湖北省孝感市大悟县2018-2019学年九年级数学上学期期中试卷

合集下载

【初三数学】孝感市九年级数学上期中考试单元测试卷(解析版)

【初三数学】孝感市九年级数学上期中考试单元测试卷(解析版)

新九年级上册数学期中考试试题(含答案)一、选择题(本题共16分,每小题2分)1.(2分)以下是“回收”、“绿色包装”、“节水”、“低碳”四个标志,其中是中心对称图形的是()A.B.C.D.2.(2分)二次函数y=(x+2)2+3的图象的顶点坐标是()A.(﹣2,3)B.(2,3)C.(﹣2,﹣3)D.(2,﹣3)3.(2分)如图,⊙O的直径为10,AB为弦,OC⊥AB,垂足为C,若OC=3,则弦AB的长为()A.8B.6C.4D.104.(2分)如图,AB是⊙O的直径,CD是⊙O的弦,∠ABD=59°,则∠C等于()A.29°B.31°C.59°D.62°5.(2分)如图4×4的正方形网格中,△PMN绕某点旋转一定的角度,得到△P1M1N1,其旋转中心是()A.A点B.B点C.C点D.D点6.(2分)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=6,阴影部分图形的面积为()A.4πB.3πC.2πD.π7.(2分)已知抛物线y=ax2+bx+c上部分点的横坐标x纵坐标y的对应值如下表:①物线y=ax2+bx+c的开口向下;②抛物线y=ax2+bx+c的对称轴为直线x=﹣1;③方程ax2+bx+c=0的根为0和2;④当y>0时,x的取值范围是x<0或x>2以上结论中其中的是()A.①④B.②④C.②③D.③④8.(2分)如图1,⊙O过正方形ABCD的顶点A、D且与边BC相切于点E,分别交AB、DC于点M、N.动点P在⊙O或正方形ABCD的边上以每秒一个单位的速度做连续匀速运动.设运动的时间为x,圆心O与P点的距离为y,图2记录了一段时间里y与x的函数关系,在这段时间里P点的运动路径为()A.从D点出发,沿弧DA→弧AM→线段BM→线段BCB.从B点出发,沿线段BC→线段CN→弧ND→弧DAC.从A点出发,沿弧AM→线段BM→线段BC→线段CND.从C点出发,沿线段CN→弧ND→弧DA→线段AB二、填空题(本题共16分,每小题2分)9.(2分)在平面直角坐标系中,点P(2,﹣3)关于原点对称点P′的坐标是.10.(2分)平面直角坐标系xOy中,以原点O为圆心,5为半径作⊙O,则点A(4,3)在⊙O(填:“内”或“上“或“外”)11.(2分)如图所示,把一个直角三角尺ACB绕30°角的顶点B顺时计旋转,使得点A 落在CB的延长线上的点E处,则∠BCD的度数为.12.(2分)将抛物线y=x2﹣6x+5化成y=a(x﹣h)2﹣k的形式,则hk=.13.(2分)若正六边形的边长为2,则其外接圆的面积为.14.(2分)二次函数满足下列条件:①函数有最大值3;②对称轴为y轴,写出一个满足以上条件的二次函数解析式:15.(2分)圆锥底面半径为6,高为8,则圆锥的侧面积为.16.(2分)阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:已知:∠ACB是△ABC的一个内角.求作:∠APB=∠ACB.小明的做法如下:如图①作线段AB的垂直平分线m;②作线段BC的垂直平分线n,与直线m交于点O;③以点O为圆心,OA为半径作△ABC的外接圆;④在弧ACB上取一点P,连结AP,BP.所以∠APB=∠ACB.老师说:“小明的作法正确.”请回答:(1)点O为△ABC外接圆圆心(即OA=OB=OC)的依据是;(2)∠APB=∠ACB的依据是.三、解答题(本原共68分,第17-22题,每小题5分,第23、24、26、28题,每小题5分,第25,27题,每小题5分)17.(5分)如图,在Rt△OAB中,∠OAB=90,且点B的坐标为(4,2)(1)画出△OAB绕点O逆时针旋转90°后的△OA1B1.(2)求点B旋转到点B1所经过的路线长(结果保留π)18.(5分)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示.(1)确定二次函数的解析式;(2)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.19.(5分)如图,四边形ABCD内接于⊙O,∠ABC=135°,AC=4,求⊙O的半径长.20.(5分)关于x一元二次方程x2+mx+n=0.(1)当m=n+2时,利用根的判别式判断方程根的情况.(2)若方程有实数根,写出一组满足条件的m,n的值,并求此时方程的根.21.(5分)如图,P A,PB是⊙O的切线,点A,B为切点,AC是⊙O的直径,∠ACB=70°.求∠P的度数.22.(5分)某商店销售一种进价为20元/双的手套,经调查发现,该种手套每天的销售量w (双)与销售单价x(元)满足w=﹣2x+80(20≤x≤40),设销售这种手套每天的利润为y(元).(1)求y与x之间的函数关系式;(2)当销售单价定为多少元时,每天的利润最大?最大利润是多少?23.(6分)如图,已知直角坐标系中一条圆弧经过正方形网格的格点A(0,4)、B(4,4)、C(6,2)(1)用直尺画出该圆弧所在圆的圆心M的位置,并标出M点的坐标;(2)若D点的坐标为(7,0),想一想直线CD与⊙M有怎样的位置关系,并证明你的猜想.24.(6分)已知:如图,在△ABC中,AB=AC,以AC为直径的⊙O与BC交于点D,DE ⊥AB,垂足为E,ED的延长线与AC的延长线交于点F.(1)求证:DE是⊙O的切线;(2)若⊙O的半径为4,∠F=30°,求DE的长.25.(7分)如图,Q是弧AB与弦AB所围成的图形的内部的一定点,P是弦AB上一动点,连接PQ并延长交弧AB于点C,连接BC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,B,C两点间的距离为y2cm.小明根据学习函数的经验,分别对函数y1,y2,随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)确定自变量x的取值范围是.(2)按下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值.(3)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并面出函数y1,y2的图象.(4)结合函数图象,解决问题:当△BPC为等腰三角形时,AP的长度约为cm.26.(6分)在平面直角坐标系中xOy中,抛物线y=x2﹣4x+m+2的顶点在x轴上.(1)求抛物线的表达式;(2)点Q是x轴上一点,①若在抛物线上存在点P,使得∠POQ=45°,求点P的坐标.②抛物线与直线y=1交于点E,F(点E在点F的左侧),将此抛物线在点E,F(包含点E和点F)之间的部分沿x轴向左平移n个单位后得到的图象记为G,若在图象G上存在点P,使得∠POQ=45°,求n的取值范围.27.(7分)已知:在四边形ABCD中,AB=AD,∠ABC+∠ADC=180°(1)如图①,若∠ACD=60°,BC=1,CD=3,则AC的长为;(2)如图②,若∠ACD=45°,BC=1,CD=3,求出AC的长;(3)如图③,若∠ACD=30°,BC=a,CD=b,直接写出AC的长.28.(6分)在平面直角坐标系xOy中,点A的坐标为(0,m),且m≠0,点B的坐标为(n,0),将线段AB绕点B顺时针旋转90°.得到线段BA1,称点A1为点A关于点B的“伴随点”,图1为点A关于点B的“伴随点”的示意图(1)已知点A(0,4),①当点B的坐标分别为(1,0),(﹣2,0)时,点A关于点B的“伴随点”的坐标分别为,;②点(x,y)是点A关于点B的“伴随点”,直接写出y与x之间的关系式;(2)如图2,点C的坐标为(﹣3,0),以C为圆心,为半径作圆,若在⊙C上存在点A关于点B的“伴随点”,直接写出点A的纵坐标m的取值范围.2018-2019学年北京市朝阳区九年级(上)期中数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)1.【解答】解:A、不是中心对称图形,本选项错误;B、不是中心对称图形,本选项错误;C、是中心对称图形,本选项正确;D、不是中心对称图形,本选项错误.故选:C.2.【解答】解:∵顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),∴二次函数y=(x+2)2+3的图象的顶点坐标是(﹣2,3).故选:A.3.【解答】解:连接OA,∵OA=5,OC=3,OC⊥AB,∴AC===4,∵OC⊥AB,∴AB=2AC=2×4=8.故选:A.4.【解答】解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=59°,∴∠A=90°﹣∠ABD=31°,∴∠C=∠A=31°.故选:B.5.【解答】解:如图,连接NN1,PP1,可得其垂直平分线相交于点B,故旋转中心是B点.故选:B.6.【解答】解:连接BC,OD,设CD交AB于E.