沪科版八年级数学上册期中测试题
沪科版八年级上册数学期中考试试卷带答案

沪科版八年级上册数学期中考试试卷一、单选题1.下列式子中,表示y 是x 的正比例函数的是( )A .2x y =B .2y x =C .2y xD .y =【答案】A2.点P (3,-1)在平面直角坐标系中所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D3.将点P(–4,3)先向左平移2个单位长度,再向下平移2个单位长度后得到点P ',则点P '的坐标为( )A .(–2,5)B .(–6,1)C .(–6,5)D .(–2,1)【答案】B4.已知ABC 的三个内角的大小关系为A B C ∠-∠=∠,则这个三角形是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .无法确定【答案】B5.已知一次函数3y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A .()1,2-B .()1,2-C .()2,3D .()3,4【答案】B6.下列命题中,假命题是( )A .如果|a|=a ,则a≥0B .如果a 2=b 2,那么a =b 或a =﹣bC .如果ab >0,则a >0,b >0D .若a 3<0,则a 是一个负数【答案】C7.下列说法正确的是( )①三角形的角平分线是射线;①三角形的三条角平分线都在三角形内部;①三角形的一条中线把该三角形分成面积相等的两部分;①三角形的三条高都在三角形内部. A .①① B .①① C .①① D .①①【答案】B8.若一次函数3y kx =+(k 为常数且0k ≠)的图像经过点(-2,0),则关于x 的方程()530k x -+=的解为( )A .5x =-B .3x =-C .3x =D .5x =【答案】C9.如图,函数y=kx+b (k≠0)的图象经过点B (2,0),与函数y=2x 的图象交于点A ,则不等式0<kx+b <2x 的解集为( )A .12x <<B .2x >C .0x >D .01x <<【答案】A10.①ABC 的两条中线AD 、BE 交于点F ,连接CF ,若①ABC 的面积为24,则①ABF 的面积为( )A .10B .8C .6D .4【答案】B二、填空题11.函数y x 的取值范围是____________. 【答案】x≤4且x≠212.如果点P 在第二象限内,点P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为______.【答案】()3,4-13.若一次函数y=(2-m)x+m 的图像不经过第三象限,则m 的取值范围是________.【答案】m>214.如图,直线AB①CD ,OA①OB ,若①1=142°,则①2=____________度.【答案】5215.已知A 点()26,a a -+在一三象限夹角平分线上,则a 的值为___________.【答案】216.如图,E 为①ABC 的BC 边上一点,点D 在BA 的延长线上,DE 交AC 于点F ,①B =46°,①C =30°,①EFC =70°,则①D =______.【答案】34°17.我们把连接三角形两边中点的线段叫做三角形的中位线,已知三角形的任一条中位线都平行于第三边,并且等于第三边的一半.如图,在ABC 中,3BC =,将ABC 平移5个单位长度得到111A B C △,点P 、Q 分别是AB 、11A C 的中点,PQ 的最小值等于___.【答案】7218.将函数2y x b =+(b 为常数)的图象位于x 轴下方的部分沿x 轴翻折至其上方后,所得的折线是函数2y x b =+(b 为常数)的图象.若该图象与直线2y =的两个交点的横坐标都满足04x <<,则b 的取值范围为______.【答案】-6≤b≤-2三、解答题19.已知y -1与x 成正比例,且当x=-2时,y=5.(1)求y 与x 之间的函数关系式.(2)若点(m -1,3)在这个函数图象上,求m.【答案】(1) y=-2x+1;(2)m=0.【分析】(1)设y -1=kx ,把已知条件代入可求得k ,则可求得其函数关系式;(2)把点的坐标代入可得到关于m 的方程,可求得m 的值.【详解】解:设y -1=kx ,①x=-2时,y=5,①5-1=-2k ,解得k=-2,①y -1=-2x,即y=-2x+1;(2)①点(m -1,3)在这个函数的图象上,①-2(m -1)+1=3,解得m=0.20.如图,在ABC 中,D 、E 分别是边AB 、AC 上一点,将ABC 沿DE 折叠,使点A 落在边BC 上.若55A ∠=︒,求1234∠+∠+∠+∠四个角和的度数?【答案】235°【分析】依据三角形内角和定理,可得①ABC中,①B+①C=125°,即可得出①1+①2+①3+①4的度数.【详解】解:①①A=55°,①①ABC中,①B+①C=125°,又①①1+①2+①B=180°,①3+①4+①C=180°,①①1+①2+①3+①4=360°-(①B+①C)=360°-125°=235°.21.已知3m+n=1,且m≥n.(1)求m的取值范围(2)设y=3m+4n,求y的最大值【答案】(1)14m≥(2)74【分析】(1)把n用m表示,再代入m≥n即可求解;(2)先表示为y关于m的函数,再根据一次函数的性质即可求解.【详解】(1)①3m+n=1①n=-3m+1①m≥n①m≥-3m+1解得14 m≥(2)y=3m+4n=3m+4(-3m+1)=-9m+4①-9<0,①y随m的增大而减小,①当m=14时,y 的最大值为-9×14+4=7422.已知a ,b ,c 分别为ABC 的三边,且满足32a b c +=-,26a b c -=-.(1)求c 的取值范围;(2)若ABC 的周长为12,求c 的值.【答案】(1)2<c<6 (2)3.5【解析】(1)根据三角形任意两边之和大于第三边得出3c -2>c ,任意两边之差小于第三边得出|2c -6|<c ,列不等式组求解即可;(2)由①ABC 的周长为12,a+b=3c -2,4c -2=12,解方程得出答案即可.(1)①a ,b ,c 分别为①ABC 的三边,a+b=3c -2,a -b=2c -6,①3226c c c c ->⎧⎨-<⎩,解得:2<c<6.故c 的取值范围为2<c<6;(2)①①ABC 的周长为12,a+b=3c -2,①a+b+c=4c -2=12,解得c=3.5.故c 的值是3.5.23.已知y -4与x 成正比例,且当x=6时,y= —4.(1)求y 与x 的函数关系式(2)(1)中函数图象与x 轴,y 轴分别交于A ,B 两点,P 点在y 轴上,若S ①ABP =9,求P 点坐标.【答案】(1)443y x =-+;(2)P (0,﹣2)或P (0,10) 【分析】(1)根据正比例函数的定义设出函数解析式y -4=kx (k≠0),再把当x=6时,y=-4代入求出k 的值即可;(2)由(1)解析式可求出A 、B 两点的坐标,设点P 的坐标为(0,m )根据①ABP 的面积列方程求出m 的值即可;【详解】(1)①y -4与x 成正比例,①设y -4=kx (k≠0).把x=6,y=-4代入,得-4-4=6k ,解得,k=-43,则y -4=-43x ,①y 与x 的函数关系式为:y=-43x+4; (2)①P 点在y 轴上,①设P 点坐标为(0,m ),①函数图象与x 轴,y 轴分别交于A ,B 两点,①当x=0时,y=4,当y=0时,x=3,①A (3,0),B (0,4),①S ①ABP =124m -⨯3=9解得:m 1=10,m 2=-2,①P 点坐标为(0,10)或(0,-2)24.在平面直角坐标系中,①ABC 的三个顶点的位置如图所示,将①ABC 水平向左平移3个单位,再竖直向下平移2个单位.(1)读出①ABC 的三个顶点坐标;(2)请画出平移后的①A′B′C′,并直接写出点A /、B′、C′的坐标;(3)求平移以后的图形的面积 .【答案】(1) A (2,4)、B (1,1)、C (3,0);(2)见解析, (1,2)(2,1)(0,2)A B C ---'''-、、;(3)3.5 【分析】(1)直接根据平面直角坐标系写出各点坐标即可;(2)利用平移的性质得出对应点坐标,进而得出作出图形;(3)利用①ABC 所在矩形面积减去周围三角形面积进而得出答案.【详解】(1)A (2,4)、B (1,1)、C (3,0),(2)如图:()()()1,22,10,2A B C ---'-''、、;(3)S ①ABC =2×4-12×1×4-12×2×1-12×1×3=8-2-1-32 =72.25.如图P 为①ABC 内部一点,①BAC=70°,①BPC=120°,BD ,CE 分别平分①ABP ,①ACP ,BD 与CE 交于点F ,求①BFC 的度数.【答案】95°【分析】根据①BAC 的度数可求出①ABC 与①ACB 的度数的和,同理可求出①PBC 与①PCB 的和,进而求出①ABP 与①ACP 的和,根据角平分线可求出①FBP 与①FCP 的和,即可求出①FBC 与①FCB 的和,根据三角形内角和定理求出①BFC 的度数即可.【详解】①①BAC=70°,①①ABC+①ACB=110°,①①BPC=120°,①①PBC+①PCB=60°,①①ABP+①ACP=50°,①BD ,CE 分别平分①ABP 、①ACP ,①①FBP+①FCP=25°,①①FBC+①FCB=60°+25°=85°①①BFC=180°-85°=95°.【点睛】本题考查三角形内角和定理,三角形的三个内角的和等于180°,熟练掌握并灵活运用三角形内角和定理是解题关键.26.A 、B 两地相距60km ,甲从A 地去B 地,乙从B 地去A 地,图中1l 、2l 分别表示甲、乙两人到B 地的距离()km y 与甲出发时间()x h 的函数关系图象.(1)根据图象,求乙的行驶速度;(2)求出点A 的坐标,并解释交点A 的实际意义;(3)求甲出发多少时间,两人之间恰好相距5km ?【答案】(1)20km/h(2)点A 的坐标为(1.4,18),点A 的实际意义是在甲出发1.4小时时,甲乙两车相遇,此时距离B 地18km(3)当甲出发1.3h 或1.5h 时,两人之间的距离恰好相距5km【解析】(1)由图象得知乙从B 地去A 地共用3小时,从而求乙的速度;(2)根据函数图象中的数据可以求出点A 的坐标,并说出点A 的实际意义;(3)根据(1)中的函数解析式,可以列出相应的等式,从而可以求得甲出发多少时间,两人之间的距离恰好相距5km .(1)解:由图象可得,乙的行驶速度为:60÷(3.5-0.5)=20km/h ,(2)解:设l 1对应的函数解析式为y 1=k 1x+b 1,把(0,60)(2,0)代入得:1116020b k b =⎧⎨+=⎩ ,得1160-30b k =⎧⎨=⎩, 即l 1对应的函数解析式为y 1=-30x+60,设l 2对应的函数解析式为y 2=k 2x+b 2,把(0.5,0)(3.5,60)代入得:22220.503.560k b k b +=⎧⎨+=⎩,得22-1020b k =⎧⎨=⎩, 即l 2对应的函数解析式为y 2=20x -10,①联立30602010y x y x =-+⎧⎨=-⎩, 解得 1.418x y =⎧⎨=⎩ , 即点A 的坐标为(1.4,18),①点A 的实际意义是在甲出发1.4小时时,甲乙两车相遇,此时距离B 地18km ;(3)解:由题意得当125y y -=时(-30x+60)-(20x -10)=5,解得x=1.3 当215y y -=时,(20x -10)-(-30x+60)=5,解得x=1.5,答:当甲出发1.3h 或1.5h 时,两人之间的距离恰好相距5km ;。
沪科版八年级上册数学期中考试试题含答案

沪科版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案,每小题3分)1.在平面直角坐标系中,点(﹣1,m 2+1)一定在( )A .第一象限B .第二象限C .第三象限D .第四象限 2.若函数(4)5y k x =-+是一次函数,则k 应满足的条件为( )A .4k >B .4k <C .4k =D .4k ≠ 3.函数y =的自变量x 的取值范围是( ) A .3x >- B .3x ≥- C .3x ≠- D .3x ≤-4.若点(1, )A a -,(4,)B b -在一次函数53y x =--图象上,则a 与b 的大小关系是( ) A .a b < B .a b > C .a b = D .无法确定 5.关于函数31y x =-+,下列结论正确的是( )A .图象必经过点(3,1)-B .图象经过第一、二、三象限C .当13x >时,0y <D .y 随x 的增大而增大6.在平面直角坐标系中,过点(2,1)-的直线l 经过一二、四象限,若点(,2)m -,(0,)n 都在直线l 上,则下列判断正确的是( )A .0m <B .2m >C .1n <-D .0n =7.在平面直角坐标系中,点(,)P x y 在第一象限内,且8x y +=,点A 的坐标为(6,0).设OPA 的面积为S .S 与x 之间的函数关系式是( )A .8(08)S x x =-+<<B .324(08)S x x =-+<<C .312(04)S x x =-+<<D .18(08)3S x x =-+<< 8.广宇同学以每千克1.1元的价格从批发市场购进若干千克西瓜到周谷堆市场上销售,在销售了40千克之后,余下的打七五折全部售完.销售金额y (元)与售出西瓜的千克数x (千克)之间的关系如图所示.下列结论正确的是( )A .降价后西瓜的单价为2元/千克B .广宇一共进了50千克西瓜C .售完西瓜后广宇获得的总利润为44元D .降价前的单价比降价后的单价多0.6元9.如图,在ABC 中,E 是BC 上一点,3BC BE =,点F 是AC 的中点,若ABC Sa =,则ADF BDE S S -=( )A .12aB .13aC .16aD .112a 10.在平面直角坐标系中,点(),2A m 与点3,b n 关于y 轴对称,则( )A .3m =,2n =B .3m =-,2n =C .2m =,3n =D .2m =-,3n =二、填空题11.点Q 在第四象限内,并且到x 轴的距离为3,到y 轴的距离为5,则点Q 的坐标为________. 12.已知y+2与x -1成正比例关系,且当x=3时,y=2,则y=3时,x=_________. 13.已知BD 是ABC △的中线,7AB =,3BC =,且ABD △的周长为15,则BCD 的周长为________.14.已知n 为整数,若一个三角形的三边长分别是431n +,13n -,6n ,则所有满足条件的n 值的和为________.15.对于点(,)P a b ,点(,)Q c d ,如果a b c d -=-,那么点P 与点Q 就叫作等差点,例如:点(1,2)P ,点(1,0)Q -,因为12101-=--=-,则点P 与点Q 就是等差点,如图在矩形(长方形)GHMN 中,点(3,5)H ,某点(3,5)N --,MN y ⊥轴,HM x ⊥轴,点P 是直线y x b =+上的任意一点(点P 不在矩形的边上),若矩形GHMN 的边上存在两个点与点P 是等差点,则b 的取值范围为________.16.已知当23x -≤≤时,函数|2|y x m =-(其中m 为常量)的最小值为254m -,则m =________.三、解答题17.在平面直角坐标系中,有(2,2)A a -+,(3,4)B a -,(4,)C b b -三点.(1)当AB x 轴时,求A 、B 两点间的距离;(2)当CD x ⊥轴于点D ,且3CD =时,求点C 的坐标.18.已知一次函数y kx b =+的图象与直线21y x =-+平行,且经过点(1,5)-.(1)该一次函数的表达式为________________;(2)若点(,)N a b 在(1)中所求的函数的图象上,且6a b -=,求点N 的坐标.19.如图,直线1:24l y x =+与直线23:2l y ax =+相交于点(1,)A b -.(1)a =________;b =________.(2)经过点(,0)m 且垂直于x 轴的直线与直线1l ,2l 分别交于点M ,N ,若线段MN 长为5,求m 的值.20.2019年暑假期间,某学校计划租用8辆客车送280名师生参加社会实践活动,现有甲、乙两种客车,它们的载客量和租金如表,设租用甲种客车x 辆,租车总费用为w 元.(1)求出w (元)与x (辆)之间函数关系式,并直接写出....自变量x 的取值范围; (2)选择怎样的租车方案所需的费用最低?最低费用多少元?21.如图,一只蚂蚁在网格(每小格边长为1)上沿着网格线运动.它从格点(1,2)A 处出发去看望格点B 、C 、D 等处的蚂蚁,规定:向上向右走均为正,向下向左走均为负.如:从A 到B 记为:1,3A B →〈++〉,从B 到A 记为:1,3B A →〈--〉,其中第一个数表示左右方向,第二个数表示上下方向.(1)填空:图中____,____A C →<>,________,3C →<+>;(2)若这只蚂蚁从A 处去M 处的蚂蚁的行走路线依次为3,3〈++〉,2,1〈+-〉,3,3〈--〉,4,2〈++〉,则点M 的坐标为(________,________);(3)若图中另有两个格点Р、Q ,且3,2P A m n →<++>,1,2P Q m n →〈+-〉,则从Q 到A 记为________________.22.如图,在平面直角坐标系中,已知点A (﹣5,0),B (5,0),D (2,7),连接AD 交y 轴于C 点.(1)求C 点的坐标;(2)动点P 从B 点出发以每秒1个单位的速度沿BA 方向运动,同时动点Q 从C 点出发也以每秒1个单位的速度沿y 轴正半轴方向运动(当P 点运动到A 点时,两点都停止运动).设从出发起运动了x 秒.①请用含x 的代数式分别表示P ,Q 两点的坐标;②当x =2时,y 轴上是否存在一点E ,使得△AQE 的面积与△APQ 的面积相等?若存在,求E 的坐标;若不存在,说明理由.23.某校计划组织1920名师生研学,经过研究,决定租用当地租车公司一共40辆A、B两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息.(注:载客量指的是每辆客最多可载该校师生的人数)设学校租用A型号客车x辆,租车总费用为y元.(1)求y与x的函数关系式,并求出x的取值范围;(2)若要使租车总费用不超过25200元,一共有几种租车方案?哪种租车方案最省钱,并求此方案的租车费用.24.如图,平面直角坐标系中,已知点A(﹣3,3),B(﹣5,1),C(﹣2,0),P(a,b)是△ABC 的边AC上任意一点,△ABC经过平移后得到△A1B1C1,点P的对应点为P1(a+6,b﹣2 ).(1)直接写出点A1,B1,C1的坐标.(2)在图中画出△A1B1C1.(3)连接A A1,求△AOA1的面积.25.(1)如图①,△ABC中,点D,E在边BC上,AD平分∠BAC,AE⊥BC,∠B=35°,∠C=65°,求∠DAE的度数;(2)如图②,若把(1)中的条件“AE⊥BC“变成“F为DA延长线上一点,FE⊥BC”,其他条件不变,求∠F的度数.参考答案1.B【分析】应先判断出点的横纵坐标的符号,进而判断点所在的象限.【详解】解:因为点(﹣1,m2+1),横坐标﹣1<0,纵坐标m2+1一定大于0,所以满足点在第二象限的条件.故选:B.【点睛】本题主要考查平面直角坐标系里象限的坐标,熟练掌握每个象限的坐标符号特点是解题的关键.2.D【解析】【分析】根据一次函数的定义判断即可.【详解】∵(4)5y k x =-+是一次函数∴40k -≠∴4k ≠故选:D.【点睛】本题主要考查一次函数的定义,熟练掌握定义是关键.3.A【分析】根据根式和分母有意义进行判断即可.【详解】要使得该函数有意义分母不能为0且根号内不能为负∴30x +>解得:3x >-故选:A.【点睛】本题主要考查根式和分式的意义,熟练掌握判断有意义的条件是关键.4.A【分析】根据点,A B 在一次函数53y x =--图象上,可以求出,a b 的值,再进行比较即可.