘发挥作用。但各类Ig各有特点。IgG在血清和胞外液

中含量最高,是再次免疫应答产生的主要抗体,其亲和力高,分布广泛,可穿过胎盘屏障,是机体抗感染的“主力军”;IgM有膜结合型和分泌型,是个体发育过程中最早合成和分泌的抗体,也是初次体液免疫应答中最早出现的抗体,是机体抗感染的“先头部队”; IgA有血清型和分泌型,SIgA是外分泌液中的主要抗体类别,参与黏膜局部免疫,是是机体抗感染的“边防军”;血清IgD半寿期很短,膜结合型IgD构成BCR,是B细胞分化发育成熟的标志;IgE是正常人血清中含量最少的Ig,为亲细胞抗体,与I型超敏反应和机体抗寄生虫免疫有关。

人工制备抗体是大量获得抗体的有效途径。多克隆抗体、单克隆抗体和基因工程抗体是人工制备抗体的主要方法。

思考题

1. 试述免疫球蛋白的结构及其功能。

2. 试述免疫球蛋白的异质性及其决定因素。

3. 试比较各类免疫球蛋白的异同点。

4. 简述人工制备抗体的方法。

参考文献

1. 龚非力. 医学免疫学. 科学出版社,2003

2. William E. Paul. Fundamental Immunology. 4th ed. Lippincott-Raven, 1998

3. Abul K. Abbas, Jordan S. Pober, Andrew H. Lichtman. Cellular and Molecular

Immunology. 5th ed. W.B. Saunders, 2003

4. 余传霖熊思东. 分子免疫学. 复旦大学出版社,2001

5. Richard A. Goldsby, Thomas J. Kindt, Barbara Osborn. Kuby Immunology. 4th ed.

Palgrave Macmillan Ltd., 2002

第四章 免疫球蛋白剖析

第四章免疫球蛋白 第一节基本概念 1、抗体:B淋巴细胞在有效的抗原刺激下分化为浆细胞,产生具有与相应抗原发生特异性结合功能的免疫球蛋白,这类免疫球蛋白称为抗体。 1937年,Tiselius用电泳方法将血清蛋白分为白蛋白、α1、α2、β及γ球蛋白等组分,其后又证明抗体的活性部分是在γ球蛋白部分。因此,相当长一段时间内,抗体又被称为γ球蛋白(丙种球蛋白)。实际上,抗体的活性除γ球蛋白外,还存在于α和β球蛋白处。 20世纪40年代初期,Tiselius和Kabat用肺炎球菌多糖免疫家兔,证实了抗体活性与血清丙种球蛋白组分相关。肺炎球菌多糖免疫家兔后可获得高效价免疫血清。然后加入相应抗原吸收以除去抗体,将除去抗体的血清进行电泳图谱分析,发现丙种球蛋白(γ-G)组分明显减少,从而证明了抗体活性是存在于丙种球蛋白内。 2、免疫球蛋白:具有抗体活性或化学结构与抗体相似的球蛋白统称为免疫球蛋白(immunoglobulin,Ig)。 区别: 抗体都是免疫球蛋白,而免疫球蛋白并不都是抗体。如骨髓瘤蛋白,巨球蛋白血症、冷球蛋白血症等患者血清中存在的异常免疫球蛋白结构与抗体相似,但无抗体活性。 免疫球蛋白可分为分泌型(secreted Ig,SIg)和膜型(membrane Ig, mIg)。 前者主要存在于血清及其他体液或外分泌液中,具有抗体的各种功能;后 者是B细胞表面的抗原识别受体。 第二节免疫球蛋白结构