∵∠BOC=2∠CDB,∠CDB=30°,∴∠COB=60°,∵OC=OB,∴△BOC是等边三角形,∴∠CBO=60°,∵CD⊥AB,CD=6,∴=,CE=ED=3,∴∠BOC=∠BOD=60°,EO=,OC=2,∴∠CBO=∠BOD,∴BC∥OD,∴S△BCD=S△BCO,∴S阴=S扇形OBC==2π.故选:C.7.【解答】解:从表格可以看出,函数的对称轴是x=1,顶点坐标为(1,﹣1),函数与x轴的交点为(0,0)、(2,0),①物线y=ax2+bx+c的开口向下.抛物线开口向上,错误;②抛物线y=ax2+bx+c的对称轴为直线x=﹣1,错误;③方程ax2+bx+c=0的根为0和2,正确;④当y>0时,x的取值范围是x<0或x>2,正确.故选:D.8.【解答】解:根据画出的函数的图象,C符合,故选:C.二、填空题(本题共16分,每小题2分)9.【解答】解:根据中心对称的性质,得点P(2,﹣3)关于原点的对称点P′的坐标是(﹣2,3).故答案为:(﹣2,3).10.【解答】解:∵点A(新九年级上册数学期中考试试题(含答案)一、选择题(本题共16分,每小题2分)1.(2分)以下是“回收”、“绿色包装”、“节水”、“低碳”四个标志,其中是中心对称图形的是()A.B.C.D.2.(2分)二次函数y=(x+2)2+3的图象的顶点坐标是()A.(﹣2,3)B.(2,3)C.(﹣2,﹣3)D.(2,﹣3)3.(2分)如图,⊙O的直径为10,AB为弦,OC⊥AB,垂足为C,若OC=3,则弦AB的长为()A.8B.6C.4D.104.(2分)如图,AB是⊙O的直径,CD是⊙O的弦,∠ABD=59°,则∠C等于()A.29°B.31°C.59°D.62°5.(2分)如图4×4的正方形网格中,△PMN绕某点旋转一定的角度,得到△P1M1N1,其旋转中心是()A.A点B.B点C.C点D.D点6.(2分)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=6,阴影部分图形的面积为()A.4πB.3πC.2πD.π7.(2分)已知抛物线y=ax2+bx+c上部分点的横坐标x纵坐标y的对应值如下表:①物线y=ax2+bx+c的开口向下;②抛物线y=ax2+bx+c的对称轴为直线x=﹣1;③方程ax2+bx+c=0的根为0和2;④当y>0时,x的取值范围是x<0或x>2以上结论中其中的是()A.①④B.②④C.②③D.③④8.(2分)如图1,⊙O过正方形ABCD的顶点A、D且与边BC相切于点E,分别交AB、DC于点M、N.动点P在⊙O或正方形ABCD的边上以每秒一个单位的速度做连续匀速运动.设运动的时间为x,圆心O与P点的距离为y,图2记录了一段时间里y与x的函数关系,在这段时间里P点的运动路径为()A.从D点出发,沿弧DA→弧AM→线段BM→线段BCB.从B点出发,沿线段BC→线段CN→弧ND→弧DAC.从A点出发,沿弧AM→线段BM→线段BC→线段CND.从C点出发,沿线段CN→弧ND→弧DA→线段AB二、填空题(本题共16分,每小题2分)9.(2分)在平面直角坐标系中,点P(2,﹣3)关于原点对称点P′的坐标是.10.(2分)平面直角坐标系xOy中,以原点O为圆心,5为半径作⊙O,则点A(4,3)在⊙O(填:“内”或“上“或“外”)11.(2分)如图所示,把一个直角三角尺ACB绕30°角的顶点B顺时计旋转,使得点A 落在CB的延长线上的点E处,则∠BCD的度数为.12.(2分)将抛物线y=x2﹣6x+5化成y=a(x﹣h)2﹣k的形式,则hk=.13.(2分)若正六边形的边长为2,则其外接圆的面积为.14.(2分)二次函数满足下列条件:①函数有最大值3;②对称轴为y轴,写出一个满足以上条件的二次函数解析式:15.(2分)圆锥底面半径为6,高为8,则圆锥的侧面积为.16.(2分)阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:已知:∠ACB是△ABC的一个内角.求作:∠APB=∠ACB.小明的做法如下:如图①作线段AB的垂直平分线m;②作线段BC的垂直平分线n,与直线m交于点O;③以点O为圆心,OA为半径作△ABC的外接圆;④在弧ACB上取一点P,连结AP,BP.所以∠APB=∠ACB.老师说:“小明的作法正确.”请回答:(1)点O为△ABC外接圆圆心(即OA=OB=OC)的依据是;(2)∠APB=∠ACB的依据是.三、解答题(本原共68分,第17-22题,每小题5分,第23、24、26、28题,每小题5分,第25,27题,每小题5分)17.(5分)如图,在Rt△OAB中,∠OAB=90,且点B的坐标为(4,2)(1)画出△OAB绕点O逆时针旋转90°后的△OA1B1.(2)求点B旋转到点B1所经过的路线长(结果保留π)18.(5分)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示.(1)确定二次函数的解析式;(2)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.19.(5分)如图,四边形ABCD内接于⊙O,∠ABC=135°,AC=4,求⊙O的半径长.20.(5分)关于x一元二次方程x2+mx+n=0.(1)当m=n+2时,利用根的判别式判断方程根的情况.(2)若方程有实数根,写出一组满足条件的m,n的值,并求此时方程的根.21.(5分)如图,P A,PB是⊙O的切线,点A,B为切点,AC是⊙O的直径,∠ACB=70°.求∠P的度数.22.(5分)某商店销售一种进价为20元/双的手套,经调查发现,该种手套每天的销售量w (双)与销售单价x(元)满足w=﹣2x+80(20≤x≤40),设销售这种手套每天的利润为y(元).(1)求y与x之间的函数关系式;(2)当销售单价定为多少元时,每天的利润最大?最大利润是多少?23.(6分)如图,已知直角坐标系中一条圆弧经过正方形网格的格点A(0,4)、B(4,4)、C(6,2)(1)用直尺画出该圆弧所在圆的圆心M的位置,并标出M点的坐标;(2)若D点的坐标为(7,0),想一想直线CD与⊙M有怎样的位置关系,并证明你的猜想.24.(6分)已知:如图,在△ABC中,AB=AC,以AC为直径的⊙O与BC交于点D,DE ⊥AB,垂足为E,ED的延长线与AC的延长线交于点F.(1)求证:DE是⊙O的切线;(2)若⊙O的半径为4,∠F=30°,求DE的长.25.(7分)如图,Q是弧AB与弦AB所围成的图形的内部的一定点,P是弦AB上一动点,连接PQ并延长交弧AB于点C,连接BC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,B,C两点间的距离为y2cm.小明根据学习函数的经验,分别对函数y1,y2,随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)确定自变量x的取值范围是.(2)按下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值.(3)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并面出函数y1,y2的图象.(4)结合函数图象,解决问题:当△BPC为等腰三角形时,AP的长度约为cm.26.(6分)在平面直角坐标系中xOy中,抛物线y=x2﹣4x+m+2的顶点在x轴上.(1)求抛物线的表达式;(2)点Q是x轴上一点,①若在抛物线上存在点P,使得∠POQ=45°,求点P的坐标.②抛物线与直线y=1交于点E,F(点E在点F的左侧),将此抛物线在点E,F(包含点E和点F)之间的部分沿x轴向左平移n个单位后得到的图象记为G,若在图象G上存在点P,使得∠POQ=45°,求n的取值范围.27.(7分)已知:在四边形ABCD中,AB=AD,∠ABC+∠ADC=180°(1)如图①,若∠ACD=60°,BC=1,CD=3,则AC的长为;(2)如图②,若∠ACD=45°,BC=1,CD=3,求出AC的长;(3)如图③,若∠ACD=30°,BC=a,CD=b,直接写出AC的长.28.(6分)在平面直角坐标系xOy中,点A的坐标为(0,m),且m≠0,点B的坐标为(n,0),将线段AB绕点B顺时针旋转90°.得到线段BA1,称点A1为点A关于点B的“伴随点”,图1为点A关于点B的“伴随点”的示意图(1)已知点A(0,4),①当点B的坐标分别为(1,0),(﹣2,0)时,点A关于点B的“伴随点”的坐标分别为,;②点(x,y)是点A关于点B的“伴随点”,直接写出y与x之间的关系式;(2)如图2,点C的坐标为(﹣3,0),以C为圆心,为半径作圆,若在⊙C上存在点A关于点B的“伴随点”,直接写出点A的纵坐标m的取值范围.2018-2019学年北京市朝阳区九年级(上)期中数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)1.【解答】解:A、不是中心对称图形,本选项错误;B、不是中心对称图形,本选项错误;C、是中心对称图形,本选项正确;D、不是中心对称图形,本选项错误.故选:C.2.【解答】解:∵顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),∴二次函数y=(x+2)2+3的图象的顶点坐标是(﹣2,3).故选:A.3.