【详解】∵点(1, )A a -,(4,)B b -在一次函数53y x =--图象上∴(5)(1)32a =-⨯--=,(5)(4)317b =-⨯--=∴a b <故选:A.【点睛】本题主要考查一次函数图象上点的坐标特征,先代入求出,a b 的值是关键.5.C【分析】根据一次函数的图象和性质逐项判断即可.【详解】A 、将(3,1)-代入解析式,得,110≠,故本选项错误;B 、由于30,10-<>,则函数图象过一、二、四象限,故本选项错误;C 、因为函数与x 轴的交点横坐标是13,因为函数函数值y 随x 的增大而减小,所以交点的右边0y <,即当13x >时,0y <,故本选项正确; D 、由于函数中x 的系数小于0,所以函数值y 随x 的增大而减小,故本选项错误. 故选C.【点睛】本题主要考查一次函数的图象和性质,熟练掌握性质是关键.6.B【分析】根据直线l 经过点(2,1)-、(,2)m -、(0,)n 得出斜率k 的表达式,再根据经过一、二、四象限判断出k 的符号,由此即可得出结论.【详解】设一次函数的解析式为(0)y kx b k =+≠∵直线l 经过点(2,1)-、(,2)m -、(0,)n∴122k b mk b n b -=+⎧⎪-=+⎨⎪=⎩解得:12n k +=-或12k m=- ∵直线l 经过一二、四象限∴k 0< ∴102n +-<,102m <- 解得:1,2n m >->经判断B 选项正确.故选:B【点睛】本题主要考查点的坐标,一次函数的图象,一次函数的性质,待定系数法求一次函数解析式,求出斜率k 的表达式是关键.7.B【分析】表示出OA 和PB 的长,建立关于x 的三角形面积的表达式,即为一次函数表达式.【详解】如选图所示:由8x y +=得,8y x =-+即点(,)P x y 在8y x =-+的函数图象上,且在第一象限,过点P 做PB x ⊥轴,垂足为B 则116(8)32422OPA S OA PB x x ∆==⨯⨯-+=-+ ∵点(,)P x y 在第一象限内∴0,80x y x >=-+>∴08x <<∴324(08)S x x =-+<<故选B.【点睛】本题主要考查一次函数的关系式,根据三角形面积公式得出函数关系式是关键. 8.C【分析】先设售价为k 元,可得出函数解析式y kx =,把已知坐标代入解析式可得k 的值,根据余下的打七五折得出余下西瓜的售价,再根据图就能得出总利润和总共进的西瓜数量.【详解】设售价为k 元,根据题意可得出函数解析式y kx =根据图可知销售40千克时,销售金额为80元,∴8040k =解得:2k =,即降价前的售价是每千克2元,故A 选项错误;∵余下的打七五折全部售完∴余下的价格为:20.75 1.5⨯=(元)∴降价前的单价比降价后的单价多2 1.50.5-=(元),故D 选项错误;∴降价后销售的西瓜为:(11080) 1.520-÷=(千克)∴总共的西瓜是:402060+=(千克)∴广宇一共进了60千克西瓜,故B 选项错误;∴总的利润是:11060 1.144-⨯=(元),故C 选项正确.故选C.【点睛】本题主要考查了一次函数的图象及一次函数的应用,找出等量关系是关键.9.C【分析】 利用三角形面积公式,等高的三角形的面积比等于底边的比,则1133AEB ABC S S a ∆∆==,1122BAF ABC S S a ∆∆==,然后根据ADF BD B F AEB E A S S S S ∆∆-=-即可求解.【详解】∵3BC BE =, ∴1133AEB ABC S S a ∆∆==∵点F 是AC 的中点 ∴1122BAF ABC S S a ∆∆== ∴11(1)236ADF BDE ADF ABD BDE BAF AEB ABD S S S S S S S a S a a ∆∆=++--==-=-故选C.【点睛】本题主要考查三角形的面积,利用等高的三角形的面积比等于底边的比是解本题的关键. 10.B【分析】根据点关于y 轴对称,其横坐标互为相反数,纵坐标相同即可得到答案.【详解】A ,B 关于y 轴对称,则横坐标互为相反数,纵坐标相同,故选B【点睛】本题考查点坐标的轴对称,解题的关键熟练掌握点坐标的轴对称.-11.(5,3)【分析】已知点Q在第四象限内,那么横坐标大于0,纵坐标小于0,进而根据到坐标轴的距离判断具体坐标.【详解】∵点Q在第四象限内∴横坐标大于0,纵坐标小于0又∵点Q到x轴的距离为3,到y轴的距离为5-∴点Q的坐标为(5,3)-.故填:(5,3)【点睛】本题主要考查了点在直角坐标系内的坐标符号,点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.12.3.5【分析】利用正比例函数的定义,设y+2=k(x-1),再把已知对应值代入求出k得到y=2x-4,然后计算函数值为3对应的自变量的值即可.【详解】解:根据题意设y+2=k(x-1),把x=3,y=2代入得2+2=k(3-1),解得k=2,所以y+2=2(x-1),即y=2x-4,当y=3时,2x-3=4,解得x=3.5,故答案为:3.5.【点睛】本题考查了待定系数法求一次函数解析式,当求正比例函数时,只要一对x,y的值就可以,因为它只有一个待定系数;当求一次函数y=kx+b时,则需要两组x,y的值.13.11【分析】=,根据三角形的周长求出即可.根据三角形的中线得出AD CD【详解】∵BD 是ABC △的中线∴AD CD =∴ABD ∆和BCD ∆的周长差是:734AB BD AD BC BD CD AB BC ++-++=-=-=()()∵ABD ∆的周长为15∴BCD ∆的周长为15411-=故填:11.【点睛】本题主要考查对三角形的中线的理解和掌握,进行等量转换是解此题的关键.14.48【分析】根据三角形三边之间的关系,可得关于n 的不等式组,解不等式组即可.【详解】根据三角形三边之间的关系,当431n +最大时,可得:431613431613130n n n n n n n +-<-⎧⎪++>-⎨⎪->⎩ 解得:443n <当6n 最大时,可得:643113431613130n n n n n n n --<-⎧⎪++>-⎨⎪->⎩解得1318n << ∴44183n <<∵n 为整数∴n 为15,16,17∴所有满足条件的n 值的和为:15161748++=故填:48.【点睛】本题主要考查了三角形三边之间的关系、一元一次不等式组的应用,解题的关键是注意调整前后顺序,能求出n 的取值范围.15.88b -<<【分析】由题意得3535G M --(,),(,),根据等差点的定义可知,当直线y x b =+与矩形GHMN 有两个交点时,矩形GHMN 的边上存在两个点与点P 是等差点,求出直线经过点G 或M 时的b 的值即可判断.【详解】由题意得3535GM --(,),(,) 根据等差点的定义可知,当直线y x b =+与矩形GHMN 有两个交点时,矩形GHMN 的边上存在两个点与点P 是等差点当直线y x b =+经过点35G -(,)时,53b =-+,解得8b =当直线y x b =+经过点35M -(,)时,53b -=+,解得8b =-∴满足条件的b 的范围为:88b -<<故填:88b -<<.【点睛】本题主要考查一次函数图象与系数的关系,一次函数图象上点的坐标特征,矩形的性质,关键是要理解直线y x b =+与矩形GHMN 有两个交点时,矩形GHMN 的边上存在两个点与点P 是等差点.16.48【分析】根据绝对值的性质分情况去除绝对值,再结合23x -≤≤求出每种情况下y 的最小值,再求解m 即可.【详解】解:22222m x m x y x m m x m x ⎧⎛⎫-+≤ ⎪⎪⎪⎝⎭=-=⎨⎛⎫⎪-> ⎪⎪⎝⎭⎩; 当232m -≤<时,即当46m -≤<时,min 20254m y y m ==≠-,不符合题意; 当22m <-时,即当4m <-时, ∵23x -≤≤,∴min 22(2)254x y y m m =-==⨯--=-, 解得503m =,不符合4m <-. 当32m ≥时,即当6m ≥时, ∵23x -≤≤,∴min 3(2)3254x y y m m ===-⨯+=-,解得48m =,符合6m ≥﹔综合可得48m =故填:48.【点睛】本题主要考查一次函数、一元一次不等式、绝对值,进行分类讨论是关键.17.(1)1;(2)点C 的坐标为(1,3)-、(7,3)--【分析】(1)根据AB x 轴可知点,A B 的纵坐标一样解得a 的值,再求解B 的横坐标,最后即可求得两点间的距离;(2)根据CD x ⊥轴于点D ,且3CD =,即(4,)C b b -的纵坐标3b =±,即可得出点C 的坐标.【详解】解:(1)由AB x 轴可得,24a +=,即2a =,∴31a -=-,∴A 、B 两点间的距离为1(2)1---=.(2)由题意得||3b =,即3b =或3-,∴41b -=-或47b -=-,∴点C 的坐标为(1,3)-、(7,3)--【点睛】本题主要考查坐标于图形的性质,熟练掌握性质是关键.18.(1)23y x =-+;(2)(3,3)-【分析】(1)先根据两直线平行得出k 的值,再根据结果点(1,5)-求的表达式;(2)把点(,)N a b 代入(1)中的表达式得出关于,a b 的方程,再结合6a b -=解得,a b 的值即可.【详解】解:(1)∵一次函数y kx b =+的图象与直线21y x =-+平行∴2k =-,即2y x b =-+又∵一次函数y kx b =+的图象经过点(1,5)-∴5(2)(1)b =-⨯-+,解得:3b =∴一次函数的表达式为23y x =-+;(2)∵点(,)N a b 在该函数的图象上,∴23b a =-+,∵6a b -=,∴(23)6a a --+=,解得3a =,3b =-,∴点N 的坐标为(3,3)-【点睛】本题主要考查待定系数法求一次函数解析式,熟知两直线平行x 项的系数一样是解题的关键.19.(1)12-,2;(2)1m =或3m =-. 【分析】(1)先根据直线1l 的表达式和点A 的坐标解得b 的值,再把点A 的坐标代入直线2l 的表达式中解得a 的值;(2)根据题意判断出点M ,N 的横坐标即为m ,代入1l 和2l 的表达式中得出M y ,N y 关于m 的表达式,再根据MN 长为5求解即可.【详解】解:(1)把(1,)A b -代入24y x =+得:2(1)4b =⨯-+解得:2b =∴点A 的坐标为(1,2)-再把A (1,2)-代入3y ax 2=+中得:322a =-+ 解得:12a =- ∴213:22l y x =-+ 故填:1,22; (2)当x m =时,24M y m =+,1322N y m =-+, ∵5MN =,∴1324522m m ⎛⎫+--+= ⎪⎝⎭或1324522m m ⎛⎫+--+=- ⎪⎝⎭, 解得:1m =或3m =-.【点睛】本题主要考查一次函数的表达式及直线的位置关键,理解点M ,N 的横坐标即为m 是解题的关键.20.(1)502560w x =-+(04x ≤≤且x 为整数);(2)租用甲种客车4辆,租用乙种客车4辆,所需的费用最低,为2360元.【分析】(1)根据题意租金×客车数量=租车总费用列出方程即可,根据车辆不能超过计划数量8且要满足载客总数大于等于280人列出不等式求解即可;(2)根据(1)中得出的表达式判断w 随x 的增大而减小,再根据自变量x 的取值范围取最大值求解即可.【详解】解:(1)设租用甲种客车x 辆,则租用乙种客车(8)x -辆,由题意可得出270320(8)502560w x x x =+-=-+由题意可知:0803040(8)280x x x x ≥⎧⎪-≥⎨⎪+-≥⎩解得04x ≤≤且x 为整数∴自变量x 的取值范围为:04x ≤≤且x 为整数;(2)∵502560w x =-+中x 的系数500-<,∴w 随x 的增大而减小,∴当x 取最大值时即4x =时,w 的值最小,其最小值为50425602360w =-⨯+=元,∴租用甲种客车4辆,租用乙种客车4辆,所需的费用最低,为2360元.【点睛】本题主要考查一次函数和一元一次不等式的应用,充分理解题意找出等量关系是关键. 21.(1)+3,-1﹔D ,+1;(2)(7,3)(3)2,4Q A →〈++〉【分析】(1)根据题中的规定和观察网格判断;(2)分别根据纵横坐标进行计算即可;(3)根据规则P A →的坐标减去P Q →的坐标即为从Q 到A 的坐标.【详解】解:(1)根据规定:向上向右走均为正,向下向左走均为负观察网格可知:3,1A C →<+->﹔根据题意可知C D →为向上走了3格,进而可以判断向右走了1格∴1,3C D →<++>;(2)根据题意蚂蚁从A 处去M 处则点M 的横坐标为:132347++-+=则点M 的纵坐标为:231323+--+=∴点M 的坐标为(7,3);(3)∵3,2P A m n →<++>,1,2P Q m n →〈+-〉∴3(1)2m m +-+=,2(2)4n n +--=∴点Q 向右走2格,向上走4格到达点A2,4Q A →〈++〉【点睛】本题主要考查了新概念,利用定义得出各点变化规律是解题的关键.22.(1)C (0,5);(2)①P (5﹣x ,0),Q (0,5+x );②存在,点E 的坐标为:(0,18.2)或(0,﹣4.2),理由见解析【分析】(1)作DE⊥x轴,根据点的坐标求出AE、DE、AO,根据等腰直角三角形的性质解答即可;(2)①根据题意、结合图形解答;②分E在y轴的正半轴和E在y轴的负半轴两种情况,根据三角形的面积公式计算即可.【详解】(1)作DE⊥x轴,∵A(﹣5,0),D(2,7),∴AE=DE=7,AO=5,∵△CAO,△DAE为直角三角形,∴∠CAO=45°,∴△CAO是等腰直角三角形,∴CO=AO=5,∴C(0,5);(2)①P(5﹣x,0),Q(0,5+x);②存在.设E的坐标为(0,y)当x=2时,△APQ=(5+3)×7÷2=28,情况一:E在y轴的正半轴(y﹣7)×5÷2=28y=18.2∴E(0,18.2)情况二:E在y轴的负半轴(7﹣y)×5÷2=28∴E(0,﹣4.2)则点E的坐标为:(0,18.2)或(0,﹣4.2).【点睛】本题考查的是坐标与图形特征、直角三角形的性质,根据点的坐标确定线段的长度、掌握等腰直角三角形的性质是解题的关键,解答时,注意分情况讨论思想的灵活运用.23.(1)15≤ x <40且x为整数;(2)若要使租车总费用不超过25200元,一共有6种方案,当租用A型号客车15辆,B型号客车25辆时最省钱,此时租车总费用为24700元。
沪科版八年级上册数学期中考试试题带答案

沪科版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案,每小题3分)1.若点A (3,n )在x 轴上,则点B (n-2,n+1)在( )A .第一象限B .第二象限C .第三象限D .第四象限2.平面直角坐标系中,点P (-2,1)先向左平移1个单位,再向上平移2个单位,所得的点为Q ,则Q 的坐标为( )A .(-3,-1)B .(-1,-1)C .(-3,3)D .(-1,3)3.点A(-5, 1y ),B (-2, 2y )都在直线443y x =-+上,则1y 与2y 的大小关系为( ) A .1y =2yB .1y >2yC .1y <2yD .不能确定413x -在实数范围内有意义,则x 的取值范围是( ) A .2x ≤ B .3x = C .2x <且3x ≠ D .2x ≤且3x ≠ 5.函数36y x =-+中,若自变量x 增加2,则函数值y 就( )A .增加3B .减少3C .增加6D .减少66.现有3cm ,4cm ,7cm ,9cm 长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是( )A .1个B .2个C .3个D .4个7.在△ABC 中,∠A=30°,∠B=∠C ,则△ABC 是( )A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形8.若等腰三角形的一个外角是80°,则底角是( ).A .40°B .80°或50°C .100°D .100°或40° 9.已知△ABC 的两条高分别为4和12,第三条高也为整数,则第三条高所有可能值为( ) A .3和4 B .1和2 C .2和3 D .4和510.甲、乙两车从A 地出发,匀速驶向B 地.甲车以80km/h 的速度行驶1h 后,乙车才沿相同路线行驶.乙车先到达B 地并停留1h 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y (km )与乙车行驶时间x (h )之间的函数关系如图所示.下列说法:①乙车的速度是120km/h ;②m =160;③点H 的坐标是(7,80);④n =7.5.其中说法正确的是( )A.①②③B.①②④C.①③④D.①②③④11.下列选项中,给出的三条线段不能组成三角形的是()A.a+1,a+2,a+3 B.三边之比为2:3:4 C.30cm,8cm ,10cm D.3k ,4k ,5k 12.一次函数的图象过点(0,2),且随的增大而增大,则m=()A.-1 B.3 C.1 D.-1或3二、填空题13.点M(3,﹣1)到x轴距离是_____.14.命题“相等的两个角是内错角”的逆命题是______命题(填“真”或“假”).15.如图所示,点D.E.F分别在△ABC的三条边上,D为BC中点,CE=2AE,AD,BE,CF 交于一点G,若S△BGD=9,S△AGE=3,则S△ABC=_______16.如图,已知函数y=x-2和y=-2x+1的图象交于点P,根据图象可得方程组221x yx y-=⎧⎨+=⎩的解_______.三、解答题17.一次函数y =kx +b 的自变量x 的取值范围是-3≤x≤6,相应函数值的取值范围是-5≤y≤-2,求这个函数的解析式.18.已知()y k-1kx k =-是一次函数 (1)求k 的值(2)若点(3,a )在这个一次函数的图象上,求a 的值19.如图,在△ABC 中,∠A=12∠C =12∠ABC ,BD 是角平分线,求∠A 与∠ADB 的度数.20.已知直线26x y k -=-+ 和341x y k +=+,如果它们的交点在第三象限,求实数k 的取值范围.21.已知y -4与x 成正比例,且当x=6时,y= —4.(1)求y 与x 的函数关系式(2)(1)中函数图象与x 轴,y 轴分别交于A ,B 两点,P 点在y 轴上,若S △ABP =9,求P 点坐标.22.现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x 千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?23.如图P为△ABC内部一点,∠BAC=70°,∠BPC=120°,BD,CE分别平分∠ABP,∠ACP,BD与CE交于点F,求∠BFC的度数.24.如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一直线上.(1)求证:△BAD≌△CAE;(2)猜想BD,CE有何特殊位置关系,并说明理由.25.现从A,B向甲、乙两地运送蔬菜,A,B两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,从A到甲地运费50元/吨,到乙地30元/吨;从B地到甲运费60元/吨,到乙地45元/吨.(1)设A地到甲地运送蔬菜x吨,请完成下表:(2)设总运费为W元,请写出W与x的函数关系式(3)怎样调运蔬菜才能使运费最少?参考答案1.B【解析】由点在x轴的条件是纵坐标为0,得出点A(-2,n)的n=0,再代入求出点B的坐标及象限即可.【详解】∵点A(3,n)在x轴上,∴n=0,∴n-2=-2,n+1=1,∴点B坐标为(-2,1)∴点B在第二象限,故选B.【点睛】本题考查四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负,在x轴上的点的纵坐标为0,在y轴上的点的横坐标为0,熟练掌握相关知识是解题关键.2.C【分析】根据向上平移纵坐标加;向左平移横坐标减,求出平移后的点的坐标即可.【详解】∵点P(-2,1),∴先向左平移个单位长度,再向上平移2个单位长度后得到的点的坐标是(-2-1,1+2),即(-3,3),故选C.