一、免疫球蛋白的基本结构 (一)重链和轻链 免疫球蛋白分子是由两条相同的重链(heavy chain,H链)和两条相同的轻链(light chain,L链)通过链间二硫键连接而成的四肽链结构。X 射线晶体结构分析发现,IgG分子由3个相同大小的节段组成。 1. 重链 分子量约为50~75kD,由450~550个氨基酸残基组成。免疫球蛋白重链恒定区由于氨基酸的组成和排列顺序不同,故其抗原性也不同。据此,可将免疫球蛋白分为五类,即IgM、IgD、IgG、IgA和IgE,其相应的重链分别为μ链、δ链、γ链、α链和ε链。不同的同种型具有不同的特征,包括链内二硫键的数目和位置、连接寡糖的数量、功能区的数目以及铰链区的长度等。同一类Ig根据其铰链区氨基酸组成和重链二硫键的数目和位置的差别,又可分为不同的亚类。如IgG可分为IgG1~IgG4;IgA可分为IgA1和IgA2。IgM、IgD和IgE尚未发现有亚类。 2.轻链 免疫球蛋白轻链的分子量约25 kD,由214个氨基酸残基构成。轻链可分为两型,即κ(kappa)型和λ(lambda)型,一个天然Ig分子上两条轻链的型别总是相同的,两型轻链的功能无差异。不同种属中,两型轻链的比例不同,正常人血清免疫球蛋白κ:λ约为2:1,而在小鼠则为20:1。κ:λ比例的异常可能反映免疫系统的异常,例如人类免疫球蛋白λ链过多,提示可能有产生λ链的B细胞肿瘤。根据λ链恒定区个别氨基酸的差异,又可分为λ1、λ2、λ3和λ 4 四个亚型。 (二)可变区和恒定区 通过分析不同免疫球蛋白重链和轻链的氨基酸序列,发现重链和轻链靠近N端的约110个氨基酸的序列变化很大,称为可变区(variable

第四章免疫球蛋白

第四章免疫球蛋白 抗体(antibody,Ab)是介导体液免疫的重要效应分子,是B细胞接受抗原刺激后增殖分化为浆细胞所产生的糖蛋白,主要存在于血清等体液中,通过与相应抗原特异性地结合,发挥体液免疫功能。早在十九世纪后期,von Behring和Kitasato就发现白喉或破伤风毒素免疫动物后可产生具有中和毒素作用的物质,称之为抗毒素(antitoxin),随后引入抗体一词来泛指抗毒素类物质。1937年Tiselius和Kabat用电泳方法将血清蛋白分为白蛋白以及α1、α2、β和γ球蛋白等组分,并发现抗体活性主要存在于γ区,故相当长一段时间内,抗体又被称为γ球蛋白(丙种球蛋白)(图4-1)。1968年和1972年世界卫生组织和国际免疫学会联合会的专门委员会先后决定,将具有抗体活性或化学结构与抗体相似的球蛋白统一命名为免疫球蛋白(immunoglobulin,Ig)。免疫球蛋白可分为分泌型(secreted Ig,sIg)和膜型(membrane Ig, mIg)。前者主要存在于血液及组织液中,具有抗体的各种功能;后者构成B细胞膜上的抗原受体。 第一节免疫球蛋白的结构 一、免疫球蛋白的基本结构 X射线晶体衍射结构分析发现,免疫球蛋白由四肽链分子组成,各肽链间有数量不等的链间二硫键。在结构上Ig可分为三个大小大致相同的片段,其中两

个大小完全一致的片段位于分子的上方,通过一易弯曲的区域与主干连接,形成一“Y”字型结构(图4-2),组成Ig单体,是免疫球蛋白分子的基本单位。 (一)重链和轻链 任何一类天然免疫球蛋白分子均含有四条多肽链,其中,分子量较大的称为重链(heavy chain,H),而分子量较小的为轻链(light chain,L)。同一天然Ig分子中的两条H链和两条L链的氨基酸组成完全相同。 1.重链分子量约为50~75kD,由450~550个氨基酸残基组成。各类免疫球蛋白重链恒定区的氨基酸组成和排列顺序不尽相同,因而其抗原性也不同。据此,可将免疫球蛋白重链分为五类(class)或五个同种型(isotype),即μ链、δ链、 链、α链和ε链,其相应的Ig分别为IgM、IgD、IgG、IgA和IgE。不同类的重链具有不同的特征,如链内二硫键的数目和位置、连接寡糖的数量、结构域的数目以及铰链区的长度等均不完全相同。即使是同一类Ig重链其铰链区氨基酸组成和二硫键的数目、位置也不同,据此又可将同一类Ig分为不同的亚类(subclass)。如人IgG可分为IgG1~IgG4;IgA可分为IgA1和IgA2。IgM、IgD