【解答】解:连接OA,∵OA=5,OC=3,OC⊥AB,∴AC===4,∵OC⊥AB,∴AB=2AC=2×4=8.故选:A.4.【解答】解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=59°,∴∠A=90°﹣∠ABD=31°,∴∠C=∠A=31°.故选:B.5.【解答】解:如图,连接NN1,PP1,可得其垂直平分线相交于点B,故旋转中心是B点.故选:B.6.【解答】解:连接BC,OD,设CD交AB于E.∵∠BOC=2∠CDB,∠CDB=30°,∴∠COB=60°,∵OC=OB,∴△BOC是等边三角形,∴∠CBO=60°,∵CD⊥AB,CD=6,∴=,CE=ED=3,∴∠BOC=∠BOD=60°,EO=,OC=2,∴∠CBO=∠BOD,∴BC∥OD,∴S△BCD=S△BCO,∴S阴=S扇形OBC==2π.故选:C.7.【解答】解:从表格可以看出,函数的对称轴是x=1,顶点坐标为(1,﹣1),函数与x轴的交点为(0,0)、(2,0),①物线y=ax2+bx+c的开口向下.抛物线开口向上,错误;②抛物线y =ax 2+bx +c 的对称轴为直线x =﹣1,错误; ③方程ax 2+bx +c =0的根为0和2,正确;④当y >0时,x 的取值范围是x <0或x >2,正确. 故选:D .8.【解答】解:根据画出的函数的图象,C 符合, 故选:C .二、填空题(本题共16分,每小题2分)9.【解答】解:根据中心对称的性质,得点P (2,﹣3)关于原点的对称点P ′的坐标是(﹣2,3).故答案为:(﹣2,3). 10.【解答】解:∵点A (新人教版九年级(上)期中模拟数学试卷(含答案)一、选择题(本大题共14小题,每小题3分,共42分)1.“瓦当”是中国古建筑装饰檐头的附件,是中国特有的文化艺术遗产,下面“瓦 当”图案中既是轴对称图形又是中心对称图形的是( )2.若0x =是关于x 的一元二次方程22(1)310k x x k +--+=(k 为系数)的根,则k 的值为( ) A .k =1B .k =-1C .k ≠1D .k =±13.某县为解决大班额问题,对学校进行扩建,计划用三年时间对全县学校进行扩建和 改造,2016年县政府已投资5亿元人民币,若每年投资的平均增长率相同,预计2018 年投资7.2亿元人民币,那么每年投资的平均增长率为( ) A .20%、﹣220%B .40%C .﹣220%D .20%4.下列关于圆的叙述正确的有( )①圆内接四边形的对角互补;②相等的圆周角所对的弧相等; ③正多边形内切圆的半径与正多边形的半径相等; ④圆内接平行四边形是矩形. A .1个B .2个C .3个D .4个5.二次函数2281y x x =-+的最小值是( ) A .7B .-7C .9D .-96.如图,在平面直角坐标系中,△ABC 的顶点都在方格线的格点上,将△ABC 绕点P顺时针方向旋转90°,得到△A′B′C′,则点P 的坐标为( ) A .(0,4) B .(1,1) C .(1,2)D .(2,1)7. 抛物线2y ax bx c =++上部分点的横坐标x ,纵坐标y0);②函数2y ax bx c =++的最大值为6;③抛物线的对称轴是直线12x =;④在对称轴左侧,y 随 x 增大而增大.其中正确有( )A .①②B .①③C .①②③D .①③④8.如图,正方形ABCD 的对角线相交于点O ,点O 又是正方形A 1B 1C 1O 的一个顶点,且 这两个正方形的边长都为2.若正方形A 1B 1C 1O 绕点O 转动,则两个正方形重叠部分的 面积为( ) A .1B .4C .16D .29.若二次函数2y x bx =+的图象的对称轴是经过(1,0)且平行于y 轴的直线,则关 于x 的方程23x bx -=的解是( )A .1213x x =-=-, B .1213x x ==-, C .1213x x ==, D .1213x x =-=, 10.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图,已知EF=CD =4cm ,则球的半径长是( ) A .2cmB .2.5cmC .3cmD .4cm11.如图,P 为⊙O 外一点,PA 、PB 分别切⊙O 于点A 、B ,CD 切⊙O 于点E ,分别交 PA 、PB 于点C 、D ,若PA =6,则△PCD 的周长为( ) A .8 B .6 C .12 D .10 12.如图,无论x 为何值,2y ax bx c =++恒为正的条件是( ) A .20,40a b ac >-< B .20,40a b ac <-> C .20,40a b ac >-> D .20,40a b ac <-<13.如图,⊙M 的半径为2,圆心M 的坐标为(3,4),点P 是⊙M 上的任意一点, PA ⊥PB ,且PA 、PB 与x 轴分别交于A 、B 两点,若点A 、点B 关于原点O 对称,则AB 的最小值为( ) A .3 B .4 C .6 D .8 14.如图,正三角形EFG 内接于⊙O,其边长为O 的内接正方形ABCD 的边 长为( )AB.3C .4D .5二、填空题(共1大题,5小题,每小题3分,共15分)15.(1)关于x 的方程221)20kx k x k +++=-(有实数根,则k 的取值范围是(2)如图,AB 是⊙O 的直径,C、D 是⊙O 上的点,且OC ∥BD ,AD 分别与BC 、OC 相交于点E 、F ,则下列结论:①AD ⊥BD ;②∠AOC =∠AEC ; ③BC 平分∠ABD ; ④△CEF ≌△BED .其中一定成立的是 (把你认为正确结论的序号都填上). (3)如图,《九章算术》是我国古代数学名著,书中有下列问题“今有勾八步,股十五 步,问勾中容圆径几何?”其意思是:今有直角三角形,勾(短直角边)长为8步,股 (长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是 步. (4)如图,在同一平面内,将△ABC 绕点A 逆时针旋转40°到△AED 的位置,恰好使得 DC ∥AB ,则∠CAB 的大小为 .(5)如图,一段抛物线:(2)y x x =--(0≤x ≤2)记为C 1,它与x 轴交于两点O 、A 1; 将C 1绕A 1旋转180°得到C 2,交x 轴于A 2;将C 2绕A 2旋转180°得到C 3,交x 轴于A 3;… 如此进行下去,直至得到C 7,若点P (13,m )在第7段抛物线C 7上,则m = .三、解答题(共6小题,共63分)16.(每小题5分,共10分)用合适的方法解一元二次方程:(1)2(4)5(4)x x +=+ (2)231212x x -=-17.(本小题10分)如图,AB 是⊙O 的直径,AP 是⊙O 的切线,点A 为切点,BP 与 ⊙O 交于点C ,点D 是AP 的中点,连结CD . (1)求证:CD 是⊙O 的切线;(2)若AB =2,∠P =30°,求阴影部分的面积.18.(本小题10分)工人师傅用一块长为10dm ,宽为6dm 的矩形铁皮制作一个无盖的 长方体容器,需要将四角各裁掉一个正方形.(厚度不计)求长方体底面面积为12dm 2 时,裁掉的正方形边长多大?19.(本小题9分)如图,在平面直角坐标系中,Rt △ABC 的顶点分别是A (﹣3,1) B (0,4)C (0,2).(1)将△ABC 以点C 为旋转中心旋转180°,画出旋转后对应的△A 1B 1C 1; (2)分别连接AB 1,BA 1后,求四边形AB 1A 1B 的面积.20.(本小题11分)如图,∠BAC =60°,AD 平分∠BAC 交⊙O 于点D ,连接OB 、OC 、 BD 、CD .(1)求证:四边形OBDC 是菱形;(2)当∠BAC 为多少度时,四边形OBDC 是正方形?21.(本小题13分)如图,在平面直角坐标系中,二次函数24(0)y ax bx a =+-≠的 图象与x 轴交于点A (﹣2,0)与点C (8,0)两点,与y 轴交于点B ,其对称轴与x 轴 交于点D .(1)求该二次函数的解析式;(2)若点P (m ,n )是该二次函数图象上的一个动点(其中m >0,n <0),连结PB , PD ,BD ,AB .请问是否存在点P ,使得△BDP 的面积恰好等于△ADB 的面积?若存在 请求出此时点P 的坐标,若不存在说明理由.2018—2019学年度上学期期中学业水平质量调研试题九年级数学参考答案 2018.11二、填空题(共1大题,5小题,每新人教版九年级(上)期中模拟数学试卷(含答案)一、选择题(本大题共14小题,每小题3分,共42分)1.“瓦当”是中国古建筑装饰檐头的附件,是中国特有的文化艺术遗产,下面“瓦 当”图案中既是轴对称图形又是中心对称图形的是( )2.若0x =是关于x 的一元二次方程22(1)310k x x k +--+=(k 为系数)的根,则k 的值为( ) A .k =1B .k =-1C .k ≠1D .k =±13.某县为解决大班额问题,对学校进行扩建,计划用三年时间对全县学校进行扩建和 改造,2016年县政府已投资5亿元人民币,若每年投资的平均增长率相同,预计2018 年投资7.2亿元人民币,那么每年投资的平均增长率为( ) A .20%、﹣220%B .40%C .﹣220%D .20%4.