【点睛】本题考查了坐标与图形变化-平移,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.3.B【解析】【分析】先根据一次函数的解析式判断出函数的增减性,再根据两点横坐标的大小即可得出结论.∵k=43-<0,∴y随x的增大而减小.∵-5<-2,∴y1>y2.故选B.【点睛】本题考查的是一次函数图象上点的坐标特点,先根据题意判断出一次函数的增减性是解答此题的关键.4.A【分析】根据分式的分母不为零、二次根式的被开方数是非负数列出关于x的不等式组,然后求得x 的取值范围.【详解】解:根据题意,得2030xx解之得:2x≤,故选:A.【点睛】本题综合考查了分式有意义的条件、二次根式有意义的条件,解答该题时,需要注意分式的分母不为零这一条件.5.D【解析】【分析】当自变量x增加2时,原方程变为y=-3(x+2)+6=-3x;即可求得y的变化.【详解】∵自变量x增加2,∴y=-3(x+2)+6=-3x,∴函数值减少6,故选D.本题考查求函数值,当已知函数解析式时,求函数值就是求代数式的值.6.B【详解】四条木棒的所有组合:3,4,7和3,4,9和3,7,9和4,7,9,根据三角形两边之和大于第三边,两边之差小于第三边的构成条件,只有3,7,9和4,7,9能组成三角形.故选B.7.A【解析】【分析】根据三角形内角和定理求出∠B和∠C的度数,判断△ABC的形状即可.【详解】∵∠A=30°,∠A+∠B+∠C=180°,∴∠B+∠C=150°∵∠B=∠C,∴∠B=∠C=75°,∴△ABC是锐角三角形,故选A.【点睛】本题考查了三角形的内角和定理的应用,三角形的三个内角的和等于180°;熟练掌握三角形内角和定理是解题关键.8.A【解析】试题分析:若这个80度是等腰三角形底角的外角,则可算出两个底角都是100度,这和三角形内角和180度矛盾,此种情况舍去;所以80度是顶角的外角,则这个等腰三角形的两个底角相等,三角形的一个外角等于和它不相邻的内角和,所以两个底角都是80÷2=40度.故选A.考点:1.三角形内角和定理;2.三角形外角性质.9.D【解析】先设长度为4、12的高分别是a 、b 边上的,边c 上的高为h ,△ABC 的面积是S ,根据三角形面积公式,可求a=24S ;b=212S ;c=2S h,结合三角形三边的不等关系,可得关于h 的不等式,解不等式即可.【详解】设长度为4、12的高分别是a ,b 边上的,边c 上的高为h ,△ABC 的面积是S ,那么a=24S ;b=212S ;c=2S h∵a-b <c <a+b , ∴24S -212S <c <24S +212S , 即3S <2S h <23S , 解得3<h <6,∴h=4或h=5,故选D.【点睛】主要考查三角形三边关系;利用三角形面积的表示方法得到相关等式是解决本题的关键. 10.A【分析】根据乙追上甲的时间求出乙的速度可判断①,根据乙由相遇点到达B 点所用时间可确定m 的值,即可判断②,根据乙休息1h 甲所行驶的路程可判断③,由乙返回时,甲乙相距80km ,可求出两车相遇的时间即可判断④.【详解】由图象可知,乙出发时,甲乙相距80km ,2小时后,乙车追上甲.则说明乙每小时比甲快40km ,则乙的速度为120km/h .①正确;由图象第2﹣6小时,乙由相遇点到达B ,用时4小时,每小时比甲快40km ,则此时甲乙距离4×40=160km ,则m=160,②正确; 当乙在B 休息1h 时,甲前进80km ,则H 点坐标为(7,80),③正确;乙返回时,甲乙相距80km ,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.所以正确的有①②③,故选A.【点睛】本题考查通过分段函数图像解决问题,根据题意明确图像中的信息是解题关键.11.C【解析】【分析】根据三角形的三边关系即可判断.【详解】∵C选项8+10<30,所以不能构成三角形,故选C.【点睛】此题主要考查三角形的三边关系,解题的关键是熟知三角形两边的和大于第三边,三角形两边的差小于第三边.12.B【详解】∵一次函数y=mx+|m-1|的图象过点(0,2),∴|m-1|=2,∴m-1=2或m-1=-2,解得m=3或m=-1,∵y随x的增大而增大,∴m>0,∴m=3.故选B.13.1【分析】点到x轴的距离是该点纵坐标的绝对值,根据点坐标即可得到答案.【详解】解:M(3,﹣1)到x轴距离是1.故答案为:1.【点睛】此题考查点到坐标轴的距离,正确理解距离与点坐标的关系是解题的关键.14.假【解析】【分析】先写出原命题的逆命题,再判断其是真假命题即可.【详解】∵原命题的条件为:两个角相等,结论为:这两个角是内错角,∴逆命题为两个角是内错角,那么这两个角相等,此命题是假命题,故答案为:假【点睛】本题考查了互逆命题的知识和命题的真假判断,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.正确的命题叫真命题,错误的命题叫做假命题.15.36【解析】【分析】由于CE=2AE,结合三角形面积公式可得S△CGE=2S△AGE,由D是BC中点,可得到S△BGD=S△CGD,于是可得求S△ADC,根据S△ABC=2S△ADC可求得S△ABC.【详解】∵CE=2AE,∴S△CGE=2S△AGE=6,∵D是BC中点,∴S△BGD=S△CGD=9,S△ABC=2S△ADC∴S△ABC=2S△ADC=2(S△CGD+ S△CGE+ S△AGE)=2(9+6+3)=36.故答案为:36【点睛】本题考查了三角形的面积公式、三角形之间的面积加减计算.等底等高的三角形面积相等;面积相等、同高的三角形底相等.16.11x y =⎧⎨=-⎩ 【分析】根据一次函数交点的意义可知,交点的横坐标即为方程组的解x 的值,纵坐标即为方程组的解y 的值.【详解】解:∵由图象可知:函数y=x-2和y=-2x+1的图象的交点P 的坐标是(1,-1), 又∵由y=x-2,移项后得出x-y=2,由y=-2x+1,移项后得出2x+y=1,∴方程组221x y x y -=⎧⎨+=⎩的解是11x y =⎧⎨=-⎩ 【点睛】本题考查根据图像求方程组的解,掌握交点横纵坐标就是方程组的解中x 、y 的值是关键. 17.【解析】解:当k >0时,依题意知,解得1,{34.k b ==- 当k <0时,依题意知65,{32,k b k b +=--+=-解得1,{33,k b =-=- ∴这个函数的解析式为143y x =-或133y x =--. 18.(1)k=﹣1;(2)a=﹣5.【解析】【分析】(1)由一次函数的定义可知:k-1≠0且|k|=1,从而可求得k 的值即可;(2)把点(3,a )代入一次函数解析式求出a 的值即可.【详解】(1)∵()ky k-1x k =-是一次函数, ∴k =1,k-1≠0,解得:k=-1,∴此一次函数的解析式为y=-2x+1,(2)∵点(3,a)在这个一次函数的图象上,∴a=-2⨯3+1=-5.【点睛】本题主要考查的是一次函数的定义,依据一次函数的定义求得k的值是解题的关键. 19.∠A=36°,∠BDC=72°.【详解】试题分析:设∠A为x,根据已知可得∠C=∠ABC=2x,由三角形的内角和定理可得x+2x+2x=180°,解方程即可得∠A=36°.再由角平分线的性质及三角形的内角和定理即可求得∠BDC的度数.试题解析:解:设∠A为x,∵∠A=∠C=∠ABC,所以∠C=∠ABC=2x,∴x+2x+2x=180°解得,x=36°.即∠A=36°.又∵BD是角平分线,∠ABC=72°,∴∠DBC=36°,∴∠BDC=180°-∠DBC-∠C=72°.考点:三角形的内角和定理.20.k<﹣4【解析】【分析】根据已知直线x-2y=-k+6和直线x+3y=4k+1,解出交点坐标,根据交点在第三象限即可解出k的范围.【详解】由题可得:26341x y kx y k-=-+⎧⎨+=+⎩,解得:41x ky k=+⎧⎨=-⎩,∴两直线的交点坐标为(k+4,k-1),∵交点在第三象限,∴4010kk+<⎧⎨-<⎩,解得:k<-4.【点睛】本题考查了一次函数与一元一次不等式及解二元一次方程,先用k表示出交点坐标并列出不等式组是解题关键.21.(1)443y x=-+;(2)P(0,﹣2)或P(0,10)【解析】【分析】(1)根据正比例函数的定义设出函数解析式y-4=kx(k≠0),再把当x=6时,y=-4代入求出k的值即可;(2)由(1)解析式可求出A、B两点的坐标,设点P的坐标为(0,m)根据△ABP的面积列方程求出m的值即可;【详解】(1)∵y-4与x成正比例,∴设y-4=kx(k≠0).把x=6,y=-4代入,得-4-4=6k,解得,k=-43,则y-4=-43x,∴y与x的函数关系式为:y=-43x+4;(2)∵P点在y轴上,∴设P点坐标为(0,m),∵函数图象与x轴,y轴分别交于A,B两点,∴当x=0时,y=4,当y=0时,x=3,∴A(3,0),B(0,4),∴S△ABP=124m-⨯3=9解得:m1=10,m2=-2,∴P点坐标为(0,10)或(0,-2)【点睛】本题考查了一次函数图象上点的坐标特征,待定系数法求一次函数解析式.点在直线上,则它的坐标满足直线的解析式.22.答案见解析【详解】试题分析:(1)根据“甲公司的费用=起步价+超出重量×续重单价”可得出y甲关于x的函数关系式,根据“乙公司的费用=快件重量×单价+包装费用”即可得出y乙关于x的函数关系式;(2)分0<x≤1和x>1两种情况讨论,分别令y甲<y乙、y甲=y乙和y甲>y乙,解关于x的方程或不等式即可得出结论.试题解析:(1)由题意知:当0<x≤1时,y甲=22x;当1<x时,y甲=22+15(x﹣1)=15x+7.y乙=16x+3;∴22?(01){157?(1)x xyx x甲<<=+>,=163y x+乙;(2)①当0<x≤1时,令y甲<y乙,即22x<16x+3,解得:0<x<12;令y甲=y乙,即22x=16x+3,解得:x=12;令y甲>y乙,即22x>16x+3,解得:12<x≤1.②x>1时,令y甲<y乙,即15x+7<16x+3,解得:x>4;令y甲=y乙,即15x+7=16x+3,解得:x=4;令y甲>y乙,即15x+7>16x+3,解得:0<x<4.综上可知:当12<x<4时,选乙快递公司省钱;当x=4或x=12时,选甲、乙两家快递公司快递费一样多;当0<x<12或x>4时,选甲快递公司省钱.考点:一次函数的应用;分段函数;方案型.23.95°【解析】【分析】根据∠BAC 的度数可求出∠ABC 与∠ACB 的度数的和,同理可求出∠PBC 与∠PCB 的和,进而求出∠ABP 与∠ACP 的和,根据角平分线可求出∠FBP 与∠FCP 的和,即可求出∠FBC 与∠FCB 的和,根据三角形内角和定理求出∠BFC 的度数即可.【详解】∵∠BAC=70°,∴∠ABC+∠ACB=110°,∵∠BPC=120°,∴∠PBC+∠PCB=60°,∴∠ABP+∠ACP=50°,∵BD ,CE 分别平分∠ABP 、∠ACP ,∴∠FBP+∠FCP=25°,∴∠FBC+∠FCB=60°+25°=85°∴∠BFC=180°-85°=95°.【点睛】本题考查三角形内角和定理,三角形的三个内角的和等于180°,熟练掌握并灵活运用三角形内角和定理是解题关键.24.(1)证明见解析;(2)BD ⊥CE ,理由见解析.【分析】(1)要证△BAD ≌△CAE ,现有AB=AC ,AD=AE ,需它们的夹角∠BAD=∠CAE ,而由∠BAC=∠DAE=90°很易证得;(2)BD 、CE 有何特殊位置关系,从图形上可看出是垂直关系,可向这方面努力.要证BD ⊥CE ,需证∠BDC=90°,需证∠DBC+∠DCB =90°,可由直角三角形提供.【详解】(1)∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠EAD+∠CAD ,∴∠BAD=∠CAE ,在△BAD 和△CAE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△BAD≌△CAE(SAS);(2)BD⊥CE,理由如下:由(1)知,△BAD≌△CAE,∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,∴∠BDC=90°,即BD⊥CE.【点睛】本题考查了全等三角形的判定和性质;全等问题要注意找条件,有些条件需在图形中仔细观察,认真推敲方可.做题时,有时需要先猜后证.25.(1)见解析(2)W=5x+1275(3)当x最小为1时,W有最小值1280元【分析】(1)根据题意A,B两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,可得解.(2)根据从A到甲地运费50元/吨,到乙地30元/吨;从B地到甲运费60元/吨,到乙地45元/吨可列出总费用,从而可得出答案.(3)首先求出x的取值范围,再利用w与x之间的函数关系式,求出函数最值即可.【详解】解:(1)完成填表:(2)W=50x+30(14-x)+60(15-x)+45(x-1),整理得,W=5x+1275.(3)∵A,B到两地运送的蔬菜为非负数,∴x014x0{15x0x10≥-≥-≥-≥,解不等式组,得:1≤x≤14.在W=5x+1275中,W随x增大而增大,∴当x最小为1时,W有最小值1280元.∴当x=1时,A:x=1,14−x=13,B:15−x=14,x−1=0,即A向甲地运1吨,向乙地运13吨,B向甲地运14吨,向乙地运0吨才能使运费最少.。
沪科版八年级上册数学期中考试试卷及答案

沪科版八年级上册数学期中考试试题一、单选题1.将点P(0,5)向左平移2个单位后,得到对应点Q的坐标是()A.(﹣2,5)B.(2,5)C.(0,3)D.(0,7)2.点P在第二象限,并且到x轴的距离为1,到y轴的距离为3,那么点P的坐标为()A.(﹣1,3)B.(﹣1,﹣3)C.(﹣3,﹣1)D.(﹣3,1)3.若正比例函数y=kx的图象经过点(2,﹣1),则k的值为()A.12-B.12C.﹣2 D.24.已知三角形的两边长分别为3cm和8cm,则此三角形的第三边的长可能是()A.13cm B.6cm C.5cm D.4cm5.下列命题中,真命题是()A.如果|a|=a,则a>0 B.如果22a b=,那么a=bC.两点之间,直线最短D.对顶角相等6.数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y=ax+b,相交于点P ,根据图象可知,方程x+5=ax+b的解是()A.x=20 B.x=5 C.x=25 D.x=157.一次函数y=mx+n与y=mnx(mn≠0),在同一平面直角坐标系的图象是()A.B.C .D .8.已知三角形的三个外角的度数比为2:3:4,则它的最大内角的度数为( ) A .90° B .110° C .100° D .120° 9.直线y =2(a ﹣2)x +a 2﹣4经过原点,则a 的值是( ) A .﹣2 B .2 C .±2 D .无法确定10.在平面直角坐标系中,横坐标和纵坐标都是整数的点叫做整点,已知直线22y tx t =++(0t >)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则t 的取值范围是( ) A .122t ≤< B .112t <≤ C .12t <≤ D .122t ≤≤且1t ≠二、填空题 11.函数y =x 的取值范围是________. 12.已知直线y =2x +1经过P 1(3,y 1)、P 2(﹣2,y 2)两点,则y 1___y 2.(填“>”“<”或“=”) 13.若一个等腰三角形的两边长分别为4cm 和9cm ,则这个等腰三角形的周长是______cm . 14.已知k 为正整数,无论k 取何值,直线1:1l y kx k =++与直线2:(1)2l y k x k =+++都交于一个固定的点,这个点的坐标是_________;记直线1l 和2l 与x 轴围成的三角形面积为k S ,则1S =_____,123100S S S S ++++的值为______.15.直线l 1:y =x+1与直线l 2:y =mx+n 相交于点P (a ,2),则关于x 的不等式x+1≥mx+n 的解集为_____.三、解答题16.如图,在平面直角坐标系中,△ABC 三个顶点的坐标分别为A(0,3),B(-3,5),C(-4,1).把△ABC 向右平移2个单位,再向下平移3个单位得到△A 1B 1C 1. (1)请画出△A 1B 1C 1,并写出点A 1的坐标;(2)连接OC 、A 1A ,求四边形ACOA 1的面积.17.已知:如图,△ABC 中,AD 平分△BAC . (1)画出△ADC 中DC 边上的高AE .(2)若△B =30°,△ACB =110°,求△DAE 的度数.18.世界上大部分国家都使用摄氏温度(△),但美、英等国的天气预报仍然使用华氏温度(△)两种计量之间有如下对应:(1)这两种计量之间的关系式一次函数关系,请求出此一次函数解析式; (2)求出华氏0度时摄氏温度是多少度.19.如图,函数2y x =和4y ax =+的图像相交于点(,3)A m . (1)求,m a 的值;(2)根据图像,直接写出不等式24xax 的解集.20.k取何值时,直线y=2x+k+1与直线y=﹣x+3k的交点在第二象限.21.某经销商从市场得知如下信息:他计划用4万元资金一次性购进这两种品牌手表共100块,设该经销商购进A品牌手表x 块,这两种品牌手表全部销售完后获得利润为y元.(1)试写出y与x之间的函数关系式;(2)若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案;(3)选择哪种进货方案,该经销商可获利最大;最大利润是多少元.22.已知y-1与x成正比例,且当x=-2时,y=5.(1)求y与x之间的函数关系式.(2)若点(m-1,3)在这个函数图象上,求m.23.周末,小明骑自行车从家里出发到野外郊游.从家出发1小时后到达南亚所(景点),游玩一段时间后按原速前往湖光岩.小明离家1小时50分钟,妈妈驾车沿相同路线前往湖光岩,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.(1)求小明骑车的速度和在南亚所游玩的时间;(2)若妈妈在出发后25分钟时,刚好在湖光岩门口追上小明,求妈妈驾车的速度及CD所在直线的函数解析式.参考答案1.A【解析】【分析】根据平移变换的性质,向左平移2个单位,纵坐标不变,横坐标减2进行计算.【详解】解:△0﹣2=﹣2,△得到对应点Q的坐标是(﹣2,5).故选:A.【点睛】本题考查了平移变换的性质,熟记“左减右加,下减上加”是解题的关键.2.D【解析】【分析】应先判断出点P的横纵坐标的符号,进而根据到坐标轴的距离判断具体坐标.【详解】解:△点P在第二象限,△其横坐标是负数,纵坐标是正数,又△点到x轴的距离为1,到y轴的距离为3,△它的横坐标是﹣3,纵坐标是1,点P的坐标为(﹣3,1).故选D.【点睛】本题考查了点在第二象限内时点的坐标的符号以及点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.3.A【解析】【分析】得到关于k的一元一次方程,解之即可.把点(2,﹣1)代入正比例函数y kx【详解】解:把点(2,﹣1)代入正比例函数y kx =得: 21k =-,解得:12k =-,故选:A . 【点睛】本题考查了求正比例函数的解析式,熟悉相关性质,正确掌握代入法是解题的关键. 4.B 【解析】 【分析】利用三角形的三边关系即可求解. 【详解】解:第三边长x 的范围是:8383x -<<+,即5cm 11cm x <<, 故选:B . 【点睛】本题考查三角形的三边关系,掌握两边之和大于第三边,两边之差小于第三边是解题的关键. 5.D 【解析】 【分析】根据去绝对值定义对选项A 进行判断;根据平方性质对选项B 进行判断;根据两点之间线段最短性质对选项C 进行判断;根据对顶角的性质对选项D 进行判断. 【详解】解:A 、如果|a|=a ,则a≥0,所以A 选项为假命题;B 、如果22a b =,那么a =b 或a +b =0,所以B 选项为假命题;C 、两点之间线段最短,不是直线最短,所以C 选项为假命题;D 、对顶角相等,所以D 选项为真命题. 