第四章免疫球蛋白

第四章 免疫球蛋白 抗体(antibody,Ab)是介导体液免疫的重要效应分子,是B细胞接受抗原刺激后增殖分化为浆细胞所产生的糖蛋白,主要存在于血清等体液中,能与相应抗原特异性地结合,显示免疫功能。早在十九世纪 后期,von Behring及其同事Kitasato就发现白喉或破伤风毒素免疫动物后可产生具有中和毒素作用的物质,称之为抗毒素(antitoxin),随后引入抗体一词来泛指抗毒素类物质。1937年Tiselius和Kabat用电泳方法将血清蛋白分为白蛋白、α1、α2、β及γ球蛋白等组分,并发现抗体活性存在于从α到γ的这一广泛区域(图4-1),但主要存在于γ区,故相当长一段时间内,抗体又被称为γ球蛋白(丙种球蛋白)。1968年和1972年世界卫生组织和国际免疫学会联合会的专门委员会先后决定,将具有抗体活性或化学结构与抗体相似的球蛋白统一命名为免疫球蛋白(immunoglobulin,Ig)。免疫球蛋白可分为分泌型(secreted Ig,SIg)和膜型(membrane Ig, mIg)。前者主要存在于血液及组织液中,具有抗体的各种功能;后者构成B细胞膜上的抗原受体。 第一节 免疫球蛋白的结构 一、免疫球蛋白的基本结构

X射线晶体衍射结构分析发现,免疫球蛋白由四肽链分子组成,各肽链间有数量不等的链间二硫键。结构上Ig可分为三个长度大致相同的片段,其中两个长度完全一致的片段位于分子的上方,通过一易弯曲的区域与主干连接,形成一”Y”字型结构(图4-2),称为Ig单体,构成免疫球蛋白分子的基本单位。 图4?2 (一)重链和轻链 任何一类天然免疫球蛋白分子均含有四条异源性多肽链,其中,分子量较大的称为重链(heavy chain, H),而分子量较小的为轻链(light chain, L)。同一天然Ig 分子中的两条H链和两条L链的氨基酸组成完全相同。 1. 重链 分子量约为50~75kD,由450~550个氨基酸残基组成。各类免疫球蛋白重链恒定区的氨基酸组成和排列顺序不尽相同,因而其抗原性也不同。据此,可将免疫球蛋白分为5类(class)或5个同种型(isotype),即IgM、IgD、IgG、IgA和IgE,其相应的重链分别为μ链、δ链、γ链、α链和ε链。不同类的免疫球蛋白具有不同的特征,如链内和链间二硫键的数目和位置、连接寡糖的数量、结构域的数目以及铰链区的长度等均不完全相同。即使是同一类Ig其铰链区氨基酸组成和重链二硫键的数目、位置也不同,据此又可将同类Ig分为不同的亚类(subclass)。如人IgG可分为IgG1~IgG4;IgA可分为IgA1和IgA2。