下列关于圆的叙述正确的有( )①圆内接四边形的对角互补;②相等的圆周角所对的弧相等; ③正多边形内切圆的半径与正多边形的半径相等; ④圆内接平行四边形是矩形. A .1个B .2个C .3个D .4个5.二次函数2281y x x =-+的最小值是( ) A .7B .-7C .9D .-96.如图,在平面直角坐标系中,△ABC 的顶点都在方格线的格点上,将△ABC 绕点P 顺时针方向旋转90°,得到△A′B′C′,则点P 的坐标为( ) A .(0,4) B .(1,1) C .(1,2)D .(2,1)7. 抛物线2y ax bx c =++上部分点的横坐标x ,纵坐标y0);②函数2y ax bx c =++的最大值为6;③抛物线的对称轴是直线12x =;④在对称轴左侧,y 随 x 增大而增大.其中正确有( )A .①②B .①③C .①②③D .①③④8.如图,正方形ABCD 的对角线相交于点O ,点O 又是正方形A 1B 1C 1O 的一个顶点,且 这两个正方形的边长都为2.若正方形A 1B 1C 1O 绕点O 转动,则两个正方形重叠部分的 面积为( ) A .1B .4C .16D .29.若二次函数2y x bx =+的图象的对称轴是经过(1,0)且平行于y 轴的直线,则关 于x 的方程23x bx -=的解是( )A .1213x x =-=-, B .1213x x ==-, C .1213x x ==, D .1213x x =-=, 10.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图,已知EF=CD =4cm ,则球的半径长是( ) A .2cmB .2.5cmC .3cmD .4cm11.如图,P 为⊙O 外一点,PA 、PB 分别切⊙O 于点A 、B ,CD 切⊙O 于点E ,分别交 PA 、PB 于点C 、D ,若PA =6,则△PCD 的周长为( ) A .8 B .6 C .12 D .10 12.如图,无论x 为何值,2y ax bx c =++恒为正的条件是( ) A .20,40a b ac >-<B .20,40a b ac <->C .20,40a b ac >-> D .20,40a b ac <-<13.如图,⊙M 的半径为2,圆心M 的坐标为(3,4),点P 是⊙M 上的任意一点,PA ⊥PB ,且PA、PB与x 轴分别交于A 、B 两点,若点A 、点B 关于原点O 对称,则AB 的最小值为()A .3B .4 C.6 D .8 14.如图,正三角形EFG内接于⊙O,其边长为O 的内接正方形ABCD 的边长为( )A B .3C .4D .5二、填空题(共1大题,5小题,每小题3分,共15分)15.(1)关于x 的方程221)20kx k x k +++=-(有实数根,则k 的取值范围是 (2)如图,AB 是⊙O 的直径,C 、D 是⊙O 上的点,且OC ∥BD ,AD 分别与BC 、OC 相交于点E 、F ,则下列结论:①AD ⊥BD ;②∠AOC =∠AEC ; ③BC 平分∠ABD ; ④△CEF ≌△BED .其中一定成立的是 (把你认为正确结论的序号都填上). (3)如图,《九章算术》是我国古代数学名著,书中有下列问题“今有勾八步,股十五 步,问勾中容圆径几何?”其意思是:今有直角三角形,勾(短直角边)长为8步,股 (长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是 步. (4)如图,在同一平面内,将△ABC 绕点A 逆时针旋转40°到△AED 的位置,恰好使得 DC ∥AB ,则∠CAB 的大小为 .(5)如图,一段抛物线:(2)y x x =--(0≤x ≤2)记为C 1,它与x 轴交于两点O 、A 1; 将C 1绕A 1旋转180°得到C 2,交x 轴于A 2;将C 2绕A 2旋转180°得到C 3,交x 轴于A 3;… 如此进行下去,直至得到C 7,若点P (13,m )在第7段抛物线C 7上,则m = .三、解答题(共6小题,共63分)16.(每小题5分,共10分)用合适的方法解一元二次方程: (1)2(4)5(4)x x +=+ (2)231212x x -=-17.(本小题10分)如图,AB 是⊙O 的直径,AP 是⊙O 的切线,点A 为切点,BP 与 ⊙O 交于点C ,点D 是AP 的中点,连结CD . (1)求证:CD 是⊙O 的切线;(2)若AB =2,∠P =30°,求阴影部分的面积.18.(本小题10分)工人师傅用一块长为10dm ,宽为6dm 的矩形铁皮制作一个无盖的 长方体容器,需要将四角各裁掉一个正方形.(厚度不计)求长方体底面面积为12dm 2 时,裁掉的正方形边长多大?19.(本小题9分)如图,在平面直角坐标系中,Rt △ABC 的顶点分别是A (﹣3,1)B (0,4)C (0,2).(1)将△ABC 以点C 为旋转中心旋转180°,画出旋转后对应的△A 1B 1C 1; (2)分别连接AB 1,BA 1后,求四边形AB 1A 1B 的面积.20.(本小题11分)如图,∠BAC =60°,AD 平分∠BAC 交⊙O 于点D ,连接OB 、OC 、 BD 、CD .(1)求证:四边形OBDC 是菱形;(2)当∠BAC 为多少度时,四边形OBDC 是正方形?21.(本小题13分)如图,在平面直角坐标系中,二次函数24(0)y ax bx a =+-≠的 图象与x 轴交于点A (﹣2,0)与点C (8,0)两点,与y 轴交于点B ,其对称轴与x 轴 交于点D .(1)求该二次函数的解析式;(2)若点P (m ,n )是该二次函数图象上的一个动点(其中m >0,n <0),连结PB ,PD ,BD ,AB .请问是否存在点P ,使得△BDP 的面积恰好等于△ADB 的面积?若存在 请求出此时点P 的坐标,若不存在说明理由.2018—2019学年度上学期期中学业水平质量调研试题九年级数学参考答案 2018.11二、填空题(共1大题,5小题,每最新九年级(上)数学期中考试试题【含答案】一、选择题(共12小题,共36分) 1.﹣2的倒数是( ) A .﹣B .C .﹣2D .22.地球和太阳间的距离为150 000 000km ,用科学记数法表示150 000 000为( ) A .15×107B .1.5×108C .0.15×109D .1.5×1073.下列计算正确的是( )A.2a+3b=5ab B.(﹣2a2b)3=﹣6a6b3C.D.(a+b)2=a2+b24.一组数据3、4、x、1、4、3有唯一的众数3,则这组数据的中位数是()A.3 B.3.5 C.4 D.4.55.已知反比例函数y=,下列结论中不正确的是()A.其图象经过点(3,1)B.其图象分别位于第一、第三象限C.当x>0时,y随x的增大而减小D.当x>1时,y>36.下列几何体中,其主视图、俯视图和左视图分别是图中三个图形的是()A.B.C.D.7.不等式组的最小整数解是()A.﹣3 B.﹣2 C.0 D.18.甲乙两位赛车手同时从起点出发,行驶20千米到达终点.已知甲车手每小时比乙车手多行驶1千米,甲比乙早到达12分钟,若设乙每小时跑x千米,则所列方程式为()A.B.C.D.9.如图,△ABC中,DE∥BC,若AD:DB=2:3,则下列结论中正确的()A.=B.=C.=D.=10.下列结论错误的是()A.对角线相等的菱形是正方形B.对角线互相垂直的矩形是正方形C.对角线互相垂直且相等的四边形是正方形D.对角线互相垂直且相等的平行四边形是正方形11.如图,Rt△ABC中,∠B=90°,AB=9,BC=6,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段AN的长等于()A.3 B.4 C.5 D.612.如图,在正方形ABCD中,点E、F分别在边BC、DC上,AE、AF分别交BD于点M、N,连接CN、EN,且CN=EN.下列结论:①AN=EN,AN⊥EN;②BE+DF=EF;③;④图中只有4对相似三角形,其中正确结论的个数是()A.4 B.3 C.2 D.1二、填空题(共2小题,共6分)13.因式分解:2m3﹣8m=.14.若直线y=﹣2x+b经过点(3,5),则关于x的不等式﹣2x+b<5的解集是.三、解答题(共3小题,共18分)15.(5分)计算:(﹣)﹣1﹣﹣(π﹣3.14)0+|1﹣|16.(6分)先化简,再求值:(﹣m+1)÷,其中m的值从﹣1,0,2中选取.17.(7分)某中学为使高一新生入校后及时穿上合身的校服,现提前对某校九年级三班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图两个不完整的统计图(校服型号以身高作为标准,共分为6个型号):根据以上信息,解答下列问题:(1)该班共有名学生;(2)补全条形统计图;(3)该班学生所穿校服型号的众数为,中位数为;(4)如果该校预计招收新生1500名,根据样本数据,估计新生穿170型校服的学生大约有多少名?一、填空题(本题共有2小题,每小题3分,共6分)18.若,则=.19.如图,点A,B在反比例函数y=(k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是.。