故选:D . 【点评】本题考查了命题与定理,掌握用推理证实命题及相关定理是解题关键. 6.A【解析】【分析】两直线的交点坐标为两直线解析式所组成的方程组的解.【详解】解:由图可知:直线y=x+5和直线y=ax+b交于点P(20,25),△方程x+5=ax+b的解为x=20.故选:A.【点睛】本题主要考查了一次函数与一元一次方程:任何一元一次方程都可以转化为ax+b=0 (a,b 为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.7.C【解析】【分析】由于m、n的符号不确定,故应先讨论m、n的符号,再根据一次函数的性质进行选择.【详解】解:(1)当m>0,n>0时,mn>0,一次函数y=mx+n的图象一、二、三象限,正比例函数y=mnx的图象过一、三象限,无符合项;(2)当m>0,n<0时,mn<0,一次函数y=mx+n的图象一、三、四象限,正比例函数y=mnx的图象过二、四象限,C选项符合;(3)当m<0,n<0时,mn>0,一次函数y=mx+n的图象二、三、四象限,正比例函数y=mnx的图象过一、三象限,无符合项;(4)当m<0,n>0时,mn<0,一次函数y=mx+n的图象一、二、四象限,正比例函数y=mnx的图象过二、四象限,无符合项.故选:C.【点睛】一次函数y=kx+b的图象有四种情况:△当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;△当k >0,b <0,函数y=kx+b 的图象经过第一、三、四象限; △当k <0,b >0时,函数y=kx+b 的图象经过第一、二、四象限; △当k <0,b <0时,函数y=kx+b 的图象经过第二、三、四象限. 掌握以上知识是解题的关键. 8.C 【解析】 【分析】根据三角形的外角和等于360︒列方程求三个外角的度数,确定最大的内角的度数即可. 【详解】解:设三个外角的度数分别为2k ,3k ,4k ,根据三角形外角和定理,可知234360k k k ︒+︒+︒=︒, 得40k =︒,所以最小的外角为280k =︒, 故最大的内角为18080100︒-︒=︒. 故选:C . 【点睛】本题考查的是三角形外角和定理及内角与外角的关系,解题的关键是根据题意列出方程求解. 9.C 【解析】 【分析】根据题意可知直线y =2(a ﹣2)x +a 2﹣4经过原点,根据横纵坐标为0,列方程求解即可. 【详解】解:△直线y =2(a ﹣2)x +a 2﹣4经过原点,横坐标为0,纵坐标为0, △a 2﹣4=0,解得2a =±, 故选:C . 【点评】题目主要考查了一次函数的图象和性质,理解题意将原点代入是解题关键. 10.D 【解析】 【分析】画出函数图象,利用图象可得t 的取值范围. 【详解】 △22y tx t =++, △当y=0时,x=22t--;当x=0时,y=2t+2, △直线22y tx t =++与x 轴的交点坐标为(22t--,0),与y 轴的交点坐标为(0,2t+2),△t>0, △2t+2>2,当t=12时,2t+2=3,此时22t--=-6,由图象知:直线22y tx t =++(0t >)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,如图1, 当t=2时,2t+2=6,此时22t--=-3,由图象知:直线22y tx t =++(0t >)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,如图2, 当t=1时,2t+2=4,22t--=-4,由图象知:直线22y tx t =++(0t >)与两坐标轴围成的三角形区域(不含边界)中有且只有三个整点,如图3, △122t ≤≤且1t ≠, 故选:D.【点睛】此题考查一次函数的图象的性质,一次函数图象与坐标轴交点坐标,根据t 的值正确画出图象理解题意是解题的关键. 11.1x > 【解析】【详解】分析:一般地从两个角度考虑:分式的分母不为0;偶次根式被开方数大于或等于0;当一个式子中同时出现这两点时,应该是取让两个条件都满足的公共部分.解答:解:根据题意得到:x-1>0,解得x>1.故答案为x>1.点评:本题考查了函数式有意义的x的取值范围.判断一个式子是否有意义,应考虑分母上若有字母,字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数.易错易混点:学生易对二次根式的非负性和分母不等于0混淆.12.>【解析】【分析】k>时,y随x的增大而增大解答即可.根据一次函数的性质,当0【详解】k=>,解:△一次函数y=2x+1中20△y随x的增大而增大,△3>2,△y1>y2.故答案为:>.【点评】题目主要考查了一次函数的性质,牢记一次函数的性质,“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.13.22【解析】【分析】分别从等腰三角形的腰为4cm和9cm两种情况讨论,结合三角形三边关系分析,再计算出周长即可.【详解】解:当4cm为腰长时,三角形三边为4cm、4cm和9cm,△4+4<9,所以不构成三角形,舍去;当9cm 为腰长时,三角形三边为9cm 、9cm 和4cm ,△9+4>9,所以可以构成三角形,周长为9+9+4=22cm ,故答案为:22.【点睛】本题考查了等腰三角形的性质与三角形三边关系.解题的关键是分情况讨论,再根据三角形三边关系判断能否组成三角形.14. ()1,1-1450101 【解析】【分析】联立直线1l 和2l 成方程组,通过解方程组,即可得到交点坐标;分别表示出直线1l 和2l 与x 轴的交点,求得交点坐标即可得到三角形的边长与高,根据三角形面积公式进行列式并化简,即可得到直线1l 和2l 与x 轴围成的三角形面积为k S 的表达式,从而可得到1S 和123100S S S S ++++,再依据分数的运算方法即可得解. 【详解】解:联立直线1:1l y kx k =++与直线2:(1)2l y k x k =+++成方程组,1(1)2y kx k y k x k =++⎧⎨=+++⎩, 解得11x y =-⎧⎨=⎩, △这两条直线都交于一个固定的点,这个点的坐标是()1,1-;△直线1:1l y kx k =++与x 轴的交点为1,0k k +⎛⎫- ⎪⎝⎭, 直线2:(1)2l y k x k =+++与x 轴的交点为2,01k k +⎛⎫- ⎪+⎝⎭, △12111112211k k k k k k S k ++--+⎛⎫=⨯⨯= ⎪⎝⎭+, △114S =,12310011111111223341001011111111111223341001112222011110150,1011212S S S S -----+-⎛⎫⎛⎫⎛⎫⎛⎫=++ ⎪ ⎪ ⎪+-+++++++ ⎪⎝⎭⎝-⎭⎝⎭⎝⎭⎛⎫= ⎪⎝⎭⎛⎫= ⎪⎝⎭=+- 故答案为:()1,1-;14;50101【点睛】本题考查了一次函数y kx b =+(k≠0,b 为常数)的图象与两坐标轴的交点坐标特点,与x 轴的交点的纵坐标为0,与y 轴的交点的横坐标为0;也考查了坐标与线段的关系、三角形的面积公式以及分数的特殊运算方法.解题的关键是熟练掌握一次函数y kx b =+(k≠0,b 为常数)的图象与性质,能灵活运用分数的特殊运算方法.15.x≥1【解析】【分析】将P(a ,2)代入直线l 1:y =x+1中求出a =1,然后再根据图像越在上方,其对应的函数值越大即可求解.【详解】解:将点P(a ,2)坐标代入直线y =x+1,得a =1,从图中直接看出,在P 点右侧时,直线l 1:y =x+1在直线l 2:y =mx+n 的上方, 即当x≥1时,x+1≥mx+n ,故答案为:x≥1.16.(1)A 1 (2,0);(2)9.【详解】分析:(1)利用平移的性质得出对应点位置,进而得出答案;(2)利用四边形ACOA 1的面积为:1AOC AOA SS +,进而得出答案.详解:(1)如图所示:A 1(2,0).故答案为(2,0);(2)四边形ACOA 1的面积为:S△AOC+S△AOA1=12AO×4+12AO×A1O=12×3×4+12×2×3=9.点睛:本题主要考查了平移变换以及三角形面积求法,根据题意得出对应点位置是解题的关键.17.(1)见解析;(2)40°【分析】(1)利用三角形高线的作法进而得出AE即可;(2)利用三角形内角和定理得出△BAC的度数,再利用角平分线的性质得出△DAC的度数,进而得出△CAE的度数,即可得出答案.【详解】解:(1)如图所示:AE即为所求;(2)△△B=30°,△ACB=110°,△△ECA=70°,△BAC=40°,△AD平分△BAC,△△BAD=△DAC=20°,△△E=90°,△ECA=70°,△△EAC=20°,△△DAE=20°+20°=40°.【点睛】此题主要考查了复杂作图以及角平分线的性质以及三角形内角和定理等知识,得出△DAC 的度数是解题关键.18.(1)y=1.8x+32;(2)﹣17.8△【解析】【分析】(1)设一次函数的解析式为y=kx+b,由待定系数法求出其解即可;(2)当y=0时代入(1)的解析式求出其解即可.【详解】解:(1)设一次函数的解析式为y=kx+b,由题意,得32 5010bk b=⎧⎨=+⎩,解得:1.832kb=⎧⎨=⎩,△y=1.8x+32.答:一次函数表达式为y=1.8x+32;(2)当y=0时,1.8x+32=0,解得:x=﹣1609≈﹣17.8.答:华氏0度时摄氏是﹣17.8△;【点睛】本题考查了待定系数法求一次函数的解析式的运用,由函数值求自变量的值的运用,解答时求出函数的解析式是关键.19.(1)m=32,a=23-;(2)x>32.【解析】【分析】(1)由题意首先把A(m,3)代入y=2x,求得m的值,然后利用待定系数法求出a的值,(2)根据题意以交点为分界,结合图象写出不等式2x>ax+4的解集即可.【详解】解:(1)把(m,3)代入y=2x得,2m=3,解得m=32,△点A的坐标为(32,3),△函数y=ax+4的图象经过点A,△32a+4=3,解得:a=23 -;(2)由图象得,不等式2x>ax+4的解集为x>32.【点睛】本题主要考查一次函数与一元一次不等式,解题的关键是求出A点坐标利用数形结合思维分析.20.﹣17<k<12【解析】【分析】首先求出方程组213y x ky x k=++⎧⎨=-+⎩的解,然后根据第二象限内点的坐标特征,列出关于k的不等式组,从而得出k的取值范围.【详解】解:解方程组213y x ky x k=++⎧⎨=-+⎩,得213713kxky-⎧=⎪⎪⎨+⎪=⎪⎩,△交点在第二象限,△213713kk-⎧⎪⎪⎨+⎪⎪⎩<>,解得:﹣17<k<12.故k的取值范围是:﹣17<k<12.【点睛】本题主要考查了一次函数与方程组的关系及第二象限内点的坐标特征,难度适中,关键掌握两个一次函数图象的交点坐标就是对应的二元一次方程组的解.21.(1)y=140x+6000;(2)三种,答案见解析;(3)选择方案△进货时,经销商可获利最大,最大利润是13000元.【解析】【分析】(1)根据利润y=(A售价﹣A进价)x+(B售价﹣B进价)×(100﹣x)列式整理即可;(2)全部销售后利润不少于1.26万元得到一元一次不等式组,求出满足题意的x的正整数值即可;(3)利用y与x的函数关系式的增减性来选择哪种方案获利最大,并求此时的最大利润即可.【详解】解:(1)y=(900﹣700)x+(160﹣100)×(100﹣x)=140x+6000.由700x+100(100﹣x)≤40000得x≤50.△y与x之间的函数关系式为y=140x+6000(x≤50)(2)令y≥12600,即140x+6000≥12600,解得x≥47.1.又△x≤50,△经销商有以下三种进货方案:(3)△140>0,△y 随x 的增大而增大.△x=50时y 取得最大值.又△140×50+6000=13000,△选择方案△进货时,经销商可获利最大,最大利润是13000元.【点睛】本题考查由实际问题列函数关系式;一元一次不等式的应用;一次函数的应用. 22.(1) y=-2x+1;(2)m=0.【解析】【分析】(1)设y -1=kx ,把已知条件代入可求得k ,则可求得其函数关系式;(2)把点的坐标代入可得到关于m 的方程,可求得m 的值.【详解】解:设y -1=kx ,△x=-2时,y=5,△5-1=-2k ,解得k=-2,△y -1=-2x,即y=-2x+1;(2)△点(m -1,3)在这个函数的图象上,△-2(m -1)+1=3,解得m=0.【点睛】本题主要考查待定系数法求函数解析式,掌握待定系数法的应用步骤是解题的关键. 23.(1)小明在南亚所游玩的时间为1(h ).(2)妈妈驾车的速度为60(km/ h ).CD 所在直线的函数解析式为:60110y x =-.【解析】【分析】(1)根据图象,小明1小时骑车20 km ,从而由路程、时间和速度的关系求出小明骑车的速度.图象中线段AB 表明小明游玩的时间段.(2)求出点C 、D 的坐标,根据待定系数法求解.【详解】解:(1)由图象知,小明1小时骑车20 km ,△小明骑车的速度为:20201=(km/ h ). 图象中线段AB 表明小明游玩的时间段,△小明在南亚所游玩的时间为:211-=(h ).(2)由题意和图象得,小明从南亚所出发到湖光岩门口所用的时间为:502511260604+-=(h ), △从南亚所出发到湖光岩门口的路程为:12054⨯=(km ).△从家到湖光岩门口的路程为:20525+=(km ).△妈妈驾车的速度为:25256060÷=(km/ h ).设CD 所在直线的函数解析式为:y kx b =+, 由题意知,点911C ,25,D ,046⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭, △9254{1106k b k b +=+=,解得:60{110k b ==-.△CD 所在直线的函数解析式为:60110y x =-.。
沪科版八年级上册数学期中考试试卷含答案

沪科版八年级上册数学期中考试试题一、单选题1.点P(0,3)在( )A .x 轴的正半轴上B .x 的负半轴上C .y 轴的正半轴上D .y 轴的负半轴上 2.如图的棋盘中,若“士”的坐标为(1,-2),“相””的坐标为(4,-2),则“炮”的坐标为( )A .(2,1)B .(-1,1)C .(-1,2)D .(1,-2) 3.如图,直尺经过一副三角尺中的一块三角板DCB 的顶点B ,若∠C =30°,∠ABC =20°,则∠DEF 度数为( )A .25°B .40°C .50°D .80°4.在平面直角坐标系中,点(),1a a -不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限 5.一次函数y 1=ax +b 与一次函数y 2=bx -a 在同一平面直角坐标系中的图象大致是() A . B . C . D . 6.已知等腰ABC ∆的两边长分别为2和5,则等腰ABC ∆的周长为( )A .9B .12C .9或12D .无法确定7.满足下列条件的ABC 中,不是直角三角形的是( )A .ABC ∠-∠=∠ B .::3:4:7A B C ∠∠∠=C .23A B C ∠=∠=∠D .9A ∠=︒,81B ∠=︒8.已知点(),A a b 位于第二象限,并且37b a ≤+,a ,b 均为整数,则满足条件的点A 个数有( )A .4个B .5个C .6个D .7个9.某一次函数的图象经过点(1,2),且y 随x 的增大而减小,则这个函数的表达式可能是( )A .24y x =+B .31y x =-C .31y x =-+D .24y x =-+ 10.如图,在ABC 中,E 是BC 上一点,3BC BE =,点F 是AC 的中点,若ABC Sa =,则ADF BDE S S -=( )A .12a B .13a C .16a D .112a 二、填空题11.若直线6y kx =-与直线12x y +=没有交点,则k =_____. 12.已知一次函数y =(1+m )x -1+m 的图象上有两点A (0,y 1)、B (1,y 2),其中y 1>y 2,那么m 的取值范围是_______________13.如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=_______.14.如图,在∠ABC 中,∠A =m°,∠ABC 和∠ACD 的平分线交于点A 1,得∠A 1,∠A 1BC 和∠A 1CD 的平分线交于点A 2,得∠A 2,…,∠A 2020BC 和∠A 2020CD 的平分线交于点A 2021,则∠A 2021=___________度.三、解答题15.已知关于x 的正比例函数()11y k x k =-++,求这个正比例函数的解析式.16.如图,四边形ABCD 各顶点的坐标分别为()3,4A --、()0,3B -、()1,1C --、()3,2D --.画出将四边形ABCD 先向右平移4个单位长度,再向上平移3个单位长度得到的四边形A B C D '''',并写出点C '的坐标.17.在平面直角坐标系中,点M 的坐标为(a ,-2a ),将点M 向左平移2个单位,再向上平移1个单位后得到点N ,当点N 在第三象限时,求a 的取值范围18.在给出的网格中画出一次函数23y x =-的图象,并结合图象求:(1)方程230x -=的解;(2)不等式230x ->的解集;(3)不等式1235x -<-<的解集.19.如图,在平面直角坐标系中,A(-1,-2)、B(-2,-4)、C(-4,-1),∠ABC 中任意一点P(x0,y0)经平移后对应点为P1(x0+1,y0+2),将∠ABC作同样的平移得到∠A1B1C1;(1)请画出∠∠A1B1C1并写出点C1的坐标;(2)求∠∠A1B1C1的面积;(3)若点P在y轴上,且∠A1B1P的面积是1,请直接写出点P的坐标;20.如图,已知一次函数y=kx+b的图象经过两点A和B,A(-2,-1),B(1,3),并且交y轴于点D.(1)求该一次函数的解析式和点D坐标;(2)求∠AOB的面积.21.如图,在∠ABC 中,AB =AC ,DE∠AB ,DF∠AC ,BG∠AC ,垂足分别为点E ,F ,G.试说明:DE +DF =BG.22.如图,一只蚂蚁在网格(每小格边长为1)上沿着网格线运动.它从格点(1,2)A 处出发去看望格点B 、C 、D 等处的蚂蚁,规定:向上向右走均为正,向下向左走均为负.如:从A 到B 记为:1,3A B →〈++〉,从B 到A 记为:1,3B A →〈--〉,其中第一个数表示左右方向,第二个数表示上下方向.(1)填空:图中____,____A C →<>,________,3C →<+>;(2)若这只蚂蚁从A 处去M 处的蚂蚁的行走路线依次为3,3〈++〉,2,1〈+-〉,3,3〈--〉,4,2〈++〉,则点M 的坐标为(________,________);(3)若图中另有两个格点Р、Q ,且3,2P A m n →<++>,1,2P Q m n →〈+-〉,则从Q 到A 记为________________.23.某商店销售10台A 型和20台B 型电脑的利润为4000元,销售20台A 型和10台B 型电脑的利润为3500元.(1)求每台A 型电脑和B 型电脑的销售利润各多少元?(2)该商店计划一次购进两种型号的电脑共100台,其中B 型电脑的进货量不超过A 型电脑的2倍,设购进A 型电脑a 台,这100台电脑的销售总利润为w 元.∠求w 关于a 的函数关系式;∠该商店购进A 型、B 型电脑各多少台,才能使销售总利润最大?24.甲、乙两人驾车都从Р地出发,沿一条笔直的公路匀速前往Q 地,乙先出发一段时间后甲再出发,甲、乙两人到达Q 地后均停止,已知P 、Q 两地相距200 km ,设乙行驶的时间为t (h ),甲、乙两人之间的距离为y (km ),表示y 与t 函数关系的部分图象如图所示.请解决以下问题:(1)由图象可知,甲比乙迟出发________h .