d第四章抗体

第四章抗体 ?免疫术语 Ab(抗体,antibody):是免疫系统在抗原刺激下,由B淋巴细胞或记忆B细胞增殖分化成的浆细胞所产生的、可与相应抗原发生特异性结合的免疫球蛋白,主要分布在血清中,也分布于组织液、外分泌液及某些细胞膜表面,是介导体液免疫的重要效应分子。 Ig(免疫球蛋白,immunoglobulin):是指具有抗体活性或化学结构与抗体相似的球蛋白。HVR(高变区,hypervariable region):VH和VL各有3个区域的氨基酸组成和排列顺序高度可变,分别用HVR1 (CDR1)、HVR2 (CDR2)、HVR3 (CDR3)表示,共同组成抗体的抗原结合部位,决定着抗体的特异性,负责识别及结合抗原,从而发挥免疫效应。 又称CDR(互补决定区,complementarity determining region)。 调理作用(opsonization):细菌特异性的IgG(特别是IgG1和IgG3)以其Fab段与相应细菌的抗原表位结合,以其Fc段与巨噬细胞或中性粒细胞表面的IgG Fc受体(FcγR)结合,通过IgG的“桥联”作用,促进吞噬细胞对细菌的吞噬。 ADCC(抗体依赖的细胞介导的细胞毒作用,antibody-dependent cell-mediated cytotoxicity):抗体的Fab段结合病毒感染的细胞或肿瘤细胞表面的抗原表位,其Fc段与杀伤细胞(NK细胞表面、巨噬细胞等)表面的FcR结合,介导杀伤细胞直接杀伤靶细胞。 mAb(单克隆抗体,monoclonal antibody):由单一杂交瘤细胞产生,针对单一抗原表位的特异性抗体。 ?抗体的基本结构 抗体的基本结构是由两条完全相同的重链和两条完全相同的轻链通过二硫键连接的呈“Y”形的单体,每条肽链含2~5个结构域(功能区,约110个氨基酸),二级结构为“桶状”结构。(一)重链和轻链 ?重链(heavy chain,H):分子量约为50~75kD,由450-550个氨基酸残基组成。 按抗原性差异可分5类:α、γ、μ、δ、ε 相应抗体也分为5类:IgA、IgG、IgM、IgD、IgE 同一类抗体,据其铰链区的氨基酸组成及重链二硫键数目、位 置不同可分为不同的亚类。 IgA分IgA1和IgA2 IgG分IgG1~IgG4 ?轻链(light chain,L):分子量约为25kD,约由214个氨基酸残基组成。 分κ链和λ链两种,相应抗体分为κ、λ两型。λ型有λ1、λ2、λ3、 λ4四个亚型。 (二)可变区和恒定区 ?可变区:抗体分子中轻链和重链靠近N端氨基酸序列变化较大的区域。 (V区)分别占轻链的1/2和重链的1/4或1/5,分别称为VL和VH。 (variable region)高变区(HVR)或互补决定区(CDR)──

4第4章免疫球蛋白

第四章 免疫球蛋白 第一部分:学习习题 一、 填空题 1.免疫球蛋白分子是有两条相同的____和两条相同的____通过链____连接而成的四肽链结构。 2.根据免疫球蛋白重链抗原性不同,可将其分为IgA 、IgM 、 IgG 、IgE 、IgD 等五类,其相应的重链分别为___、___、___、___、___。 3.免疫球蛋白轻链可分为___型和___型。 4.用木瓜蛋白酶水解IgG 可得到两个相同的____片段和一个____片段,前者的抗原结合价为1;用胃蛋白酶水解IgG 则可获得一个抗原结合价为2的_____片段和无生物学活性的____片段。 二、 多选题 [A 型题] 1.抗体与抗原结合的部位: A.V H B. V L C. C H D.C L E. V H 和 V L 2.免疫球蛋白的高变区(HVR)位于 A.V H 和 C H B. V L 和V H C.Fc 段 D.V H 和C L E. C L 和C H 3.能与肥大细胞表面FcR 结合,并介导I 型超敏反应的Ig 是: A.IgA B. IgM C. IgG D.IgD E. IgE 4.血清中含量最高的Ig 是: A.IgA B. IgM C. IgG

D.IgD E. IgE 5.血清中含量最低的Ig是: A.IgA B. IgM C. IgG D.IgD E. IgE 6.与抗原结合后激活补体能力最强的Ig是: A.IgA B. IgM C. IgG D.IgD E. IgE 7.脐血中哪类Ig增高提示胎儿有宫内感染? A.IgA B. IgM C. IgG D.IgD E. IgE 8.在免疫应答过程中最早合成的Ig是: A.IgA B. IgM C. IgG D.IgD E. IgE 9.下面哪一类Ig参与粘膜局部抗感染: A.IgA B. IgM C. IgG D.IgD E. IgE 10.分子量最大的Ig是: A.IgA B. IgM C. IgG D.IgD E. IgE 11.ABO血型的天然抗体是: A.IgA类抗体 B. IgM类抗体 C. IgG类抗体 D.IgD类抗体 E. IgE类抗体 12.在种系发育过程中最早出现的Ig是: A.IgA类抗体 B. IgM类抗体 C. IgG类抗体