【精编】2018-2019年人教版九年级数学上期中综合试卷有答案(21-23章).docx

【精编】2018-2019年人教版九年级数学上期中综合试卷有答案(21-23章).docx

2018-2019学年度第一学期人教版九年级数学上册期中综合检测试卷(21-23章)考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.下列方程中是关于一元二次方程的为()A. B.C. D.2.抛物线的对称轴是()A. B. C. D.3.一元二次方程的二次项系数、一次项系数、常数项分别是()A.;;B.;;C.;;D.;;4.如图所示是二次函数图象的一部分,图象过点,二次函数图象对称轴为直线,给出五个结论:① ;② ;③;④方程的根为,;⑤当时,随着的增大而增大.其中正确结论是()A.①②③B.①③④C.②③④D.①④⑤5.若、是方程的两个根,则:的值为()A. B. C. D.6.若点关于原点对称点的坐标为,则点的坐标是()A. B.C. D.7.已知是二次函数且有最大值,则A. B. C. D.8.用配方法解方程,可变形为()A. B.C. D.9.已知二次函数的图象如图所示,则这个二次函数的表达式为()A. B.C. D.10.已知关于的函数关系式为,(为正常数,为时间),则函数图象为()A. B.C. D.二、填空题(共 10 小题,每小题 3 分,共 30 分)11.把二次函数配方成顶点式为________.12.当________时,方程的两个根互为相反数.13.已知二次函数的部分图象如图所示,则关于的一元二次方程的解为________.14.某单位在两个月内将开支从元降到元,如果每月降低开支的百分率相同,设为,则由题意可以列出关于的方程是________.15.关于的一元二次方程(是常数)有两个整数解,则的值可以是________(写出一个即可).16.已知关于的方程有两个相等的实数根,则的值是________.17.设,是方程的两个实数根,则的值为________.18.两个数的和为,这两个数的积最大可以达到________.19.若方程的一个根是,则另一个根是________,________.20.某种商品的价格为元,准备进行两次降价,如果每次降价的百分率都是,经过两次降价后的价格(单位:元)随每次降价的百分率的变化而变化,则与之间的关系式为________.三、解答题(共 7 小题,共 60 分)21.(12分) 用适当的方法解下列方程:;(2);(3).22.(8分) 在正方形网格中,建立如图所示的平面直角坐标系,的三个顶点都在格点上,点的坐标,请解答下列问题:画出关于轴对称的,并写出点,,的坐标;将绕点逆时针旋转,画出旋转后的,并写出点,的坐标.23.(8分) 某农场去年种植了亩地的南瓜,亩产量为,根据市场需要,今年该农场扩大了种植面积,并且全部种植了高产的新品种南瓜,设南瓜种植面积的增长率为.则今年南瓜的种植面积为________亩;(用含的代数式表示)如果今年南瓜亩产量的增长率是种植面积的增长率的,今年南瓜的总产量为,求南瓜亩产量的增长率.24.(8分) 某中学课外兴趣活动小组准备围建一个矩形花草园,其中一边靠墙,另外三边周长为米的篱笆围成.已知墙长为米(如图所示),设这个花草园垂直于墙的一边长为米.若花草园的面积为平方米,求;若平行于墙的一边长不小于米,这个花草园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;当这个花草园的面积不小于平方米时,直接写出的取值范围.25.(8分) 如图,已知,.求证:;若,问经过怎样的变换能与重合?26.(8分) 如图,已知抛物线与坐标轴分别交于点、和点,动点从原点开始沿方向以每秒个单位长度移动,动点从点开始沿方向以每秒个单位长度移动,动点、同时出发,当动点到达原点时,点、停止运动.直接写出抛物线的解析式:________;求的面积与点运动时间的函数解析式;当为何值时,的面积最大?最大面积是多少?当的面积最大时,在抛物线上是否存在点(点除外),使的面积等于的最大面积?若存在,求出点的坐标;若不存在,请说明理由.27.(8分) 如图,在中,,,.将绕点顺时针旋转得.①求点旋转经过的路径长;②求线段的长;如图,过点作的垂线与的延长线交于点,将绕点顺时针旋转得.在图中画出线段绕点旋转所形成的图形(用阴影表示),并求出该图形的面积.答案1.C2.C3.B4.D5.D6.B7.A8.B9.B10.A11.12.13.,14.15.,,,写出一个16.或17.18.19.20.21.解:(1),所以,;,或,所以,;(3),,或,所以,.22.解:如图所示,,,;(2)如图所示,,.23..今年南瓜亩产量为,根据题意得:,整理得:,解得:或(舍去).答:南瓜亩产量的增长率为.24.解:根据题意知平行于墙的一边的长为米,则有:,解得:或,∵ ,∴ ,故;设苗圃园的面积为,∴ ,∵ ,∴苗圃园的面积有最大值,∵ ,解得:,∴ ,∴当时,即平行于墙的一边长米,最大 . 平方米;当时,最小;由题意得,解得:或,又∵ ,∴ .25.证明:在与中,,,;∴ ,∴ .解:先将绕点逆时针旋转,再将沿直线对折,即可得与重合.或先将绕点顺时针旋转,再将沿直线对折,即可得与重合.26.; ∵点、,∴ ,,令,得:,解得:,,∵点在轴的负半轴上,∴点,∴ ,根据题意得:当点运动秒时,,,∴ ,∴ ,∴,即,∴当时,最大;由知:当时,最大,∴当时,,,∴ ,,由勾股定理得:,设直线的解析式为:,将,,代入上式得:,,∴直线的解析式为:,过点作,交抛物线与点,如图,设直线的解析式为:,将代入得:,∴直线的解析式为:,将,与联立成方程组得:,解得:,,∴;过点作,垂足为,∵当时,,∴,过点作,垂足为,且使,过点作轴,垂足为,如图,可得,∴,即:,解得:,∴,由勾股定理得:,∴,过点作,与抛物线交与点,如图,设直线的解析式为:,将,代入上式得:,∴直线的解析式为:,将,与联立成方程组得:,解得:,,∴ 或,综上所述:当的面积最大时,在抛物线上存在点(点除外),使的面积等于的最大面积,点的坐标为:或或.27.解: ①∵ ,,,∴ .∴点旋转的路径;…②如下图所示:在中,,,∴.∴.∴;… 如图所示:…∵ ,∴.在中,,,∴.…。