图中线段BC 所在直线的函数解析式为________________;(2)设甲的速度为1km/h v ,求出1v 的值;(3)根据题目信息补全函数图象(不需要写出分析过程,但必须标明关键点的坐标);并直.接写出...当甲、乙两人相距32 km 时t 的值.参考答案1.C【解析】【分析】根据坐标轴上的点的坐标的特点解答.【详解】横坐标为0,说明点在y 轴上,又纵坐标大于0,说明点在y 轴的正半轴上. 故选C【点睛】本题考查了点的坐标的性质,熟练掌握平面直角坐标系各个象限内,坐标轴上的点的特征是解题的关键.2.B【解析】【分析】“炮”的坐标可以看作“士”向左移动2个单位,再向上移动3个单位得到,据此求解即可.【详解】 解: “士”的位置坐标为(1,2)-,∴由图形可知,“炮”的横坐标是“士”向左移动2个单位即121-=-,纵坐标为“士”向上移动3个单位得到即231-+=,故“炮”的坐标是(1,1)-.故选:B .【点睛】本题考查了点的位置的确定,另一种解题思路为:可以通过已知“士”,“相”的坐标确定原点的位置,再确定“炮”的坐标.3.C【解析】【分析】依据三角形外角性质,即可得到∠BAD ,再根据平行线的性质,即可得到∠DEF 的度数.【详解】解:30C ∠=︒,20ABC ∠=︒,50BAD C ABC ∴∠=∠+∠=︒,//EF AB ,50DEF BAD ∴∠=∠=︒,故选C .【点睛】本题主要考查了平行线的性质和三角形外角的性质,解题时注意:两直线平行,同位角相等. 4.B【解析】【分析】分别讨论当1a >时,当01a <<时和0a <时,P 点所在的象限即可得到答案.【详解】解:∠ 当1a >时,则0a >,10a ->,∠此时P 在第一象限;∠当01a <<时,则0a >,10a -<,∠此时P 在第四象限;∠当0a <时,则0a <,10a -<,∠此时P 在第三象限;∠当0a =时,则0a =,11a -=-,∠此时P 在y 轴上;∠当1a =时,则1a =,10a -=,∠此时P 在x 轴上;∠综上所述,P 不可能在第二象限,故选B .【点睛】本题主要考查了点所在的象限,解题的关键在于能够熟练掌握每个象限点的坐标特征.5.D【解析】【分析】根据函数图象,确定a ,b 的正负,看看是否矛盾即可.【详解】解:A、由y1的图象可知,a>0,b>0;由y2的图象可知,b<0,﹣a>0,即a<0,两结论矛盾,故不符合题意;B、由y1的图象可知,a>0,b<0;由y2的图象可知,b<0,﹣a>0,即a<0,两结论矛盾,故不符合题意;C、由y1的图象可知,a<0,b<0;由y2的图象可知,b<0,﹣a<0,即a>0,两结论相矛盾,故不符合题意;D、由y1的图象可知,a>0,b>0;由y2的图象可知,b>0,﹣a<0,即a>0,两结论符合,故符合题意.故选:D.【点睛】此题主要考查了一次函数的图象性质,解题关键是明确比例系数和常数项与图象位置的关系.6.B【解析】【分析】题目给出等腰三角形有两条边长为2和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】当2是腰时,2,2,5不能组成三角形,应舍去;当5是腰时,5,5,2能够组成三角形.∠三角形的周长为12.故选B.【点睛】本题考查等腰三角形的性质及三角形三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.7.C【解析】【分析】依据三角形内角和定理,求得三角形的最大角是否等于90 ,进而得出结论.【详解】解:在ABC 中,++=180A B C ∠∠∠︒,A .ABC ∠-∠=∠,90A B C ∴∠=∠+∠=︒,∴该三角形是直角三角形;B .::3:4:7A BC ∠∠∠=,71809014C ∴∠=︒⨯=︒,∴该三角形是直角三角形; C .23A B C ∠=∠=∠,61809011A ∴∠=︒⨯>︒,∴该三角形是钝角三角形; D .9A ∠=︒,81B ∠=︒,90C ∴∠=︒,∴该三角形是直角三角形;故选:C .【点睛】本题考查了三角形内角和定理.解题的关键是灵活利用三角形内角和定理进行计算. 8.B【解析】【分析】根据第二象限的点的特点可知00a b <,>,即可得377a +<,370a +>,计算可得703a -<<;a ,b 均为整数,所以2a =-或1a =-;据此分别可求出A 点的坐标,即可得本题答案.【详解】解:∠点(),A a b 位于第二象限,∠00a b <,>,∠377a +<,370a +>, ∠73a -> ∠703a -<<, ∠a ,b 均为整数,∠2a =-或1a =-,当2a =-时,371b a ≤+=,()2,1A -;当1a =-时,374b a ≤+=,()1,1A -或()1,2A -或()1,3A -或()1,4A -;综上所述,满足条件的点A 个数有5个.故选:B .【点睛】本题主要考查第二象限点的坐标特点及解不等式的知识;熟练掌握个象限点坐标的符号特点,是解决本题的关键.9.D【解析】【分析】设一次函数关系式为y=kx+b ,y 随x 增大而减小,则k<0;图象经过点(1,2),可得k 、b 之间的关系式.综合二者取值即可.【详解】设一次函数关系式为y=kx+b ,∠图象经过点(1,2),∠k+b=2;∠y 随x 增大而减小,∠k<0.即k 取负数,满足k+b=2的k 、b 的取值都可以故选:D.10.C【解析】【分析】 利用三角形面积公式,等高的三角形的面积比等于底边的比,则1133AEB ABC S S a ∆∆==,1122BAF ABC S S a ∆∆==,然后根据ADF BD B F AEB E A S S S S ∆∆-=-即可求解.【详解】∠3BC BE =, ∠1133AEB ABC S S a ∆∆== ∠点F 是AC 的中点 ∠1122BAF ABC S S a ∆∆== ∠11(1)236ADF BDE ADF ABD BDE BAF AEB ABD S S S S S S S a S a a ∆∆=++--==-=-故选C.【点睛】本题主要考查三角形的面积,利用等高的三角形的面积比等于底边的比是解本题的关键.11.1 2【解析】【分析】两直线没有交点,说明两条直线平行,k值相等.【详解】解:由题意可得,k=12.故答案为:12.【点睛】本题主要考查坐标系内两条直线平行问题;若两条直线平行,则k1=k2.12.1m<-【解析】【分析】先根据0<1时,y1>y2,得到y随x的增大而减小,所以x的比例系数小于0,那么1+m <0,解不等式即可求解.【详解】解:∠y=(1+m)x-1+m的图象上有两点A(0,y1)、B(1,y2),其中y1>y2,∠y随x的增大而减小,∠1+m<0,∠1m<-.故答案为:1m<-.【点睛】本题考查一次函数y=kx+b(k≠0,且k,b为常数)的图象性质:当k>0,y随x的增大而增大;当k<0时,y将随x的增大而减小.13.:270°【解析】【分析】先根据三角形内角和定理算出∠3+∠4的度数,再根据四边形内角和为360°,计算出∠1+∠2的度数.【详解】∠在直角三角形中,∠∠5=90°,∠∠3+∠4=180°−90°=90°,∠∠3+∠4+∠1+∠2=360°,∠∠1+∠2=360°−90°=270°,故答案是:270°.【点睛】本题主要考查三角形内角和定理以及四边形内角和定理,掌握四边形内角和为360°,是解题的关键.14.20212m 【解析】【分析】利用角平分线的性质、三角形外角性质,易证112A A ∠=∠,进而可求1A ∠,由于112A A ∠=∠,211122A A A ∠=∠=∠,⋯,以此类推可知2021A ∠即可求得. 【详解】解:1A B 平分ABC ∠,1A C 平分ACD ∠,112A BC ABC ∴∠=∠,112ACA ACD ∠=∠, 111ACD A A BC ∠=∠+∠, 即11122ACD A ABC ∠=∠+∠, 11()2A ACD ABC ∴∠=∠-∠, A ABC ACD ∠+∠=∠,A ACD ABC ∴∠=∠-∠,112A A ∴∠=∠, 1221122A A A ∠=∠=∠,⋯, 以此类推可知202120212021122m A A ⎛⎫∠=∠=︒ ⎪⎝⎭, 故答案为:20212m . 【点睛】 本题考查了角平分线性质、三角形外角性质,能找出规律,推导出112A A ∠=∠是解题的关键. 15.2y x =-【解析】【分析】根据正比例函数的定义,可得答案.【详解】解:由题意得:10k +=解得:1k =-,12k ∴-=-,∴这个正比例函数的解析式为2y x =-.【点睛】本题考查了正比例函数的定义,解题的关键是能够根据正比例函数的一般形式列出算式,难度不大.16.作图见解析;C′(3,2).【解析】【分析】首先确定A 、B 、C 、D 点平移后的位置,再连接即可,利用坐标系写出答案即可.【详解】解:如图所示:四边形''''A B C D 即为所求;点'C的坐标(3,2);【点睛】本题主要考查了作图—平移变换,关键是确定组成图形的关键点平移后的位置.17.12 2a<<【解析】【分析】根据平移方法,可得到N点坐标,N在第三象限,所以横坐标小于0,纵坐标小于0解不等式组可得a的取值范围.【详解】将点M向左平移2个单位,再向上平移1个单位后得到点N,∠点M的坐标为(a,−2a),所以N点坐标为(a−2,−2a+1),因为N点在第三象限,所以20210aa-⎧⎨-+⎩<<,解得122a<<,所以a的取值范围为122a<<.【点睛】本题考查图形的平移变换.关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变.18.(1)x=32;(2)x>32;(3)1<x<4.【解析】【分析】(1)根据函数解析式画出函数图象,然后找到与y轴的交点求出x即可;(2)根据函数图象找出不等式函数值大于零部分即可;(3)根据函数图象找出函数值在-1与5之间的自变量的值即可.【详解】解:根据题意一次函数23y x =-的图象如下:(1)根据函数图象可知一次函数23y x =-与x 轴的交点为(32,0) ∠方程230x -=的解为x=32; (2)根据函数图象可知不等式230x ->的解集为:x>32; (3)根据函数图象可知当x=1,时y=-1,当x=4,时y=5∠不等式1235x -<-<的解集为:1<x<4.【点睛】本题考查一次函数与一元一次不等式;解题的关键是根据函数的图象画出图形,再结合图形求出各式的解.19.(1)图见解析,1(0,0)A ,1(1,2)B --,1(3,1)C -;(2)3.5;(3)(0,2)或(0,2)-【解析】【分析】(1)依据点P (x 0,y 0)经平移后对应点为P 1(x 0+1,y 0+2),可得平移的方向和距离,将∠ABC 作同样的平移即可得到∠A 1B 1C 1;(2)利用割补法进行计算,即可得到∠A 1B 1C 1的面积;(3)设P (0,y ),依据∠A 1B 1P 的面积是1,即可得到y 的值,进而得出点P 的坐标.【详解】解:(1)如图所示,111A B C △即为所求;1(0,0)A ,1(1,2)B --,1(3,1)C -,(2)111A B C △的面积为:111(13)313126 1.51 3.5222+⨯-⨯⨯-⨯⨯=--= (3)设(0,)P y ,则1||A P y =,11A B P △的面积是1,1||112y ∴⨯⨯=,解得2y =±, ∠点P 的坐标为(0,2)或(0,2)-【点睛】本题主要考查了利用平移变换作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形. 20.(1)y =43x +53, 5(0,)3;(2)52. 【解析】【分析】(1)把(-2,-1),(1,3)的坐标分别代入y kx b =+,得到关于k 、b 的方程组,解方程组得到k 、b 的值,从而得到一次函数的解析式;令0x =,代入一次函数的解析式,即可确定D 点坐标;(2) 根据三角形面积公式和AOB AOD BOD SS S =+进行计算即可.【详解】解:(1)把(-2,-1),(1,3)的坐标分别代入y kx b=+,得213k bk b-+=-⎧⎨+=⎩解得4353 kb⎧=⎪⎪⎨⎪=⎪⎩∠一次函数的解析式为y=43x+53.又∠一次函数与y轴于点D∠把x=0代入y=43x+53得y=53,∠D点的坐标为5 (0,)3.(2)∠D点的坐标为5 (0,)3.∠S∠AOB=S∠AOD+S∠BOD=151521 2323⨯⨯+⨯⨯=5 2 .【点睛】本题考查了待定系数法求一次函数解析式,点的坐标的特点,三角形的面积等知识点,熟悉相关性质是解题的关键.21.说明见解析.【解析】【分析】连结AD.根据∠ABC的面积=∠ABD的面积+∠ACD的面积,以及AB=AC,即可得到DE+DF=BG.【详解】证明:连结AD.则∠ABC 的面积=∠ABD 的面积+∠ACD 的面积,12AB•DE+12AC•DF=12AC•BG ,∠AB=AC ,∠DE+DF=BG .22.(1)+3,-1﹔D ,+1;(2)(7,3)(3)2,4Q A →〈++〉【解析】【分析】(1)根据题中的规定和观察网格判断;(2)分别根据纵横坐标进行计算即可;(3)根据规则P A →的坐标减去P Q →的坐标即为从Q 到A 的坐标.【详解】解:(1)根据规定:向上向右走均为正,向下向左走均为负观察网格可知:3,1A C →<+->﹔根据题意可知C D →为向上走了3格,进而可以判断向右走了1格∠1,3C D →<++>;(2)根据题意蚂蚁从A 处去M 处则点M 的横坐标为:132347++-+=则点M 的纵坐标为:231323+--+=∠点M 的坐标为(7,3);(3)∠3,2P A m n →<++>,1,2P Q m n →〈+-〉∠3(1)2m m +-+=,2(2)4n n +--=∠点Q 向右走2格,向上走4格到达点A2,4Q A →〈++〉【点睛】本题主要考查了新概念,利用定义得出各点变化规律是解题的关键.23.(1)每台A 型电脑销售利润为100元,每台B 型电脑销售利润为150元;(2)∠5015000w a =-+(1331003a ≤≤且a 为正整数);∠商店购进A 型电脑34台和购进B 型电脑66台的销售利润最大.【解析】【分析】(1)设每台A 型电脑销售利润为x 元,每台B 型电脑销售利润为y 元,根据题意建立二元一次方程组解决问题;(2)∠设购进A 型电脑a 台,则购进B 型电脑(100)a -台,根据(1)的结论以及总利润等于每台电脑的利润乘以总数列出函数关系式,根据题意建立一元一次不等式组,确定a 的范围;∠根据∠的结论,以及一次函数的性质求得a 最值即可.【详解】(1)设每台A 型电脑销售利润为x 元,每台B 型电脑销售利润为y 元,根据题意,得: 1020400020103500x y x y +=⎧⎨+=⎩解得100150x y =⎧⎨=⎩, 答:每台A 型电脑销售利润为100元,每台B 型电脑销售利润为150元.(2)∠设购进A 型电脑a 台,则购进B 型电脑(100)a -台,依题意得:100150(100)w a a =+-,即5015000w a =-+,10001002a a a-≥⎧⎨-≤⎩ 解得1331003a ≤≤, ∴w 关于a 的函数关系式为:5015000w a =-+(1331003a ≤≤且a 为正整数), ∠5015000w a =-+,500-<,w ∴随a 的增大而减小,1331003a≤≤且a为正整数,∴当34a=时,w取得最大值,则购进B型电脑1003466-=(台),答:商店购进A型电脑34台和购进B型电脑66台的销售利润最大.【点睛】本题考查了二元一次方程组的应用,一元一次不等式组的应用,一次函数的应用,理解题意找到等量关系列出方程组和不等式组是解题的关键.24.(1)1;1540y t=-;(2);140v=;(3)图象见解析,4.8【解析】【分析】(1)观察图象可知乙在点A时甲才出发得出甲比乙迟出发1h,然后设线段BC所在直线的函数解析式为y kt b=+代入B、C的坐标求的解析式即可;(2)设乙的速度为2km/hv,根据时间×速度=距离,列出方程组求解即可;(3)根据(2)求得的速度,算出甲没出发前甲乙的距离、乙到达终点时甲乙相距最远的时间和距离、乙最后到达终点使用的时间,把这些数据不全到途中,乙出发1小时后甲出发,此时甲乙相距25km,所以判断只有在乙超过甲后才可能出现甲、乙两人相距32 km,据此列出方程求解即可.【详解】解:(1)观察图象可知乙在点A时甲才出发,∠甲比乙迟出发1h;设线段BC所在直线的函数解析式为y kt b=+代入点8(,0),(5,35)3B C得:83355k bk b⎧=+⎪⎨⎪=+⎩解得:15,40k b==-∠线段BC所在直线的函数解析式为:1540y t=-;(2)设乙的速度为2km/hv,由题意得:()21128813385353v v v v ⎧⎛⎫=- ⎪⎪⎪⎝⎭⎨⎛⎫⎪--= ⎪⎪⎝⎭⎩,解得124025v v =⎧⎨=⎩,∠140v =(km/h);(3)根据(2)可知甲的速度为40km/h ,乙的速度为25km/h ∠甲没出发前,乙开了25km∠总共用时为:200258()h ÷=当甲到达终点时甲乙两人相距最远,2004016()h ÷+= 此时甲乙两人相距最远的距离为:20025650()km -⨯= 将上面的数据标记到图上,如下图所示:由(1)可知乙出发1小时后甲出发,此时甲乙相距25km ∠乙的速度比甲快∠只能是乙超过甲后才可能出现甲、乙两人相距32 km ∠40(1)2532t t --=解得 4.8()t h =。
沪科版八年级上册数学期中考试试题及答案