第四章 免疫球蛋白

第四章免疫球蛋白 一、填空题 1.免疫球蛋白分子是有两条相同的重链和两条相同的轻链通过间二硫键连接而成的四肽链结构。 2.根据免疫球蛋白重链抗原性不同,可将其分为IgA、IgM、IgG 、IgE 、IgD等五类,其相应的重链分别为α链、μ链、γ链、ε链、δ链。 3.免疫球蛋白轻链可分为κ型和λ型。 4.用木瓜蛋白酶水解IgG可得到两个相同的Fab片段和一个Fc片段,前者的抗原结合价为1;用胃蛋白酶水解IgG 则可获得一个抗原结合价为2的F(ab’)2片段和无生物学活性的PFc’片段。 二、多选题 [A型题] 1.抗体与抗原结合的部位: A.VH B.VL C.CH D.CL E.VH 和VL 2.免疫球蛋白的高变区(HVR)位于 A.VH和CH B.VL 和VH C.Fc段 D.VH 和CL E.CL和CH 3.能与肥大细胞表面FcR结合,并介导I型超敏反应的Ig是: A.IgA B.IgM C.IgG D.IgD E.IgE 4.血清中含量最高的Ig是: A.IgA B.IgM C.IgG D.IgD E.IgE 5.血清中含量最低的Ig是: A.IgA B.IgM C.IgG D.IgD E.IgE 6.与抗原结合后激活补体能力最强的Ig是: A.IgA B.IgM C.IgG D.IgD E.IgE 7.脐血中哪类Ig增高提示胎儿有宫内感染? A.IgA B.IgM

C.IgG D.IgD E.IgE 8.在免疫应答过程中最早合成的Ig是: A.IgA B.IgM C.IgG D.IgD E.IgE 9.下面哪一类Ig参与粘膜局部抗感染: A.IgA B.IgM C.IgG D.IgD E.IgE 10.分子量最大的Ig是: A.IgA B.IgM C.IgG D.IgD E.IgE 11.ABO血型的天然抗体是: A.IgA类抗体 B.IgM类抗体 C.IgG类抗体 D.IgD类抗体 E.IgE类抗体 12.在种系发育过程中最早出现的Ig是: A.IgA类抗体 B.IgM类抗体 C.IgG类抗体 D.IgD类抗体 E.IgE类抗体 13.新生儿从母乳中获得的Ig是: A.IgA类抗体 B.IgM类抗体 C.IgG类抗体 D.IgD类抗体 E.IgE类抗体 14.能引起I型超敏反应的Ig是: A.IgA类抗体 B.IgM类抗体 C.IgG类抗体 D.IgD类抗体 E.IgE类抗体 15.3—6个月婴儿易患呼吸道感染是因为粘膜表面哪一类Ig不足 A.IgA B.IgM C.IgG

免疫题目1-第4章免疫球蛋白

第四章免疫球蛋白 第一部分:学习习题 一、填空题 1.免疫球蛋白分子是有两条相同的____和两条相同的____通过链____连接而成的四肽链结构。 2.根据免疫球蛋白重链抗原性不同,可将其分为IgA、IgM、IgG 、IgE 、IgD等五类,其相应的重链分别为___、___、___、___、___。 3.免疫球蛋白轻链可分为___型和___型。 4.用木瓜蛋白酶水解IgG可得到两个相同的____片段和一个____片段,前者的抗原结合价为1;用胃蛋白酶水解IgG则可获得一个抗原结合价为2的_____片段和无生物学活性的____片段。 二、多选题 [A型题] 1.抗体与抗原结合的部位: ** B. VL C. CH ** E. VH 和VL 2.免疫球蛋白的高变区(HVR)位于 A.VH 和CH B. VL 和VH C.Fc段 ** 和CL E. CL和CH 3.能与肥大细胞表面FcR结合,并介导I型超敏反应的Ig是: ** B. IgM C. IgG D.IgD E. IgE 4.血清中含量最高的Ig是: ** B. IgM C. IgG ** E. IgE 5.血清中含量最低的Ig是: ** B. IgM C. IgG ** E. IgE 6.与抗原结合后激活补体能力最强的Ig是: A.IgA B. IgM C. IgG ** E. IgE 7.脐血中哪类Ig增高提示胎儿有宫内感染? ** B. IgM C. IgG ** E. IgE 8.在免疫应答过程中最早合成的Ig是: A.IgA B. IgM C. IgG ** E. IgE 9.下面哪一类Ig参与粘膜局部抗感染: ** B. IgM C. IgG D.IgD E. IgE 10.分子量最大的Ig是: ** B. IgM C. IgG ** E. IgE