2018-2019学年度上学期期中九年级数学试卷及答案

2018-2019学年度上学期期中九年级数学试卷及答案

2018-2019学年度上学期期中考试 九年级数学试题 (满分120分,时间120分钟)卷一(请将正确选项涂在答题卡上)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分,在每小题给出的四1. 下列图形中,旋转60°后可以和原图形重合的是( ) A .正六边形 B .正五边形 C .正方形 D .正三角形 2.二次函数y =12x 2-4x +3的顶点坐标和对称轴分别是( )A .(1,2),x =1B .(-1,2), x =-1C .(-4,-5),x =-4D .(4,-5),x =43.抛物线y =x 2-2x +1与x 轴的交点个数是( ) A .0 B .1 C .2 D .34.将y =(2x -1)(x +2)+1化成y =a(x +m)2+n 的形式为( ) A .y =2(x +34)2-2516 B .y =2(x -34)2-178C .y =2(x +34)2-178D .y =2(x +34)2+1785.抛物线y =(x +2)2-3可以由抛物线y =x 2平移得到,则下列平移过程正确的是( )A .先向左平移2个单位长度,再向上平移3个单位长度B .先向左平移2个单位长度,再向下平移3个单位长度C .先向右平移2个单位长度,再向下平移3个单位长度D .先向右平移2个单位长度,再向上平移3个单位长度6.设A(-4,y 1),B(-3,y 2),C(0,y 3)是抛物线y =(x +1)2+a 上的三点,则y 1,y 2,y 3的大小关系为( )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 2>y 1D .y 3>y 1>y 27.如图所示的桥拱是抛物线形,其函数的解析式为y =-14x 2,当水位线在AB 位置时,水面宽12 m ,这时水面离桥顶的高度为( )A .3 mB .2 6 mC .4 3 mD .9 m,(第8题图)),(第10题图))8.已知二次函数y =ax 2+bx +c 的图象如图所示,有以下结论:①a +b +c<0;②a -b +c>1;③abc>0;④4a -2b +c<0;⑤c -a>1.其中所有正确结论的序号是( ) A .①② B .①③④ C .①②③⑤ D .①②③④⑤9.下列方程采用配方法求解较简便的是( ) A .3x 2+x -1=0 B .4x 2-4x -8=0 C .x 2-7x =0 D.()x -32=4x 210.如图,某厂有许多形状为直角梯形的铁皮边角料,为节约资源,现要按图中所示的方法从这些边角料上截取矩形(阴影部分)铁皮备用,当截取的矩形面积最大时,矩形两边长x ,y 应分别为( ) A .x =10,y =14 B .x =14,y =10 C .x =12,y =15 D .x =12,y =1211. 二次函数y =ax 2+bx +1(a ≠0)的图象的顶点在第一象限,且过点(-1,0).设t =a +b +1,则t 值的变化范围是( )A .0<t <1B .0<t <2C .1<t <2D .-1<t <112. 如图,O 是等边三角形的旋转中心,∠EOF =120°,∠EOF 绕点O 进行旋转,在旋转过程中,OE 与OF 与△ABC 的边构成的图形的面积( )A .等于△ABC 面积的13B .等于△ABC 面积的12 C .等于△ABC 面积的14 D .不能确定13. 点P 1(-1,y 1),P 2(3,y 2),P 3(5,y 3)均在二次函数y =-x 2+2x +c 的图象上,则y 1,y 2,y 3的大小关系是( )A.y 3>y 2>y 1B.y 3>y 1=y 2C.y 1>y 2>y 3D.y 1=y 2>y 314. 如图,△ABC 是等边三角形,四边形BDEF 是菱形,其中线段DF 的长与DB 相等,将菱形BDEF 绕点B 按顺时针方向旋转,甲、乙两位同学发现在此旋转过程中,有如下结论. 甲:线段AF 与线段CD 的长度总相等;乙:直线AF 和直线CD 所夹的锐角的度数不变. 那么,你认为( )A .甲、乙都对B .乙对甲不对C .甲对乙不对D .甲、乙都不对15. 如图,将△AOB 绕点O 逆时针旋转90°,得到△A ′OB ′.若点A 的坐标为(a ,b),则点A ′的坐标为( ).A . (-b ,a) B. (b ,a) C. (-b ,-a) D. (b ,-a)16. 平时我们在跳绳时,绳子甩到最高处的形状可近似看作抛物线,如图建立直角坐标系,抛物线的函数解析式为y =-16x 2+13x +32,绳子甩到最高处时刚好通过站在点(2,0)处跳绳的学生小明的头顶,则小明的身高为( )m .A.1.6B.1.5C.1.4 D1.314题图 15题图12题图2018-2019学年度上学期期中考试九年级数学试题卷二2分.把答案写在题中横线上)17.如图,把抛物线y=12x2平移得到抛物线m. 抛物线m经过点A(-6,0)和原点(0,0),它的顶点为P,它的对称轴与抛物线y=12x2交于点Q,则图中阴影部分的面积为.(第17题图) (第19题图)18.在二次函数y=2则m的值为.19.如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10.若将△PAC绕点A逆时针旋转后,得到△P′AB,则点P与点P′之间的距离为,∠APB=.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)20. (本题8分)(1)用公式法解方程x2-3x-7=0.(2)解方程:4x(2x-1)=3(2x-1)21. (本题7分)如图,已知△ABC的顶点A,B,C的坐标分别是A(-1,-1),B(-4,-3),C(-4,-1).(1)作出△ABC关于原点O中心对称的图形△A’B’C’;(2)将△ABC绕原点O按顺时针方向旋转90°后得到△A1B1C1,画出△A1B1C1,并写出点A1的坐标.22.(本题8分)如图,△ABC中,AB=AC,∠BAC=50°,P是BC边上一点,将△ABP绕点A逆时针旋转50°,点P旋转后的对应点为点P′.(1)画出旋转后的三角形;(2)连接PP′,若∠BAP=20°,求∠PP′C的度数.23. (9分)如图,一个二次函数的图象经过A,B,C三点,点A的坐标为(-1,0),点B的坐标为(4,0),点C在y轴的正半轴上,且AB=OC.(1)求点C的坐标;(2)求这个二次函数的解析式,并求出该函数的最大值.24. (10分)已知关于x的函数y=ax2+x+1(a为常数).(1)若函数的图象与x轴恰有一个交点,求a的值;(2)若函数的图象是抛物线,且顶点始终在x轴上方,求a的取值范围.25. (本题12分)感知:如图①,在△ABC 中,∠C =90°,AC =BC ,D 是边BC 上一点(点D 不与点B ,C 重合).连接AD ,将AD 绕着点D 逆时针旋转90°,得到DE ,连接BE ,过点D 作DF ∥AC 交AB 于点F ,可知△ADF ≌△EDB ,则∠ABE 的大小为________.并说明理由.探究:如图②,在△ABC 中,∠C =α(0°<α<90°),AC =BC ,D 是边BC 上一点(点D 不与点B ,C 重合),连接AD ,将AD 绕着点D 逆时针旋转α,得到DE ,连接BE ,求证:∠ABE =α. 应用:设图②中的α=60°,AC =2.当△ABE 是直角三角形时,AE =________.并说明理由.26. (本题12分)某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y 1与投资成本x 成正比例关系,种植花卉的利润y 2与投资成本x 的平方成正比例关系,并得到了表格中的数据:(1)分别求出利润y 1与y 2关于投资量x 的函数关系式;(2)如果这位专业户计划用8万元资金投入种植花卉和树木,设他投入种植花卉金额m 万元,种植花卉和树木共获利润w 万元,求出w 与m 之间的函数关系式,并求他至少获得多少利润?他能获取的最大利润是多少?(3)若该专业户想获利不低于22万元,在(2)的条件下,直接写出投资种植花卉的金额m 的范围.。

2018-2019学年上学期期中考试九年级数学试卷及答案

2018-2019学年上学期期中考试九年级数学试卷及答案

九年级上册期中参考答案说明:1.如果考生的解答与本参考答案提供的解法不同,可根据提供的解法的评分标准精神进行评分.2.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定对后面给分多少,但原则上不超过后继部分应得分数之半.3.评分标准中,如无特殊说明,均为累计给分.4.评分过程中,只给整数分数.三、解答题:16.(1)解:3x (x -2)=x -2,移项得:3x (x -2)-(x -2)=0 整理得:(x -2)(3x -1)=0 x -2=0或3x -1=0 解得:x 1=2或x 2=1………………………………………………………………5分18.证明:延长AD 交⊙O 于E ,…………………2分 ∵OC ⊥AD ,∴⌒AE =2⌒AC ,AE=2AD ,………………………………4分 ∵⌒AB =2⌒AC , ∴⌒AE =⌒AB, ∴AB=AE ,∴AB=2AD . ………………………………………………………………………9分 19.解:设人行通道的宽度为x 米,依据题意得:……………………………1分 (30-3x )•(24-2x )=480,………………………………………………………4分 整理得:x 2-22x +40=0,解得:x1=2,x2=20,………………………………………………………………7分当x=20时,30-3x=-30,24-2x=-16,不符合题意,………………………8分答:人行通道的宽度为2米.………………………………………………………9分20.解:(1)当S取得最大值时,飞机停下来,则S=60t-1.5t2=-1.5(t-20)2+600,此时t=20因此t的取值范围是0≤t≤20;…………………3分(2)函数图象如图,S=60t-1.5t2=-1.5(t-20)2+600.飞机着陆后滑行600米才能停下来.…………6分(3)因为t=20,飞机着陆后滑行600米才能停下来.当t=14时,s=546,所以600-546=54(米).AD于M,∴旋转角α=360°-60°=300°.综上当α为60°或者300°时,GC=GB.…………………………………………………………10分。