沪科版八年级上册数学期中考试试卷一、单选题1.点(3,2)A 关于x 轴的对称点为B ,则点B 的坐标为( )A .(3,2)B .(3,2)--C .(3,2)-D .(3,2)-2.若三角形的两条边长分别为6cm 和10cm ,则它的第三边长不可能为( ) A .5cm B .8cm C .10cm D .17cm3.函数=y 自变量x 的取值范围是( ) A .x 1≤ B .x 1≥ C .x<1且x 0 ≠ D .x 1≤且x 0≠ 4.如图是一次函数y 1=kx+b 与y 2=x+a 的图象,则下列结论中错误的是( )A .k <0B .a >0C .b >0D .方程kx+b=x+a 的解是x=3 5.若直线1y k x 1=+与2y k x 4=-的交点在x 轴上,那么12k k 等于( ) A .4 B .4- C .14D .14- 6.给定下列条件,不能判定三角形是直角三角形的是( )A .::1:2:3ABC ∠∠∠= B .A C B ∠-∠=∠C .2A B C ∠=∠=∠D .12A B C ∠=∠=∠ 7.现有若干个三角形,在所有的内角中,有5个直角,3个钝角,25个锐角,则在这些三角形中锐角三角形的个数是( )A .3B .4或5C .6或7D .8 8.已知一次函数3y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A .()1,2-B .()1,2-C .()2,3D .()3,4 9.已知两个一次函数y 1=ax+b 与y 2=bx+a ,它们在同一平面直角坐标系中的图象可能是下列选项中的( )A .B .C .D .10.甲、乙两地相距180km ,一辆货车和一辆小汽车同时从甲地出发,各自匀速向乙地行驶,货车的速度为60千米/小时,小汽车的速度为90千米/小时.小汽车到达乙地后,立即按原速沿原路返回甲地.则下图中能分别反映出货车、小汽车离乙地的距离y (千米)与各自行驶时间t (小时)之间的函数图象是( )A .B .C .D .二、填空题11.已知y=(m -1)x m2 -1是关于x 的一次函数,则m 为____________.12.点A 在第二象限,且到x 轴的距离是4,到y 轴的距离是2,则点A 的坐标是_____. 13.已知一个等腰三角形一边长为3,周长为15,则它的腰长等于_____.14.已知m 是整数,且一次函数(4)2y m x m =+++的图象不经过第二象限,则m =____. 15.若函数y =2x+b 的图象与两坐标轴围成的三角形面积为4,那么b =_______. 16.如图,把△ABC 绕点C 按顺时针方向旋转35°,得到A B C '',A B ''交AC 于点D ,若90A DC '∠=︒,则△A= °三、解答题17.将三角形ABC向右平移3个单位长度,再向下平移2个单位长度,得到对应的三角形A1B1C1.(1)画出三角形A1B1C1,并写出点A1,B1,C1的坐标;(2)求三角形A1B1C1的面积.18.直线y=kx+b与直线y=5﹣4x平行,且与直线y=﹣3(x﹣6)相交,交点在y轴上,求直线y=kx+b对应的函数解析式.19.如图,在△ABC中,D,E分别是BC和AB上的点,AD、CE相交于F.(1)若AD,CE分别平分△BAC和△ACB,已知△B=40°,求△AFE的度数;(2)设BC=a,AC=b,AB=c,若△ABD与△ACD的周长相等,△CAE与△CBE的周长相等,求AE 和BD 的长.(用含a 、b 、c 的式子表示)20.(1)如图1,在△ABC 纸片中,点D 在边AC 上,点E 在边AB 上,沿DE 折叠,当点A 落在CD 上时,△DAE 与△1之间有一种数量关系保持不变,请找出这种数量关系并说明理由;(2)若折成图2时,即点A 落在△ABC 内时,请找出△DAE 与△1,△2之间的关系式并说明理由.21.为了做好新冠的个人防疫,小明妈妈联合班级其他同学的家长去药店团购口罩,口罩原来一包是20元,由于家长们购买的数量比较多,药店老板决定给他们优惠,方式如下: 方式一:每包口罩打九折;方式二:如果购买的口罩不超过40包,则口罩按原价销售,如果购买的口罩超过40包,则超出的部分打八折销售.设大家一共需要团购口罩x 包,(1)口罩的总费用为y 元,请分别求出两种方式y 与x 的关系式;(2)已知每位家长为孩子都准备5包口罩,小明妈妈根据联合家长的人数如何选择优惠方式?22.如图,已知直线1l :121y x =+与坐标轴交于A 、C 两点,直线2l :22y x =--与坐标轴交于B 、D 两点,两线的交点为P 点.(1)求APB ∆的面积;(2)利用图象求当x 取何值时,12y y <.23.如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)写出点A、B的坐标:A(,)、B(,);(2)求△ABC的面积;(3)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,画出△A′B′C′,写出A′、B′、C′三个点坐标.24.为响应绿色出行号召,越来越多市民选择租用共享单车出行,已知某共享单车公司为市民提供了手机支付和会员卡支付两种支付方式.下图描述了两种方式应支付金额y(元)与骑行时间x(时)之间的函数关系.根据图象回答下列问题.(1)求手机支付金额y(元)与骑行时间x(时)的函数关系式;(2)李老师经常骑行共享单车,请根据不同的骑行时间帮他确定选择哪种支付方式比较合算.参考答案1.D【解析】【分析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”解答.【详解】解:点P (3,2)关于x 轴的对称点B 的坐标是(3,-2).故选:D .【点睛】本题考查了关于x 轴、y 轴对称点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数. 2.D【解析】【详解】试题分析:设第三边的长为x ,则10-6<x <10+6,即4<x <16,故第三边不可能为17. 故选D .考点:三角形三边关系.3.D【解析】【分析】根据二次根式和分式有意义的条件计算求解即可.【详解】解:由题意得:100x x -≥⎧⎨≠⎩解得:10x x ≤⎧⎨≠⎩ 故选:D .【点睛】本题主要考查了二次根式和分式有意义的条件,掌握二次根式、分式有意义的条件是解答本题关键.4.B【解析】【分析】根据一次函数的性质对ABC 选项进行判断;利用一次函数与一元一次方程的关系对D 项进行判断.【详解】△一次函数y 1=kx+b 经过第一、二、三象限,△k <0,b >0,所以A 、C 正确;△直线y 2=x+a 的图象与y 轴的交点在x 轴的下方,△a <0,所以B 错误;△一次函数y 1=kx+b 与y 2=x+a 的图象的交点的横坐标为3,△x=3时,kx+b=x+a ,所以D 正确.故选B .【点睛】本题考查了一次函数与一元一次不等式.从函数的角度看,就是寻求使一次y=kx+b 的值大于(或小于)0的自变量的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.5.D【解析】【分析】分别求出两直线与x 轴的交点的横坐标,然后列出方程整理即可得解.【详解】解:令y 0=,则1k x 10+=, 解得11x k =-, 2k x 40-=,解得24x k =,两直线交点在x 轴上,1214k k ∴-=,12k 1k 4∴=-.故选D .【点睛】考查了两直线相交的问题,分别表示出两直线与x 轴的交点的横坐标是解题的关键.6.C【解析】【分析】根据三角形的内角和等于180°求出三角形的最大角,进而得出结论.【详解】解:A 、设△A =x ,则△B =2x ,△C =3x ,△x+2x+3x =180°,解得:x =30°,△最大角△C =3×30°=90°,△三角形是直角三角形,选项A 不符合题意;B 、△△A ﹣△C =△B ,△△A =△B+△C ,又△△A+△B+△C =180°,△△A =180°÷2=90°,△三角形是直角三角形,选项B 不符合题意;C 、设△C =y ,则△A =2y ,△B =2y ,△y+2y+2y =180°,解得:y =36°,△最大角△B =2×36°=72°,△三角形不是直角三角形,选项C 符合题意;D 、设△A =z ,则△B =z ,△C =2z ,△z+z+2z =180°,解得:z =45°,△最大角△C =2×45°=90°,△三角形是直角三角形,选项D 不符合题意.故选:C .【点睛】本题考查了三角形的内角和定理,求出各选项中的最大角是解题的关键.7.A【解析】【详解】试题解析:由题意得:若干个三角形,在所有的内角中,有5个直角,3个钝角,25个锐角时,△共有33÷3=11个三角形;又三角形中,最多有一个直角或最多有一个钝角,显然11个三角形中,有5个直角三角形和3个钝角三角形;故还有11-5-3=3个锐角三角形.故选A .考点:三角形.8.B【解析】【分析】先根据一次函数的增减性判断出k 的符号,再将各项坐标代入解析式进行逐一判断即可.【详解】△一次函数3y kx =+的函数值y 随x 的增大而减小,△k ﹤0,A .当x=-1,y=2时,-k+3=2,解得k=1﹥0,此选项不符合题意;B .当x=1,y=-2时,k+3=-2,解得k=-5﹤0,此选项符合题意;C .当x=2,y=3时,2k+3=3,解得k=0,此选项不符合题意;D .当x=3,y=4时,3k+3=4,解得k=13﹥0,此选项不符合题意, 故选:B .【点睛】本题考查了一次函数的性质、待定系数法,熟练掌握一次函数图象上点的坐标特征是解答的关键.9.B【解析】【分析】先由一次函数y 1=ax+b 图象得到字母系数的符号,再与一次函数y 2=bx+a 的图象相比较看是否一致.【详解】解:A 、△一次函数y 1=ax+b 的图象经过一二四象限,△a >0,b >0;由一次函数y 2=bx+a 图象可知,b <0,a >0,两结论矛盾,故错误;B 、△一次函数y 1=ax+b 的图象经过一三四象限,△a >0,b <0;由y 2的图象可知,a >0,b <0,两结论不矛盾,故正确;C 、△一次函数y 1=ax+b 的图象经过一二四象限,△a <0,b >0;由y 2的图象可知,a >0,b >0,两结论矛盾,故错误;D 、△一次函数y 1=ax+b 的图象经过一二四象限,△a <0,b >0;由y 2的图象可知,a <0,b =0,两结论相矛盾,故错误.故选:B .【点睛】本题主要考查了一次函数图象与系数的关系,一次函数y kx b =+的图象有四种情况:△当k>0,b>0时,函数y kx b =+经过一、二、三象限;△当k>0,b<0时,函数y kx b =+经过一、三、四象限;△当k<0,b>0时,函数y kx b =+经过一、二、四象限;△当k<0,b<0时,函数y kx b =+经过二、三、四象限,解题的关键是掌握一次函数图像与系数的关系.10.C【解析】【分析】根据出发前都距离乙地180千米,出发两小时小汽车到达乙地距离变为零,再经过两小时小汽车又返回甲地距离又为180千米;经过三小时,货车到达乙地距离变为零,故而得出答案.【详解】解:由题意得出发前都距离乙地180千米,出发两小时小汽车到达乙地距离变为零,再经过两小时小汽车又返回甲地距离又为180千米,经过三小时,货车到达乙地距离变为零,故C 符合题意,故选:C.【点睛】本题考查了函数图象,理解题意并正确判断辆车与乙地的距离是解题关键.11.-1【解析】【分析】根据一次函数定义可得m2=1,且m-1≠0,再解出m的值即可.【详解】解:由题意得:m2=1,且m-1≠0,解得:m=-1,故答案为:-1.【点睛】此题主要考查了一次函数定义,关键是掌握形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数.12.(-2,4)【解析】【分析】应先判断出点A的横纵坐标的符号,进而根据到坐标轴的距离判断具体坐标.【详解】解:△点A在第二象限△点A的横坐标小于0,纵坐标大于0又△点A到x轴的距离是4,到y轴的距离是2,△点A的横坐标是﹣2,纵坐标是4△点A的坐标为(-2,4).故答案是:(-2,4) .【点睛】本题考查了平面直角坐标系内的点的坐标的特征:熟练掌握四个象限内的点以及坐标轴上的点的坐标特征;点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值.13.6【解析】【分析】此题要分情况考虑:3cm 是底或3cm 是腰.根据周长求得另一边,再进一步根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,判断是否能够组成三角形.【详解】当3cm 是底时,则腰长是(15−3)÷2=6(cm),此时能够组成三角形;当3cm 是腰时,则底是15−3×2=9(cm),此时3+3<9,不能组成三角形,应舍去.故三角形的腰长为6cm.故答案为6.【点睛】本题考查了等腰三角形的性质与三角形的三边关系,解题的关键是熟练的掌握等腰三角形的性质与三角形的三边关系.14.-2或-3【解析】【分析】根据题意得到不等式组,然后解不等式即可m 的值.【详解】解:△一次函数y=(m+4)x+m+2的图象不过第二象限,△4020m m +>⎧⎨+≤⎩, 解得42m -<≤-,而m 是整数,则m=-2或-3.故答案为:-2或-3.【点睛】本题考查了一次函数的图象与系数的关系,熟知一次函数y=kx+b (k≠0)中,当k >0,b <0时,函数的图象经过一三四象限是解答此题的关键.15.± 4【解析】【分析】利用一次函数y =2x+b 的图象与x 轴交点和与y 轴交点的特点求出坐标,以及图象与坐标轴所围成的三角形是直角三角形求解.【详解】解:△当y =0时,0=2x+b , △2b x =-; 当x =0时,y =b ,△一次函数y =2x+b 的图象与坐标轴所围成的三角形面积:1422b b ⨯-⨯=, 解得4b =±,故答案为:4±.【点睛】此题考查了一次函数的图像与性质,涉及了三角形面积的求解,解题的关键是根据函数解析式求得与坐标轴的交点.16.55【解析】【分析】根据旋转的性质可得35ACA '∠=︒,A A ∠=∠',再由直角三角形两锐角互余,即可求解.【详解】解:△把△ABC 绕点C 按顺时针方向旋转35°,得到A B C ''△35ACA '∠=︒,A A ∠=∠',△90A DC '∠=︒,△55A '∠=︒△△A=55°.故答案为:55【点睛】本题主要考查了图形的旋转,直角三角形两锐角的关系,熟练掌握旋转的性质,直角三角形两锐角互余是解题的关键.17.(1)详见解析,A 1(2,2),B 1(﹣1,﹣3),C 1(4,﹣1);(2)9.5【解析】【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用△A 1B 1C 1所在矩形面积减去周围三角形面积进而得出答案.【详解】解:(1)如图所示:△A 1B 1C 1,即为所求;A 1(2,2),B 1(﹣1,﹣3),C 1(4,﹣1);(2)三角形A 1B 1C 1的面积为:5×5﹣12×3×5﹣12×2×3﹣12×2×5=9.5.【点睛】本题主要考查了平移转换,关键是找出图形的关键点并连接即可得到转换后的图形,同时还要注意平移转换前后的图形大小不变.18.418y x =-+.【解析】【分析】先根据一次函数的性质可得4k =-,再求出直线3(6)y x =--与y 的交点坐标,然后代入一次函数4y x b =-+即可得.【详解】解:△直线y kx b =+与直线54y x =-平行,△4k =-,对于函数3(6)y x =--,当0x =时,3(06)18y =-⨯-=,将点(0,18)代入4y x b =-+得:4018b -⨯+=,解得18b =,则直线y kx b =+对应的函数解析式为418y x =-+.【点睛】本题考查了一次函数的性质、求一次函数的解析式,熟练掌握待定系数法是解题关键.19.(1)70°;(2)()12BD b a c =+- ,()12AE a c b =+- 【解析】(1)根据三角形的内角和定理,可得180140BAC ACB B ∠+∠=︒-∠=︒ ,再由AD ,CE 分别平分△BAC 和△ACB ,可得()12CAD ACE BAC ACB ∠+∠=∠+∠ ,再由三角形的外角性质,即可求解;(2)根据△ABD 与△ACD 的周长相等,可得AB BD AC CD +=+,从而得到()12BD AC BC AB =+- ,再由△CAE 与△CBE 的周长相等,可得AC AE BC BE +=+,从而得到()12AE BC AB AC =+-,即可求解. 【详解】 解:(1)△△B =40°,△180140BAC ACB B ∠+∠=︒-∠=︒ ,△AD ,CE 分别平分△BAC 和△ACB , △11,22CAD BAC ACE ACB ∠=∠∠=∠ , △()111407022CAD ACE BAC ACB ∠+∠=∠+∠=⨯︒=︒ , △AFE CAD ACE ∠=∠+∠,△70AFE ∠=︒ ;(2)△△ABD 与△ACD 的周长相等,△AB BD AD AC CD AD ++=++ ,即AB BD AC CD +=+,△AB BD AC BC BD +=+- , △()12BD AC BC AB =+- , △BC =a ,AC =b ,AB =c ,△()12BD b a c =+- , △△CAE 与△CBE 的周长相等,△AC AE CE BC BE CE ++=++ ,即AC AE BC BE +=+,△AC AE BC AB AE +=+-, △()()1122AE BC AB AC a c b =+-=+-.20.(1) △1=2△DAE .理由见解析;(2)△1+△2=2△EAD ,理由见解析.【分析】(1)如图1中,延长BE 交CD 于R .利用翻折不变以及三角形外角的性质解决问题即可. (2)如图2中,延长BE 交CD 的延长线于T ,连接AT .利用翻折不变性以及三角形外角的性质解决问题即可.【详解】解:(1)结论:△1=2△DAE .理由:如图1中,延长BE 交CD 于R .由翻折可知,△EAD=△R ,△△1=△EAD+△R ,△△1=2△EAD .(2)结论:△1+△2=2△EAD .理由:如图2中,延长BE 交CD 的延长线于T ,连接AT .由翻折可知,△EAD=△ETD ,△△1=△EAT+△ETA ,△2=△DA T+△DTA ,△△1+△2=△EAT+△ETA+△DA T+△DTA=△EAD+△ETD=2△EAD .【点睛】此题考查了翻折不变性和三角形的外角性质,难度不大,但要注意图形特点,找到隐含条件.21.(1)y 1=18x ,220(040)16160(40)x x y x x ≤≤⎧=⎨+⎩>;(2)家长人数超过16人,选择方案二;家长人数不超过16人,选择方案一;家长人数等于16人,两种方案都可.【解析】【分析】(1)分别根据方式一和方式二的优惠方式即可求出结论;(2)根据x 的取值分类讨论,然后分别比较y 1和2y 的大小关系即可得出结论.【详解】解:(1)由题意可知:y 1=0.9×20x=18x ,当040x ≤≤时,2y =20x ;当40x >时,2y =20×40+0.8×20(x -40)=16x +160综上:220(040)16160(40)x x y x x ≤≤⎧=⎨+⎩>; (2)当040x ≤≤时,显然18x <20x ,即y 1<2y△每位家长为孩子都准备5包口罩,40÷5=8△家长人数不超过8人,选择方案一;当40x >时,当18x=16x+160则有x=80,x>80时,此时家长人数超过16人,y 1>2y ,选择方案二,x=80时,此时家长人数等于16人,y 1=2y ,两个方案都可,40<x<80时,此时家长人数超过8人少于16人,则有y 1<2y ,选择方案一,△综上所述:家长人数超过16人,选择方案二;家长人数不超过16人,选择方案一;家长人数等于16人,两种方案都可.【点睛】此题考查的是一次函数的应用,掌握实际问题中的等量关系和分类讨论的数学思想是解题关键.22.(1)32ABP S ∆=;(2)当1x <-时,12y y < 【解析】【分析】(1)先求出A 、P 、B 的坐标,根据面积公式求解即可;(2)根据所求出的P 的坐标结合图像即可得出答案.【详解】 (1)联立1l 、2l ,12212y x y x =+⎧⎨=--⎩,解得:11x y =-⎧⎨=-⎩, △P 点坐标为()1,1--,令x=0,可得y 1=1,y 2=-2,故()0,1A ()0,2B -,△AB=3, △31322ABP S ∆⨯==; (2)由图可知,当1x <-时,12y y <【点睛】本题主要考查了一次函数的综合运用,熟练掌握相关概念是解题关键.23.(1)A (2,﹣1)、B (4,3);(2)5;(3)图详见解析,A′(0,0)、B′(2,4)、C′(﹣1,3).【解析】【分析】(1)根据直角坐标系的特点写出对应点的坐标;(2)用△ABC 所在的矩形面积减去三个小三角形的面积即可求解;(3)分别将点A 、B 、C 先向左平移2个单位长度,再向上平移1个单位长度,得到点A′、B′、C′,然后顺次连接并写出坐标.【详解】解:(1)A (2,﹣1),B (4,3);(2)S△ABC =3×4﹣12×2×4﹣12×1×3﹣12×3×1=5,故△ABC 的面积为5;(3)所作图形如图所示:A′(0,0)、B′(2,4)、C′(﹣1,3).【点睛】本题考查了根据平移变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.24.(1)0.5y x =-;(2)当2x <时,手机支付比较合算;当2x =时,两种方式都一样;当2x >时,会员卡支付比较合算;【解析】【分析】(1)设y kx b =+,代入点的坐标求解即可;(2)求出会员卡支付的费用与骑行时间的函数关系式,两者比较即可求解.【详解】解:(1)设y kx b =+,将点(0.5,0)、(1,0.5)代入得:0.500.5k b k b +=⎧⎨+=⎩,解得10.5k b =⎧⎨=-⎩,即0.5y x =- 故手机支付金额y (元)与骑行时间x (时)的函数关系式为0.5y x =-(2)设会员卡支付的费用与骑行时间的函数关系式为1y k x =将(1,0.75)代入得,10.75k =,即0.75y x = 令0.750.5x x =-,解得2x =由图像可得,当2x <时,手机支付比较合算; 当2x =时,两种方式都一样;当2x >时,会员卡支付比较合算;。
沪科版八年级上册数学期中考试试题带答案