第四章《抗体》练习题

第四章《抗体》练习题 一、单项选择题 1.抗体与抗原结合的结构域是················································() A、VH B、VL C、CH D、VH和VL 2.IgG与C1q结合的结构域是················································() A、CH1 B、CH2 C、CH3 D、VH和VL 3.IgM与C1q结合的结构域是················································() A、CH1 B、CH2 C、CH3 D、VH和VL 4.IgG与吞噬细胞或NK细胞表面FcγR结合的结构域是··························() A、CH1 B、CH2 C、CH3 D、VH和VL 5.血清中含量最高的Ig是···················································() A、IgA B、IgM C、IgG D、IgD 6.与抗原结合后激活补体能力最强的Ig是·····································() A、IgA B、IgM C、IgG D、IgD 7.能通过胎盘的Ig是·······················································() A、IgA B、IgG C、IgM D、IgE 8.脐血中含量增高提示胎儿有宫内感染的Ig是·································() A、IgA B、IgM C、IgG D、IgD 9.在初次感染病原微生物后,机体最早产生的抗体是·····························() A、IgA B、IgM C、IgG D、IgD 10.分子量最大的Ig是······················································() A、IgA B、IgM C、IgG D、IgD 11.新生儿从母乳中获得的抗体是·············································() A、IgA B、IgM C、IgG D、SIgA 12.产生抗体的细胞是·······················································() A、T 细胞 B、B细胞 C、浆细胞 D、NK细胞 13.sIgA的组成为··························································() A、二个IgA单体与一个J链 B、二个IgA单体与一个J链和一个分泌片 C、一个IgA单体与一个J链 D、一个IgA单体与一个J链和一个分泌片14.能与肥大细胞表面FcεR结合,介导Ⅰ型超敏反应的Ig是·······················() A、IgA B、IgM C、IgG D、IgE 15.天然ABO血型抗体属于··················································() A、IgA B、IgM C、IgG D、IgD 16.具有J链结构的Ig是·····················································()

04第四章 免疫球蛋白

第四章 免疫球蛋白 目的要求: 1.掌握抗体、免疫球蛋白和单克隆抗体概念 2.掌握免疫球蛋白的基本结构和抗体特异性的结构基础 3.掌握免疫球蛋白的功能 4.熟悉免疫球蛋白水解片段的结构及功能 5.熟悉五种免疫球蛋白的特性 6.了解免疫球蛋白的的辅助成分和异质性 教学时数:2学时 概 述 抗体(antibody, Ab):B细胞在抗原刺激下分化为浆细胞,产生能与相应抗原发生特异性结合的免疫球蛋白,称为抗体。 抗体活性存在血清蛋白α-γ区,主要存在γ区。 免疫球蛋白(immunoglobulin, I g):将具有抗体活性或化学结构与抗体相似的球蛋白统称为免疫球蛋白。 Ig根据存在的部位可分为两种:分泌型(sIg),具有抗体各种功能;膜型(mIg),构成B细胞膜上的抗原受体(BCR)。 第一节 免疫球蛋白的结构 一、免疫球蛋白的基本结构(图示) Ig分子的基本单体结构是由4条肽链构成的对称结构,包括两条相同的重链(H链)和两条相同的轻链(L链),彼此以二硫键连接而成。 1、重链和轻链: ⑴重链:450-550aa,据恒定区aa不同分:IgG、IgM、IgA、IgD、IgE 五类或同种型(isotype),对应的重链为:r μ α δ ε。 ⑵轻链:214aa,恒定区aa不同分:κ、λ两型 ⑶天然Ig单体结构中,两条重链同类,两条轻链同型。 2、可变区与恒定区 ⑴可变区(variable region,V区):位于Ig分子的N端、轻链1/2和重链1/4或1/5处;其氨基酸序列随Ig针对的抗原特异性变化而变化,是抗体与抗原特异性结合的部位。V区可进一步分为超变区(或者互补决定区)和骨架区。 * 超变区(hypervariable region, HVR):在VL和VH中,某些特定位置的氨基酸残基的排列顺序高度可变,此为HVR。轻、重链各有3个

相关文档
最新文档