2018-2019学年人教版九年级数学上册期中检测试卷及答案

2018-2019学年人教版九年级数学上册期中检测试卷及答案

2018-2019学年九年级数学上册期中检测试题一、填空题(共10 小题,每小题 3 分,共30 分)1.有一个面积为54cm2的长方形,将它的一边剪短5cm,另一边剪短2cm,得到一个正方形.若设这个正方形的边长为x cm,则根据题意可得方程________.2.把一个正方形的一边增加2cm,另一边增加1cm,得到矩形面积的2倍比正方形面积多11cm2,则原正方形边长为________.3.圆是中心对称图形,________是对称中心;圆又是轴对称图形,它的对称轴有________条.4.已知y=(k+2)x k2+k−4是二次函数,且当x>0时,y随x增大而增大,则k=________.5.如图,AB是⊙O的直径,点C在⊙O上,OD // AC,若BD=1,则BC的长为________.6.设x、y为实数,则y=−x2+2x−3有最大(或最小)值为________.7.一个圆弧形拱桥的跨度为6m,桥的拱高为1m,则此拱桥的半径是________m.8.在一个不透明的盒子中装有仅颜色不同的红、白两种小球,其中红球4个,白球n个,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到红球的频率稳定于0.2,那么可以推算出n大约是________.9.一条抛物线和y=2x2的图象形状相同,并且顶点坐标是(−1, 0),则此抛物线的函数关系式为________.10.如图,在△ABC中,∠C=90∘,∠B=25∘,以点C为圆心、AC为半径的圆交AB于点D,则AD^的度数为________度.二、选择题(共10 小题,每小题 3 分,共30 分)11.关于x的一元二次方程(a−1)x2−x+a2−1=0的一个根是0,则a的值为()A.1或−1B.−1C.1D.1212.已知点A(a, 1)与B(−2, b)关于坐标原点对称,那么点P(a, b)绕原点顺时针旋转90∘后的对应点P′的坐标是()A.(−1, 2)B.(1, −2)C.(−1, −2)D.(1, 2)13.如图,以AB为直径的半圆绕A点,逆时针旋转60∘,点B旋转到点B′的位置,已知AB=6,则图中阴影部分的面积为()A.6πB.5πC.4πD.3π14.用配方法解方程:x2−4x+2=0,下列配方正确的是()A.(x−2)2=2B.(x+2)2=2C.(x−2)2=−2D.(x−2)2=615.如图是一个中心对称图形,它的对称中心是()A.点AB.点BC.点CD.点A或点C1 6.解方程(5x−1)2=(2x+3)2的最适当方法应是()A.直接开平方法B.配方法C.公式法D.因式分解法17.直角坐标系中,点(1, −2)关于原点的对称点的坐标为()A.(1, 2)B.(−1, 2)C.(−1, −2)D.(1, −2)18.如图,是一个圆锥的主视图,则这个圆锥的全面积是()A.12πB.15πC.21πD.24π19.关于x 的方程kx 2+3x −1=0有实数根,则k 的取值范围是()A.k ≤94B.k ≥−94且k ≠0C.k ≥−94D.k >−94且k ≠0 20.下面四个图案中,不能由基本图案旋转得到的是()A.B.C.D. 三、解答题(共 6 小题,每小题 10 分,共 60 分)21.如图,AB 为⊙O 的直径,CD 为弦,AB =10,CD // AB ,CD =6.(1)求S 四边形ABCD ;(2)过C 点作CE // AD ,交AB 于E 点,求sin∠BCE 的值.22.某商场购进一种单价为40元的商品,如果以单价60元售出,那么每天可卖出300个,根据销售经验,每降价1元,每天可多卖出20个,假设每个降价x(元),每天销售y(个),每天获得利润W(元).(1)写出y与x的函数关系式________;(2)求出W与x的函数关系式(不必写出x的取值范围)23.一个布袋中有7个红球和13个白球,它们除颜色外都相同.(1)求从袋中摸出一个球是红球的概率;(2)现从袋中取走若干个白球,并放入相同数量的红球.搅拌均匀后,要使从袋,问取走了多少个白球?(要求通过列式或列方中摸出一个球是红球的概率是34程解答)24.如图,点O为Rt△ABC斜边AB上的一点,以OA为半径的⊙O与边BC交于点D,与边AC交于点E,连接AD,且AD平分∠BAC.(1)试判断BC与⊙O的位置关系,并说明理由;(2)若∠BAC=60∘,OA=2,求阴影部分的面积(结果保留π).25.如图,已知直角坐标平面上的△ABC,AC=CB,∠ACB=90∘,且A(−1, 0),B(m, n),C(3, 0).若抛物线y=ax2+bx−3经过A、C两点.(1)求a、b的值;(2)将抛物线向上平移若干个单位得到的新抛物线恰好经过点B,求新抛物线的解析式;(3)设(2)中的新抛物的顶点P点,Q为新抛物线上P点至B点之间的一点,以点Q为圆心画图,当⊙Q与x轴和直线BC都相切时,联结PQ、BQ,求四边形ABQP的面积.26.经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在下列横线上:销售单价x(元)________;销售量y(件)________;销售玩具获得利润w(元)________;(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?答案1.(x+5)(x+2)=54;(或x2+7x−44=0)2.1cm3.圆心无数4.25.26.−27.58.169.y=−2(x+1)2或y=2(x+1)210.5011-20:BCAAB ABDCD21.解:(1)作OF⊥DC于F,连结OC,如图,∵OF⊥DC,∴CF=DF=12DC=12×6=3,∵直径AB=10,∴OD=5,在Rt△ODF中,OF=√OD2−DF2=4,∴S四边形ABCD =12×(6+10)×4=32;(2)∵CD // AB,∴AD^=BC^,∴AD=BC,∵CD // AB,CD<AB,∴四边形ABCD是等腰梯形.作DG⊥AB于G,则DG=OF=4,AG=12(AB−CD)=2,在Rt△ADG中,由勾股定理得,AD=√AG2+DG2=2√5,∴BC=AD=2√5.∵CE // AD,CD // AB,∴四边形ADCE是平行四边形,∴CE=AD=2√5,AE=CD=6,∴BE=AB−AE=4.∵S△BCE=12BC⋅CE⋅sin∠BCE=12BE⋅DG,∴12×2√5×2√5⋅sin∠BCE=12×4×4,∴sin∠BCE=4.522.y=300+2x;(2)由题意可得,W与x的函数关系式为:W=(300+2x)(60−40−x)=−2x2−260x+6000.23.取走了8个白球.24.解:(1)BC与⊙O相切,理由:连接OD,∵AD平分∠BAC,∴∠BAD=∠DAC,∵AO=DO,∴∠BAD=∠ADO,∴∠CAD=∠ADO,∴AC // OD,∵∠ACD=90∘,∴OD⊥BC,∴BC与⊙O相切;(2)连接OE,ED,∵∠BAC=60∘,OE=OA,∴△OAE为等边三角形,∴∠AOE=60∘,∴∠ADE=30∘,又∵∠OAD=12∠BAC=30∘,∴∠ADE=∠OAD,∴ED // AO,∴S△AED=S△AOD,∴阴影部分的面积=S扇形ODE =60×π×4360=23π.25.解:(1)∵抛物线y=ax2+bx−3经过A(−1, 0)、C(3, 0),∴{a−b−3=09a+3b−3=0,解得:{a=1b=−2;(2)设抛物线向上平移k个单位后得到的新抛物线恰好经过点B,则新抛物线的解析式为y=x2−2x−3+k,∵A(−1, 0)、C(3, 0),∴CB=AC=3−(−1)=4,∵∠ACB=90∘,∴点B的坐标为(3, 4).∵点B(3, 4)在抛物线y=x2−2x−3+k上,∴9−6−3+k=4,解得:k=4,∴新抛物线的解析式为y=x2−2x+1;(3)设⊙Q与x轴相切于点D,与直线BC 相切于点E,连接QD、QE,如图所示,则有QD⊥OC,QE⊥BC,QD=QE,∴∠QDC=∠DCE=∠QEC=90∘,∴四边形QECD是矩形.∵QD=QE,∴矩形QECD是正方形,∴QD=DC.设点Q的横坐标为t,则有OD=t,QD=DC=OC−OD=3−t,∴点Q的坐标为(t, 3−t).∵点Q在抛物线y=x2−2x+1上,∴t2−2t+1=3−t,解得:t1=2,t2=−1.∵Q为抛物线y=x2−2x+1上P点至B点之间的一点,∴t=2,点Q的坐标为(2, 1),∴OD=2,QD=CD=1.由y=x2−2x+1=(x−1)2得顶点P的坐标为(1, 0),∴OP=1,PD=OD−OP=2−1=1,∴S四边形ABQP=S△ACB−S△PDQ−S梯形DQBC=12AC⋅BC−12PD⋅QD−12(QD+BC)⋅DC=12×4×4−12×1×1−12×(1+4)×1=5,∴四边形ABQP的面积为5.26.x1000−10x−10x2+1300x−30000(2)−10x2+1300x−30000= 10000解之得:x1=50,x2=80答:玩具销售单价为50元或80元时,可获得10000元销售利润.(3)根据题意得{1000−10≥540x≥44解之得:44≤x≤46,w=−10x2+1300x−30000=−10(x−65)2+12250,∵a=−10<0,对称轴是直线x=65,∴当44≤x≤46时,w随x增大而增大.∴当x=46时,W最大值=8640(元).答:商场销售该品牌玩具获得的最大利润为8640元.。