沪科版八年级上册数学期中考试试卷一、单选题1.要从直线3x y =-得到函数53x y +=-的图象,那么直线3x y =-必须( ) A .向上平移5个单位 B .向下平移5个单位C .向上平移53个单位D .向下平移53个单位 【答案】D2.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比( )A .向右平移了3个单位B .向左平移了3个单位C .向上平移了3个单位D .向下平移了3个单位【答案】D3.若m <﹣2,则一次函数()11y m x m =++-的图象可能是( )A .B .C .D .【答案】D4.如图,一个弹簧不挂重物时长6cm ,挂上重物后,在弹性限度内弹簧伸长的长度与所挂重物的质量成正比.弹簧总长y (单位:cm )关于所挂物体质量x (单位:kg )的函数图象如图所示,则图中a 的值是( )A .3B .4C .5D .6【答案】A5.函数11y x =+的自变量x 的取值范围是( ) A .1x >- B .1x <- C .1x ≠- D .1x ≠【答案】C6.下列分别是三根小木棒的长度,其中能组成三角形的是( )A .3cm,4cm,8cmB .8cm,7cm,15cmC .5cm,5cm,11cmD .13cm,12cm,12cm【答案】D7.已知一次函数(3)5y m x m =+++,y 随x 的增大而减小,且其图象与y 轴的交点在y 轴的正半轴上,则m 的取值范围是( )A .5m >-B .3m <-C .53m -<<-D .3m >-【答案】C8.一副三角板有两个直角三角形,如图叠放在一起,则α∠的度数是( )A .165°B .120°C .150°D .135°【答案】A9.已知一次函数3y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A .()1,2-B .()1,2-C .()2,3D .()3,4【答案】B10.一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送达后立即沿原路返同,且往返速度的大小不变,两车离甲地的距离y (单位:km )与慢车行驶时间t (单位:h )的函数关系如图,则两车先后两次相遇的间隔时间是( )A .5h 3B .3h 2C .7h 5D .4h 3 【答案】B二、填空题11.在坐标系内,点P (2,-2)和点Q (2,4)之间的距离等于_______个单位长度【答案】612.点()3,2P m m -+在y 轴上,则点P 的坐标为_________.【答案】(0,5)13.在△ABC 中,△A=55°,△B 比△C 大25°,则△B 的度数为_____.【答案】75°14.已知一次函数()324y m x m =-++的图象过直线143y x =-+与y 轴的交点M ,则此一次函数的表达式为_________.【答案】34y x =-+15.在直线132y x =-+,且与y 轴的距离是2个单位长度的点的坐标是_________. 【答案】(2,2)或(2,4)-16.如图,直线()0y kx b k =+<经过点()1,1P ,当kx b x +≥时,则x 的取值范围为_________.【答案】1x ≤17.若以二元一次方程20x y b +-=的解为坐标的点(x ,y ) 都在直线112y x b =-+-上,则常数b =_______.【答案】2.18.如图,已知长方形ABCD 顶点坐标为A (1,1),B (3,1),C (3,4),D (1,4),一次函数y =2x +b 的图像与长方形ABCD 的边有公共点,则b 的变化范围是__________.【答案】52b -≤≤三、解答题19.已知函数y=(m+1)x 2-|m |+n+4.(1)当m ,n 为何值时,此函数是一次函数?(2)当m ,n 为何值时,此函数是正比例函数?【答案】(1)当m=1,n 为任意实数时,这个函数是一次函数;(2)当m=1,n=−4时,这个函数是正比例函数.【详解】(1)根据一次函数的定义,得:2−|m|=1,解得:m=±1.又△m+1≠0即m≠−1,△当m=1,n 为任意实数时,这个函数是一次函数;(2)根据正比例函数的定义,得:2−|m|=1,n+4=0,解得:m=±1,n=−4,又△m+1≠0即m≠−1,△当m=1,n=−4时,这个函数是正比例函数.20.如图,在边长为1的小正方形网格中,AOB 的顶点均在格点上.(1)将AOB 向左平移3个单位,再向下平移1个单位长度得到111AO B ,请画出111AO B ,并写出点1A 的坐标;(2)求111AO B 的面积.【答案】(1)图见解析,1(2,2)A - (2)72【解析】(1) 解:如图,111AO B 即为所求,点A 的坐标为(1,3)A ,∴点1A 的坐标为1(13,31)A --,即为1(2,2)A -.(2) 解:111AO B 的面积为1117333212312222⨯-⨯⨯-⨯⨯-⨯⨯=.21.设三角形的三边长为正整数,,a b c ,且a b c ≤≤,当4b =时,满足条件的三角形共有多少个?其中等腰三角形有多少个?等边三角形有多少个?(要求写出分析、判断的过程)【答案】满足条件的三角形共有10个,其中等腰三角形有7个,等边三角形有1个.【详解】 解:三角形的三边长为正整数,,a b c ,且a b c ≤≤,4b =,4,c a c a当1a =时,则14+1,c c此时45,c 则4,c =三角形的三边分别为:1,4,4,a b c此时,三角形有1个,等腰三角形1个;当2a =时,则242,c c此时46,c 则4,5,c三角形的三边分别为:2,4,4a b c 或2,4,5,a b c此时,三角形有2个,等腰三角形1个;当3a =时,则343,c c此时47,c 则4,5,6,c三角形的三边分别为:3,4,4a b c 或3,4,5a b c ===或3,4,6,a b c 此时,三角形有3个,等腰三角形1个;当4a =时,则444,c c此时48,c 则4,5,6,7c ,三角形的三边分别为:4,4,4a b c ===或4,4,5a b c 或4,4,6a b c 或4,4,7a b c ,此时,三角形有4个,等腰三角形有4个,等边三角形有1个;由题意知:5a ≥不合题意,舍去.综上:满足条件的三角形共有10个,其中等腰三角形有7个,等边三角形有1个.22.如图,直线2y x =-与直线y kx b =+相交于点,2A a ,并且直线y kx b =+经过x 轴上点()2,0(1)求直线y kx b =+的表达式;(2)直接写出不等式()20k x b ++≥的解集.【答案】(1)2433y x =-+ (2)1x ≥- 【解析】(1)解:把A (a ,2)代入y=-2x 中,得-2a=2,△a=-1, △A (-1,2)把A (-1,2),B (2,0)代入y=kx+b 中得△一次函数的解析式是2433y x =-+; (2)不等式(k+2)x+b≥0可以变形为kx+b≥-2x ,结合图象得到解集为:x≥-1.23.如图,在平面直角坐标系中,点M 是直线y x =-上的动点,过点M 作MN x ⊥轴,交直线y x =于点N ,当8MN ≤时,设点M 的横坐标为m ,求m 的取值范围.【答案】44m -≤≤【详解】解:对于直线y x =-,当x m =时,y m =-,即(,)M m m -,MN x ⊥轴,交直线y x =于点N ,∴点N 的横坐标为m ,对于直线y x =,当x m =时,y m =,即(,)N m m ,2MN m m m ∴=--=,8MN ≤,28m ∴≤,解得44m -≤≤.24.现从A ,B 向甲、乙两地运送蔬菜,A ,B 两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,从A 到甲地运费50元/吨,到乙地30元/吨;从B 地到甲运费60元/吨,到乙地45元/吨.(1)设A 地到甲地运送蔬菜x 吨,请完成下表:(2)设总运费为W 元,请写出W 与x 的函数关系式(3)怎样调运蔬菜才能使运费最少?【答案】(1)见解析(2)W=5x +1275(3)当x 最小为1时,W 有最小值 1280元【详解】解:(1)完成填表:(2)W=50x +30(14-x )+60(15-x )+45(x -1),整理得,W=5x +1275.(3)△A ,B 到两地运送的蔬菜为非负数,△x 014x 0{15x 0x 10≥-≥-≥-≥,解不等式组,得:1≤x≤14.在W=5x+1275中,W随x增大而增大,△当x最小为1时,W有最小值1280元.△当x=1时,A:x=1,14−x=13,B:15−x=14,x−1=0,即A向甲地运1吨,向乙地运13吨,B向甲地运14吨,向乙地运0吨才能使运费最少.25.已知△ABC中,△ACB=90°,CD为AB边上的高,BE平分△ABC,分别交CD、AC于点F、E,求证:△CFE=△CEF.【答案】证明见解析.【详解】试题分析:根据互余、角平分线及对顶角等相关知识即可得出答案.证明:如图,△△ACB=90°,△△1+△3=90°,△CD△AB,△△2+△4=90°,又△BE平分△ABC,△△1=△2,△△3=△4,△△4=△5,△△3=△5,即△CFE=△CEF.。
沪科版八年级上册数学期中考试试卷含答案

沪科版八年级上册数学期中考试试题一、单选题1.在平面直角坐标系中,点A 的坐标为(-2,3)若线段AB ∥y 轴,且AB 的长为4,则点B 的坐标为()A .(-2,-1)B .(-2,7)C .(﹣2,-1)或(-2,7)D .(2,3)2.以下列各组线段为边,能组成三角形的是()A .1cm ,2cm ,4cmB .4cm ,6cm ,8cmC .5cm ,6cm ,12cmD .2cm ,3cm ,5cm3.已知一次函数3y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是()A .()1,2-B .()1,2-C .()2,3D .()3,44.下列图形中,正确画出AC 边上的高的是()A .B .C .D .5.如图,在平面直角坐标系中,一次函数y =kx +b 和y =mx +n 相交于点(2,-1)则关于x 、y 的方程组kx y b mx n y =-⎧⎨+=⎩的解是()A .-12x y =⎧⎨=⎩B .2-1x y =⎧⎨=⎩C .12x y =⎧⎨=⎩D .21x y =-⎧⎨=⎩6.具备下列条件是△ABC 中,不是直角三角形的是()A .AB C∠+∠=∠B .1123A B C ∠=∠=∠C .∠A :∠B :∠C =1:3:4D .∠A =2∠B =3∠C7.下列命题中,正确的是()A .三角形的一个外角大于任何一个内角B .三角形三条角平分线交点在三角形的外部C .三角形的三条高都在三角形内部D .三角形的一条中线将三角形分成两个面积相等的三角形8.定义:当三角形中一个内角α是另一个内角的两倍时,我们称此三角形为“倍角三角形”,其中α称为“倍角”,如果一个“倍角三角形”的一个内角为99°,那么倍角α的度数是()A .99°B .99°或49.5°C .99°或54°D .99°或49.5°或54°9.关于函数y =(k -3)x +k ,给出下列结论:①此函数一定是一次函数;②无论k 取什么值,函数图象必经过点(-1,3);③若图象经过二、三、四象限,则k 的取值范围是k <0;④若函数图象与x 轴的交点始终在正半轴可得k <3,其中正确的有()A .1个B .2个C .3个D .4个10.关于一次函数23y x =-+,下列结论正确的是()A .图象过点()1,1-B .图象与x 轴的交点是()0,3C .y 随x 的增大而增大D .函数图象不经过第三象限二、填空题11.命题“如果a+b=0,那么a ,b 互为相反数”的逆命题为_________________________.12.一次函数y=kx+6的图象与x 轴交于点A ,与y 轴交于点B ,S △AOB ═9,则k=_____13.如图,CE 平分∠ACD ,∠A=40°,∠B=30°,∠D=104°,则∠BEC=____.14.如图,在Rt △ABC 中,∠ACB =90°,BC =4cm ,AC =9cm ,点D 在线段CA 上从点C 出发向点A 方向运动(点D 不与点A ,点C 重合),且点D 运动的速度为2cm/s ,现设运动时间为x (0<x <92)秒时,对应的△ABD 的面积为ycm²,则当x =2时,y =_________;y 与x 之间满足的关系式为_________.15.直线y=12x -4与x 轴的交点坐标是_____,与y 轴的交点坐标是_______.三、解答题16.在△ABC 中,∠A -∠B =30°,∠C =4∠B ,求∠A 、∠B 、∠C 的度数17.如图,在平面直角坐标系中,P (a ,b )是三角形ABC 的边AC 上的一点,三角形ABC 经平移后点P 的对应点为P 1(a +6,b +2).(1)请画出经过上述平移后得到的三角形A 1B 1C 1;(2)求线段AC 扫过的面积.18.已知一次函数y =(6+3m )x +n -4(1)m 为何值时,y 随x 的增大而减小;(2)m ,n 分别为何值时,函数的图象经过原点.19.设一次函数(,y kx b k =+b 为常数,0)k ≠的图象过()1,3A ,()5,3B --两点.()1求该函数表达式;()2若点()2,21C a a +-在该函数图象上,求a 的值;()3设点P 在x 轴上,若12ABP S = ,求点P 的坐标.20.已知,如图,在△ABC中,AH平分∠BAC交BC于点H,D、E分别在CA、BA的延长线上,DB∥AH,∠D=∠E.(1))求证:DB∥EC;(2)若∠ABD=2∠ABC,∠DAB比∠AHC大5°.求∠D的度数.21.在建设美好乡村活动中,某村民委员会准备在乡村道路两旁种植柏树和杉树.经市场调查发现:购买2棵柏树和3棵杉树共需440元,购买3棵柏树和1棵杉树共需380元.(1)求柏树和杉树的单价;(2)若本次美化乡村道路臀购买柏树和杉树共150棵(两种树都必须购买),且柏树的棵数不少于树的3倍,设本次活动中购买柏树x棵,此次购树的费用为w元.①求w与x之间的函数表达式,并写出x的取值范围?②要使此次购树费用最少,柏树和杉树各需购买多少棵?最少费用为多少元?22.已知△ABC中,∠ABC=∠ACB,D为线段CB上一点(不与C,B重合),点E为射线CA上一点,∠ADE=∠AED,设∠BAD=a,∠CDE=β.(1)如图(1),①若∠BAC=50°,∠DAE=40°,则a=____,β=②若∠BAC=58°,∠DAE=42°,则a=_____,β=____③写出a与β的数量关系,并说明理由;(2)如图(2),当E点在CA的延长线上时,其它条件不变,请直接写出a与β的数量关系.23.已知函数y=(2m+1)x+m-3.(1)若函数图象经过原点,求m的值;(2)若函数的图象平行于直线y =3x -3,求m 的值;(3)若这个函数是一次函数,且y 随着x 的增大而减小,求m 的取值范围.24.如图,在平面直角坐标系中,一次函数y =kx +b 的图象与x 轴交点为A (-3,0),与y 轴交点为B ,且与正比例函数43y x =的图象交于点C (m ,4).(1)求点C 的坐标;(2)求一次函数y =kx +b 的表达式;(3)利用图象直接写出当x 取何值时,kx +b >43x .参考答案1.C 【解析】【分析】设点B (),x y ,根据线段与数轴平行可得2x =-,根据线段4AB =,可得34y -=,求解即可得出点的坐标.【详解】解:设点B (),x y ,∵AB y ∥轴,∴A ()2,3-与点B 的横坐标相同,∴2x =-,∵4AB =,∴34y -=,∴34y -=或34y -=-,∴1y =-或7y =,∴点B 的坐标为:()2,1--,()2,7-,故选:C .【点睛】题目主要考查线段与坐标轴平行的点的坐标特点,两点之间的距离,一元一次方程应用等,理解题意,利用绝对值表示两点之间距离是解题关键.2.B 【解析】【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:根据三角形的三边关系,知A 、1+2<4,不能组成三角形;B 、4+6>8,能组成三角形;C 、5+6<12,不能够组成三角形;D 、2+3=5,不能组成三角形.故选:B .【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3.B 【解析】【分析】先根据一次函数的增减性判断出k 的符号,再将各项坐标代入解析式进行逐一判断即可.【详解】∵一次函数3y kx =+的函数值y 随x 的增大而减小,∴k ﹤0,A .当x=-1,y=2时,-k+3=2,解得k=1﹥0,此选项不符合题意;B .当x=1,y=-2时,k+3=-2,解得k=-5﹤0,此选项符合题意;C .当x=2,y=3时,2k+3=3,解得k=0,此选项不符合题意;D .当x=3,y=4时,3k+3=4,解得k=13﹥0,此选项不符合题意,故选:B .【点睛】本题考查了一次函数的性质、待定系数法,熟练掌握一次函数图象上点的坐标特征是解答的关键.4.D 【解析】【分析】根据高的定义即可求解.【详解】解:根据锐角三角形和钝角三角形的高线的画法,可得D 选项中,BE 是△ABC 中AC 边长的高,故选:D .【点晴】此题主要考查高的作法,解题的关键是熟知高的定义.5.B 【解析】【分析】根据题意直接利用方程组的解就是两个相应的一次函数图象的交点坐标进行分析解决问题.【详解】解:∵一次函数y kx b =+和y mx n =+相交于点(2,-1),∴关于x 、y 的方程组kx y b mx n y=-⎧⎨+=⎩的解为21x y =⎧⎨=-⎩.故选:B .【点睛】本题考查一次函数交点问题与二元一次方程(组)解得关系,理清二者的联系是解题关键.6.D 【解析】【分析】分别求出各个选项中,三角形的最大的内角,即可判断.【详解】解:A 、由A B C ∠+∠=∠,可以推出90C ∠=︒,本选项不符合题意.B 、由1123A B C ∠=∠=∠,可以推出90C ∠=︒,本选项不符合题意.C 、由::1:3:4A B C ∠∠∠=,可以推出90C ∠=︒,本选项不符合题意,D 、由23A B C ∠=∠=∠,推出108011A ⎛⎫∠=︒ ⎪⎝⎭,ABC ∆是钝角三角形,本选项符合题意.故选:D .【点睛】本题考查三角形内角和定理,熟悉相关性质是解题的关键.7.D 【解析】【分析】根据三角形外角的性质、中线的性质、高的性质及角平分线的性质逐一判断可得.【详解】解:A 、三角形的一个外角大于任何一个不相邻的内角,故此选项错误,不合题意;B 、三角形三条角平分线交点在三角形的内部,故此选项错误,不合题意;C 、锐角三角形的三条高在三角形的内部、直角三角形有两条高在边上、钝角三角形有两条高在外部,故此选项错误,不合题意;D 、三角形的一条中线将三角形分成两个三角形的底相等、高公共,据此知两个三角形面积相等,故正确,符合题意;故选:D .【点睛】本题考查了命题与定理,解题的关键是熟练掌握三角形外角的性质、中线的性质、高的性质、角平分线的性质.8.C【解析】【分析】根据题意设三角形的三个内角分别是m、n、α且α=2m,由题意得α=99°或m=99°或n=99°,分这三种情况讨论即可.【详解】解:设三角形的三个内角分别是m、n、α且α=2m,当α=99°,则m=49.5°,n=31.5°,当m=99°,则α=2m=198°(舍去),当n=99°,则m+α=180°-n=81°,∴3m=81°,∴m=27°,∴α=2m=54°.综上:倍角α的度数为99°或54°.故选:C.【点睛】本题主要考查三角形内角和定理,熟练掌握三角形内角和定理即三角形内角和是180°是解决本题的关键,注意分类讨论方法的运用.9.B【解析】【分析】①当k﹣3≠0时,函数是一次函数;当k﹣3=0时,该函数是y=3,此时是常数函数,即可求解;②y=(k﹣3)x+k=k(x+1)﹣3x,当x=﹣1时,y=3,过函数过点(﹣1,3),即可求解;③函数y=(k﹣3)x+k经过二,三,四象限,可得30kk-<⎧⎨<⎩,从而可以求得k的取值范围;④当k﹣3=0时,y=3,与x轴无交点;当k≠3时,函数图象与x轴的交点始终在正半轴,即-03kk >-,即可求解.【详解】解:①当k ﹣3≠0时,函数是一次函数;当k ﹣3=0时,该函数是y =3,此时是常数函数,故①不符合题;②y =(k ﹣3)x+k =k (x+1)﹣3x ,当x =﹣1时,y =3,过函数过点(﹣1,3),故②符合题意;③函数y =(k ﹣3)x+k 经过二,三,四象限,则300k k -<⎧⎨<⎩,解得:k <0,故③符合题意;④当k ﹣3=0时,y =3,与x 轴无交点;当k≠3时,函数图象与x 轴的交点始终在正半轴,即﹣03kk >-,解得:0<k <3,故④不符合题;故正确的有:②③,共2个故选B 【点睛】本题考查根据交点坐标确定解析式字母系数的取值及分类讨论思想的运用,一般地,先求出交点坐标,再把坐标满足的条件转化成相应的方程或是不等式进而解决问题.10.D 【解析】【分析】A 、把点的坐标代入关系式,检验是否成立;B 、把y =0代入解析式求出x ,判断即可;C 、根据一次项系数判断;D 、根据系数和图象之间的关系判断.【详解】解:A 、当x =1时,y =1.所以图象不过(1,−1),故错误;B 、把y =0代入y =−2x +3,得x =32,所以图象与x 轴的交点是(32,0),故错误;C 、∵−2<0,∴y 随x 的增大而减小,故错误;D 、∵−2<0,3>0,∴图象过一、二、四象限,不经过第三象限,故正确.故选D .【点睛】本题主要考查了一次函数的图象和性质.常采用数形结合的思想求解.11.如果a,b互为相反数,那么a+b=0【解析】【分析】交换原命题的题设与结论即可得到其逆命题.【详解】解:逆命题为:如果a,b互为相反数,那么a+b=0.故答案为:如果a,b互为相反数,那么a+b=0.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.12.2±【解析】【详解】分析:首先计算出与x轴的交点坐标,与y轴的交点坐标,再利用三角形的面积公式计算出面积即可.详解:∵当x=0时,y=6,∴与y轴的交点B(0,6),∵当y=0时,6 xk =-∴与x轴的交点6,0Ak⎛⎫-⎪⎝⎭,∴△AOB的面积为:1669. 2k⨯⨯-=解得: 2.k=±故答案为 2.±点睛:考查了利用一次函数解析式求直线与坐标轴的交点问题,并借助三角形的面积公式求系数k,属于常见题型.13.57°##57度【解析】【分析】根据四边形外角的性质和角平分线的性质,再结合题意,即可得到答案.【详解】根据四边形外角的性质可得∠D =∠A+∠B+∠DCA ,∠D =∠BEC+∠B+∠ECD ,则∠DCA =∠D-(∠A+∠B )=34°,因为CE 平分∠ACD ,所以∠ECD=123471︒=⨯︒,所以∠BEC=∠D-(∠B+∠ECD )=57°.故答案为57°.【点睛】本题考查四边形外角的性质和角平分线的性质,解题的关键是掌握四边形外角的性质和角平分线的性质.14.10184y x=-【解析】【分析】根据ABDABC BCD S S S =- ,代入数轴求解即可.【详解】解:根据题意得:ABD ABC BCDS S S =- =1122AC BC CD BC⋅-⨯=118242x -⨯⨯=184x -,∴当x =2时,184184210y x =-=-⨯=,故答案为:10,184y x =-.【点睛】本题考查了动点问题的函数关系,根据题意得出解析式是关系.15.(8,0)(0,-4)【解析】【分析】分别根据x 、y 轴上点的坐标特点进行解答即可.【详解】解:令0y =,则1042x =-,解得8x =,故直线与x 轴的交点坐标为:(8,0);令0x =,则4y =-,故直线与y 轴的交点坐标为:(0,-4);故答案为(8,0),(0,-4).【点睛】本题考查的是x 、y 轴上点的坐标特点,与x 轴相交,0y =,与y 轴相交,0x =.16.55A ∠=︒,25B ∠=︒,100C ∠=︒【解析】【分析】根据三角形内角和定理,以及已知条件列三元一次方程组解方程求解即可【详解】在△ABC 中,180A B C ∠+∠+∠=︒,∠A -∠B =30°,∠C =4∠B ,180304A B C A B C B ∠+∠=︒-∠⎧⎪∴∠-∠=︒⎨⎪∠=∠⎩①②③①-②得2150B C ∠=︒-∠④将③代入④解得25B ∠=︒100C ∴∠=︒,55A ∠=︒∴55A ∠=︒,25B ∠=︒,100C ∠=︒【点睛】本题考查了三角形内角和定理,解三元一次方程组,正确的计算是解题的关键.17.(1)见解析;(2)14【解析】【分析】(1)横坐标加6,纵坐标加2,说明向右移动了6个单位,向上平移了2个单位;(2)以A 、C 、A 1、C 1为顶点的四边形的面积可分割为以AC 1为底的2个三角形的面积.【详解】解:(1)如图,各点的坐标为:A (﹣3,2)、C (﹣2,0)、A 1(3,4)、C 1(4,2);(2)如图,连接AA 1、CC 1;∴1117272AC A S =⨯⨯= ;117272AC C S =⨯⨯= ;∴四边形ACC 1A 1的面积为7+7=14.答:线段AC 扫过的面积为14.【点睛】本题考查平移,涉及的知识点为:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加;解题关键是掌握求四边形的面积通常整理为求几个三角形的面积的和.18.(1)当2m <-时,一次函数()634y m x n =++-,y 随x 的增大而减小;(2)当2m ≠-且4n =时,()634y m x n =++-的图象经过原点.【解析】【分析】(1)根据“y 随x 的增大而减小”可得630m +<,由此可求出m 的取值范围;(2)由函数图象经过原点得40n -=,630m +≠,由此求解即可.【详解】解:(1)由一次函数()634y m x n =++-,∵y 随x 的增大而减小,可得:630m +<,∴2m <-;∴当2m <-时,一次函数()634y m x n =++-,y 随x 的增大而减小;(2)由一次函数()634y m x n =++-的图象经过原点,可得:40n -=,解得:4n =,∵630m +≠,2m ≠-,∴当2m ≠-且4n =时,()634y m x n =++-的图象经过原点.【点睛】本题考查了一次函数的性质,解题的关键要熟练掌握一次函数的增减性与图象特点与参数之间的关系.19.(1)2y x =+;(2)5a =;(3)点P 坐标()2,0或()6,0-【解析】【分析】(1)根据一次函数y=kx+b(k,b 是常数,k≠0)的图象过A(1,3),B(-5,-3)两点,可以求得该函数的表达式;(2)将点C 坐标代入(1)中的解析式可以求得a 的值;(3)由题意可求直线y=x+2与x 轴的交点坐标,根据三角形的面积公式可求点P 坐标.【详解】解:()1根据题意得:{353k b k b +=-+=-解得:{12k b ==∴函数表达式为2y x =+()2 点()2,21C a a +-在该函数图象上,2122a a ∴-=++5a ∴=()3设点(),0P m 直线2y x =+与x 轴相交∴交点坐标为()2,0-1123231222ABP S m m =+⨯++⨯-=24m ∴+=2m ∴=或6-∴点P 坐标()2,0或()6,0-【点睛】本题考查一次函数图象上点的坐标特征,待定系数法求一次函数解析式,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数的思想解答.20.(1)见解析;(2)50°【解析】【分析】(1)根据平行线的性质可得∠D =∠CAH ,根据角平分线的定义可得∠BAH =∠CAH ,再根据已知条件和等量关系可得∠BAH =∠E ,再根据平行线的判定即可求解;(2)可设∠ABC =x ,则∠ABD =2x ,则∠BAH =2x ,可得∠DAB =180°−4x ,可得∠AHC =175°−4x ,可得175°−4x =3x ,解方程求得x ,进一步求得∠D 的度数.【详解】(1)证明:∵DB ∥AH ,∴∠D =∠CAH ,∵AH 平分∠BAC ,∴∠BAH =∠CAH ,∵∠D =∠E ,∴∠BAH =∠E ,∴AH ∥EC ,∴DB ∥EC ;(2)解:设∠ABC =x ,则∠ABD =2x ,∠BAH =2x ,∴∠DAB =180°−4x ,∠DAB 比∠AHC 大5°∴∠AHC =175°−4x ,DB ∥AH ,∴AHC DBC∠=∠即:175°−4x =3x ,解得x =25°,则∠D =∠CAH =∠BAH =∠ABD =2x =50°.【点睛】考查了三角形内角和定理,平行线的判定与性质,求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件.21.(1)柏树的单价为100元,杉树的单价为80元;(2)①2012000w x =+,112.5150x ≤<且x 为整数;②要使此次费用最少,柏树购买113棵,杉树37棵,最少费用为14260元.【解析】【分析】(1)设柏树的单价为m 元,杉树的单价为n 元,根据题意列出二元一次方程组求解即可;(2)①根据单价、数量与费用的关系列出一次函数即可;再由题意本次购买柏树和杉树共150棵,且两种树都必须购买,可得不等式组,柏树的棵树不少于杉树的3倍,列出相应不等式求解,综合即可得x 的取值范围;②根据一次函数的增减性质可得w 随x 的增大而增大,由x 的取值范围代入求解即可.【详解】解:(1)设柏树的单价为m 元,杉树的单价为n 元,根据题意可得:234403380m n m n +=⎧⎨+=⎩,解得:10080m n =⎧⎨=⎩,答:柏树的单价为100元,杉树的单价为80元;(2)①设本次活动中购买柏树x 棵,则杉树()150x -棵,由(1)及题意可得:()100801502012000w x x x =+-=+,∵本次购买柏树和杉树共150棵,且两种树都必须购买,即:01500x x >⎧⎨->⎩,∴0150x <<,∵柏树的棵树不少于杉树的3倍,∴()3150x x ≥-,解得:112.5x ≥,综合可得:2012000w x =+,112.5150x ≤<且x 为整数;②由①可得:2012000w x =+,∵200>,∴w 随x 的增大而增大,∵112.5150x ≤<,∴当113x =时,w 最小,此时,201131200014260w =⨯+=(元),15011337-=(棵),∴要使此次费用最少,柏树购买113棵,杉树37棵,最少费用为14260元.【点睛】题目主要考查二元一次方程组、不等式组及一次函数的应用,理解题意,列出相应方程是解题关键.22.(1)①10︒,5︒;②16︒,8︒;③2αβ=,理由见详解;(2)2180αβ=-︒,理由见详解.【解析】【分析】(1)①先根据角的和与差求α的值,根据等腰三角形的两个底角相等及顶角可得:70ADE AED ∠=∠=︒,同理可得:65ACB ABC ∠=∠=︒,,根据外角性质列式:706510β︒+=︒+︒,即可得β的度数;②先根据角的和与差求α的值,根据等腰三角形的两个底角相等及顶角可得:69ADE AED ∠=∠=︒,同理可得:61ACB ABC ∠=∠=︒,,根据外角性质列式:696116β︒+=︒+︒,即可得β的度数;③设设BAC x ∠=,DAE y ∠=,则x y α=-,分别求出ADE ∠和B ∠,根据ADC B α∠=∠+列式,可得结论;(2)根据图形,设E x ∠=,则2DAC x ∠=,根据ADC B BAD ∠=∠+∠,列式代入化简可得结论.【详解】解:(1)①∵40DAE ∠=︒,∴140ADE AED ∠+∠=︒,∴70ADE AED ∠=∠=︒,∵50BAC ∠=︒,∴504010BAC DAE α=∠-∠=︒-︒=︒,∴180652BACACB ABC ︒-∠∠=∠==︒,∵ADC B α∠=∠+,∴706510β︒+=︒+︒,∴5β=︒;故答案为10︒,5︒;②∵42DAE ∠=︒,∴138ADE AED ∠+∠=︒,∴69ADE AED ∠=∠=︒,∵58BAC ∠=︒,∴584216α=︒︒=︒﹣,∴180612BACACB B ︒-∠∠=∠==︒,∵ADC B α∠=∠+,∴696116β︒+=︒+︒,∴8β=︒;故答案为16︒,8︒;③2αβ=,理由是:如图(1),设BAC x ∠=,DAE y ∠=,则x y α=-,∵ACB ABC ∠=∠,∴1802xACB ︒-∠=,∵ADE AED ∠=∠,∴1802y AED ︒-∠=,∴ADE ABC βα+∠=+∠,18018022y x βα︒-︒-+=+,化简可得:2αβ=;(2)2180αβ=-︒,理由是:由图象可得,设E x ∠=,则2DAC x ∠=,∴2BAC BAD DAC x α∠=∠+∠=+,∴18022xB ACB α︒--∠=∠=∵ADC B BAD ∠=∠+∠,∴18022x x αβα︒---=+,∴2180αβ=-︒.【点睛】题目主要考查等腰三角形的性质、三角形内角和定理、三角形外角的性质,熟练掌握等腰三角形的性质及运用类比的方法解决问题是解题关键.23.(1)m=3;(2)m=1;(3)m <﹣12【解析】【分析】(1)把原点坐标(0,0)代入函数关系式,即可求得m 的值;(2)根据图象平行的一次函数的一次项系数相同即可得到关于m 的方程,解出即可;(3)根据一次函数的性质即可得到关于m 的不等式,解出即可.【详解】解:(1)由题意得,30m -=,解得:3m =;(2)由题意得,213m +=,解得:1m =;(3)由题意得,210m +<,12m <-.【点睛】解答本题的关键是熟练掌握一次函数的性质:当0k >时,y 随x 的增大而增大;当0k <时,y 随x 的增大而减小.24.(1)(3,4);21(2)223y x =+;(3)3x <时.【解析】【分析】(1)把点C (m ,4)代入正比例函数43y x =即可得到答案;(2)把点A 和点C 的坐标代入y kx b =+求得k ,b 的值即可;(3)根据图象判断.【详解】解:(1)∵点C (m ,4)在正比例函数43y x =上,∴443m =,∴3m =,即点C 坐标为(3,4)(2)∵一次函数y kx b =+经过A (-3,0)、点C (3,4)∴3034k b k b -+=⎧⎨+=⎩,解之得:232k b ⎧=⎪⎨⎪=⎩,∴一次函数的表达式为:223y x =+;(3)由图象可知一次函数223y x =+与正比例函数43y x =的交点是点C ,并且当3x <时,43kx b x +>.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
沪科版八年级数学上册
期中测试题
公司内部档案编码:[OPPTR-OPPT28-OPPTL98-
八年级数学期中考试试题 一、选择题(每题3分,共30分)
1.在平面直角坐标系中,点(3,-2)在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限 2.点P (-3,4)到y 轴的距离是 ( ) A .3 B .4 C .-3 D .5 3.一次函数32-=x y 的图象不经过( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限 4.下列函数 (1)12-=x y (2)x
y 1= (3)x y 3-= (4)12+=x y 中,是一次函数的有( )
A .3个
B .2个
C .1个
D .0个 5.下列说法中错误的是( ) A .三角形的中线、高、角平分线都是线段 B .任意三角形的内角和都是180°
C .三角形按角可分为锐角三角形、直角三角形和等腰三角形
D .直角三角形两锐角互余
6.直线1+-=x y 上有两点A (1x ,1y ),B (2x ,2y ),且1x <2x ,则
1y 与2y 的大小关系是( )
A .1y >2y
B .1y =2y
C .1y <2y
D .无法确定
7.已知一次函数y=kx+b,当x 增加3时,y 减小2,则k 的值是( ) A .3
2- B . 2
3- C .3
2 D . 2
3
8.如图,正方形ABCD 的边长为4,P 为正方形边上一动点,运动路线是A→D→C→B→A,设P 点经过的路线为x ,以点A 、P 、D 为顶点的三角形的面积是y .则下列图象能大致反映y 与x 的函数关系的是( )
9.直线y=2x -4与两坐标轴所围成的三角形面积等于( ) A .8 B .6 C . 4 D .16 10.如图所示,在△ABC 中,已知点D 、E 、F 分别为边BC 、AD 、 CE 的中点,且ABC S ∆=4cm 2,则阴影S 等于( ) A .2cm 2 B .1 cm 2 C .21 cm 2 D .4
1 cm
2 二、填空题(每题4分,共16分)
11.写出“对顶角相等”的逆命题_________________________ 12.函数21
1
++-=
x x y 的自变量x 的取值范围是___________________。
13等腰△ABC 中,AB=AC ,AC 边的中线BD 将△ABC 的周长分成长12cm 和9cm 的两段,则等腰△ABC 的腰长为 。
14.若直线b
=2与两坐标轴围成的三角形面积为9,则b=_______ x
y+。
三、解答题(共74分)
15. (6分)已知等腰三角形周长为24cm,若底边长为y(cm),一腰长为x(cm).
(1)写出y与x的函数关系式;
(2)求自变量x的取值范围;
(3)画出这个函数的图象.
16. (6分)已知一次函数的图像过(3,5)和
(-4,-9)两点。
(1)求此一次函数的解析式;
(2)试判断点(-1,-3)是否在此一次函数的图像上。
17. (6分)已知:△ABC中,AB=5,BC=2a+1,AC=12,求a的范围。
18. (8分)已知,如图,△ABC中,∠ABC=66°,∠ACB=54°,BE、CF是两边AC、AB
上的高,它们交于点H。
求∠ABE和∠BHC的度数。
19. (6分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(4-,5),(1-,3).
⑴请在如图所示的网格内作出x 轴、y 轴;
⑵请作出将△ABC 向下平移的两个单位,向右平移3个单位后的△A′B′C′;
⑶写出点B′的坐标并求出△ABC 的面积.
20. (8分)已知一次函数2)12(-++=m x m y ,⑴若函数的图象经过原点,求m 的值; ⑵若函数的图象在y 轴上的截距为3-,求m 的值; ⑶若函数的图象平行于直线1+=x y ,求m 的值;⑷若该函数的图象不过第二象限,求m 的取值范围。
21. (12分)如图,在△ABC 中,内角平分线BP 和外角平分线CP 相
交于点P ,根据下列条件求∠P 的度数。
(1)若∠ABC=50°,∠ACB=80°,则∠P=______,若∠ABC +∠ACB=110°,则∠P=_____;(2)若∠BAC=90°,则∠P=___________;
(3)从以上的计算中,你能发现∠P 与∠BAC 的关系是__________________;
(4)证明第(3)题中你所猜想的结论。
22. (10分)小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50 min 才乘上缆车,缆车的
P
D
C
B
A
平均速度为180 m/min.设小亮出发x min后行走的路程为y m.图中的折线表示小亮在整个行走过程中y与x的函数关系.
⑴小亮行走的总路程是____________㎝,他途中休息了________min .
⑵①当50≤x≤80时,求y与x的函数关系式;
②当小颖到达缆车终点为时,小亮离缆车终点的路程是多少
23. (12分)一手机经销商计划购进A、B、C三种型号手机共60部,每种型号手机至少要购进8部,且恰好用完购机款61000元.设购进A 型手机x部,B型手机y部.三种型号手机的进价和预售价如下表:
手机型号A型B型C型
进价(单位:元
90012001100
/部)
预售价(单位:元
120016001300
/部)
(1)用含x,y的式子表示购进C型手机的部数为
____________________;
(2)y与x之间的函数关系式为
_______________________________;
(3)假设所购进手机全部售出,综合考虑各种因素,该手机经销商在购销这批手机过程中需另外支出各种费用共1500元.
①求出预估利润P(元)与x(部)的函数关系式;
(注:预估利润P=预售总额-购机款-各种费用)
②求出预估利润的最大值,并写出此时购进三款手机各多少部.。