2018-2019学年度九年级上期中数学试卷含答案

2018-2019学年度九年级上期中数学试卷含答案

2018-2019学年度第一学期期中考试试卷九年级 数学 2017.11本试卷由填空题、选择题和解答题三大题组成,共28题,满分130分。

考试用时120分钟。

注意事项:1.答题前,考生务必将姓名、学校、考场号、座位号、考试号填涂在答题卷相应的位置上.2.答题必须用0.5mm 黑色墨水签字笔写在答题卷指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题.3.考生答题必须在答题卷上,答在试卷和草稿纸上一律无效.一、选择题(本大题共有10小题,每小题3分,共30分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并在答题卡上将该项涂黑)1. 一元二次方程2650x x --=配方可变形为A. 2(3)14x -=B. 2(3)4x -=C.2(3)14x +=D. 2(3)4x += 2. 圆锥的底面半径为2,母线长为6,则侧面积为A. 4πB. 6πC. 12πD. 16π 3. 若0234a b c ==≠,则a cb+的值为 A.3 B.2 C.12D.134. 如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D ,若20C ∠=︒,则CDA ∠的度数为A. 120°B. 125°C. 110°D. 115°5. 已知关于x 的方程20x bx c ++=的两根分别是1-,1+则bc 的值是A. 2B.C. 2+D.2-6. 如图,线段AB 与⊙O 相切于点B ,线段AO 与⊙O 相交于点C ,12,8AB AC ==,则⊙O 半径长为B.5C.6D.107. 在ABC ∆中,//DE BC ,若:1:2,4ADE BDE S S DE ∆∆==,则BC 的长为 A. 8 B. 10 C. 12 D. 16 8. 如图,ABC ∆是⊙O 的内接三角形,30C ∠=︒,⊙O 的半径为5,若点P 是⊙O 上的一点,在ABP ∆中,PB AB =,则PA 的长为 A.5C.21. (本题满分6分)如图,P 是⊙O 外一点,C 是⊙O 上一点,求证:ACB APB ∠>∠.22. (本题满分6分)如图,在长32米宽20米的矩形耕地上,修筑同样宽的三条矩形道路,要使耕地面积达到570平方米,则道路宽度是多少米?23. (本题满分7分)如图,AB 是⊙O 的直径,AC 是⊙O 的弦,过点C 的切线交AB 的延长线于点D ,且A D ∠=∠. (1)求ACD ∠的度数;(2)若CD =求图中阴影部分的面积.24. (本题满分7分)已知关于x 的一元二次方程220x x m -+=有两个实数根 (1)求m 的范围;(2)若方程两个实数根为1x 、2x ,且1238x x +=,求m 的值.25. (本题满分8分)如图⊙O 是ABC ∆的外接圆,45ABC ∠=︒,延长BC 于D ,连接AD ,使得//AD OC ,AB 交OC 于E .(1)求证:AD 与⊙O 相切;(2)若25,2AE CE ==.求⊙O 的半径和AB 的长度.26. (本题满分6分)如图,在ABC ∆中,点,D E 分别是边AB 上的点,CD 平分ECB ∠,且2BC BD BA =g . (1)求证:A ECD ∠=∠;(2)求证:AB CEBC ED=.27. (本题满分10分) 如图,已知ABC ∆内接于⊙O , AB 是直径,点D 在⊙O 上,//ODBC ,过点D 作DE AB ⊥,垂足为E ,连接CD 交OE 边于点F .(1)求证: ODF BDE ∠=∠; (2)求证: DOE ABC ∆∆:;(3)连接OC ,设DOE ∆的面积为1S ,四边形BCOD 的面积为2S ,若23OE OD =,求12S S 的值.28. (本题满分10分)如图,C为AOBOC=,N为边OB上∠的边OA上一点,6异于点O的一动点,P是线段CN上一点,过点P分别作//PQ OA交OB于点Q,//PM OB交OA于点M.(1)若4,1OM OQ==,①求ON的长;②若以M为圆心MP长为半径的⊙M与CN相切,求CN的长;(2)点N在边OB上运动时,四边形OMPQ始终保持为菱形.那么11-OM ON 值是否发生变化?如果变化,求出其取值范围;如果不变,请说明理由.。

2018-2019学年九年级数学期中试卷参考答案

2018-2019学年九年级数学期中试卷参考答案

()22222513.02251---------12255125()-24216533()---------24165---------34455x x x x x x x x --=∴-=∴-+=+∴-=∴-=±分分分()12(1).x+1(23)0---------231,---------42x x x -=∴=-=分分()212(2).x+13(1)0---------2(1)(13)0---------31,2---------4x x x x x -+=∴++-=∴=-=分分分2019~2019年(上)九年级数学期中数学试卷参考答案(仅供参考,其它方法酌情给分)一、选择题:1.B2.C3.A4. B5.B6.B7.B8.C 二、填空题9. 4 ;362 10. x ≥-1 11. 0或2 ; 12.4 13. 5和6. 14. .316.(答案不唯一)范围不写扣1分) 三、计算题:(()17.1=-=分每个化简对均得1分分 (()3233( -a b 223b ----3b2a a ⎫=⋅⋅⎪⎪⎭=-分每个化简对均得1分分四、解方程:18 解:19.解(1) ∵043614)6(422≥-=⨯⨯--=-k k ac b ---------1分 ∴k ≤9 ---------2分(2) ∵k 是符合条件的最大整数且k ≤9 ∴k=9 ---------3分当k=9时,方程x 2-6x +9=0的根为x 1=x 2=3; ---------4分把x=3代入方程x 2+mx -1=0得9+3m-1=0 ---------5分∴m= 38----------6分 20. 解:x 1+x 2=ab-=4;x 1x 2=a c =-1---------2分(1)(x 1+1)(x 2+1) (2)2112x x x x + =x 1x 2+x 1+x 2+1---------3分 =221221x x x x +=-1+4+1 21212212)(x x x x x x -+=---------5分= 4 ---------4分 = -18 ---------6分21. 证明:(1)∵AB ∥DC ∴∠ABE=∠CEB ---------2分 又∵BE 平分∠ABC∴∠ABE=∠CBE --------4分∴∠CBE=∠CEB---------5分 ∴CB=CE---------6分 又∵CO 平分∠BCE∴∠BCO=∠ECO∴OB=OE ---------8分()2⎛ ⎝=分分22. 证明(1)∵E 是AC 的中点∴EC=12AC---------1分 又∵DB=12AC∴DB= EC---------2分 又∵DB ∥AC∴四边形DBEA 是平行四边形---------3分 ∴BC=DE ;(2)△ABC 添加BA=BC证明:同上可证四边形DBEA 是平行四边形---------4分又∵BA=BC ;BC=DE ∴AB=DE---------5分∴四边形DBEA 是矩形---------6分 (3)∠C= 45 0 ---------8分23.思考发现:四边形ABEF 为矩形-------1分;四边形ABEF 的面积是c b a )(21+-------2分实践探究:作图-------3分作图------4分联想拓展:(1)如图4过点E 作PE ∥AB 交BC 与P 交AD 的延长线于Q ,则有S 梯形ABCD =S □ ABPQ = AB ×EF =5×4=20 -------5分(2)作图-------7分取AB 的中点F ,BC 的中点G ,作直线FG 分别交AE ,CD 于点P ,Q , 则可拼成一平行四边形PQDE ------8分24.解:(1)当点P 与点N 重合时,由x 2x 24+=2,得12x 4x 6==-、(舍去)所以x 4=时点P 与点N 重合 ·························································· 2分 (2) 当点Q 与点M 重合时,由x+3x=24,得x=6----------3分此时2DN=x 3624=≥,不符合题意. 故点Q 与点M 不能重合.------ ----4分 (2)由(1)知,点Q 只能在点M 的左侧, ① 当点P 在点N 的左侧时,由224x 3x 242x+x -+=-()(),解得120()2x x ==舍去,.当x =2时四边形PQMN 是平行四边形. ········································· 6分② 当点P 在点N 的右侧时,由224x+3x)(2)24x x -=+-(,解得1233x x =-=-.当x时四边形NQMP 是平行四边形. ····································· 8分 综上:当x =2或x时,以P ,Q ,M ,N 为顶点的四边形是平行四边形.ABDCP QMN。

2018-2019学年孝感市大悟县九年级上期中数学试卷(有答案解析)

2018-2019学年孝感市大悟县九年级上期中数学试卷(有答案解析)

2 8.已知关于������的一元二次方程������ + ������������ + ������ = 0有一个非零根 ‒ ������,则������ ‒ ������的值为( )
A.1
B. ‒ 1
C.0
D. ‒ 2
2 9.二次函数������ = ������������ + ������������ + ������(������ ≠ 0)的图象如图所示,对称轴是直线������ = 1,则下列四个结论
) A. ������ <ቤተ መጻሕፍቲ ባይዱ4
9
B.
������ ≤ 4
9
C.
������ > 4

9
D.
������ ≥ 4

9
3.如图,将������������ △ ������������������绕直角顶点������顺时针旋转90 ,得到 △ ������'������'������,连接������������',若∠1 = 20 , 则∠������的度数是( )
12.在平面直角坐标系中,点(������, 5)关于原点对称的点的坐标是(1, ������ + 1),则点(������, ������)在第 ________象限.
2 13.抛物线������ = ������������ + ������������ + ������上部分点的横坐标������,纵坐标������的对应值如下表:
A. ‒ 1.6 C.4.4
B.3.2 D.以上都不对
2 7.已知������是一元二次方程������ ‒ ������ ‒ 1 = 0较大的根,则下面对������的估计正确的是( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档