BMW发动机废气涡轮增压器系统(1)
述说废气涡轮增压控制系统的工作原理

这个文件中的文本是废气涡轮增压控制系统的工作原理?废气涡轮增压控制系统(Exhaust Gas Turbocharger Control System,简称EGTCS)是一种用于汽车发动机的先进技术。
它通过使用涡轮增压器将废气能量转化为机械能,从而提高发动机效能,提高燃油经济性和减少尾气排放。
本文将详细介绍废气涡轮增压控制系统的工作原理。
1. 废气涡轮增压器的基本原理废气涡轮增压器由两个栅栏相对呼应的轮子构成,一个轴向的涡轮叶轮和一个叶轮泵。
废气涡轮增压器的工作原理基于流体动力学的原理。
当发动机燃烧过程中产生的高温废气通过排气管排出时,废气进入涡轮叶轮,并加速旋转。
涡轮叶轮则通过轴传递其动能给压气机叶轮,从而使压气机叶轮加速旋转以产生进气压力。
2. 废气涡轮增压控制系统的组成废气涡轮增压控制系统由多个部分组成,包括废气涡轮增压器、控制阀、传感器和控制模块等等。
2.1 废气涡轮增压器废气涡轮增压器是废气涡轮增压控制系统的核心部件。
它负责将发动机产生的废气能转化为机械能,提供额外的进气压力给发动机。
2.2 控制阀控制阀是废气涡轮增压控制系统的关键组成部分。
它通常包括进气阀和出气阀。
进气阀可以控制进气流量,以调整涡轮叶轮的旋转速度;出气阀则可以调节压气机和排气系统之间的连接,以控制进气压力。
2.3 传感器传感器用于感知废气涡轮增压系统的参数,如进气温度、进气压力和涡轮旋转速度等。
这些数据可以帮助控制模块进行精确的控制和调整。
2.4 控制模块控制模块是废气涡轮增压控制系统的大脑,负责处理传感器数据,并根据预设的控制策略来控制各个执行器的工作。
控制模块可以根据发动机负荷和转速等参数实时调整涡轮增压器的工作状态,以达到最佳的动力输出和燃油经济性。
3. 废气涡轮增压控制系统的工作过程废气涡轮增压控制系统的工作过程可以总结为以下几个步骤:3.1 探测进气压力和温度在发动机运行时,传感器会实时感知进气气流的压力和温度。
BMW N54发动机

A.过压 B.真空 C.废气 D.机油 E.泄漏气体 1.空气滤清器 2.进气集气管 3.气旋式油气分离器 4.放油阀 5.排气通道 6.曲轴空间 7.油底壳 8.机油回流通道 9.废气涡轮增压器 10.汽缸列2增压 空气进气管路 11.至汽缸列 2 增压空气进气管路的软管 12.集气管单向阀 13.节气门 14.增压空气进 气管路单向阀 15.至集气管的通道 16.压力节流阀
1.节气门 2.排气通道 3.机油回流管路 4.曲轴空间 5.油底壳 6.至进气管的通道 7.调压装置 8. 油气分离器 9.排油管路
◆ 图 6 曲轴箱通风,标准化功能
13 汽车维修技师·2009 年第 1 期
新车透视 LATEST CAR INSIGHT
宝马 N54
发动机新技术剖析(二)
(1)油气分离器 N54 发动机上安装了一个气旋
宝马通过 N54 发动机进一步挖 掘了发动机技术方面的潜力。使用 了高精度喷射装置,高精度喷射装 置(HPI)采用的喷束导向式直接喷 射方式是一种降低耗油量的持久解 决方案。采用这种喷射系统可克服 汽油发动机涡轮增压的主要不足, 例如减小压缩比时很容易爆震。这 样可充分挖掘涡轮增压潜力以增大 功率和扭矩,以λ =1 模式运行的 N54 发动机挖掘了大排量发动机的 功率潜力,同时避免了发动机耗油 量提高。宝马的所有技术创新成果 都基于以往的研发经验而且互为补 充。N54 发动机采用了 N52 发动机 上引入的降低油耗技术、体积流量 调节式供油系统和热量管理系统。
1.排气 VANOS单元 2.进气 VANOS单元 3. 进气凸轮轴传感器 4.排气凸轮轴传感器 5.电磁 阀 6.电磁阀 ◆ 图 14 VANOS
进气和排气凸轮轴 VANOS 单 元的调节行程不同。因此不能装 错 ,否 则 可 能 会 因 活 塞 撞 击 气 门 造 成发动机损坏。因此在 V A N O S 单元的前端板上刻有“AUS/EX”或 “EIN/IN”字样。
废气涡轮增压系统工作原理

废气涡轮增压系统工作原理废气涡轮增压系统是指在内燃机排放废气中利用涡轮增压器提高进气压力,从而提高发动机功率和扭矩的系统。
下面将从系统组成、工作原理和优缺点三个方面进行详细介绍。
一、系统组成废气涡轮增压系统主要由废气涡轮增压器和涡轮增压器控制系统两部分组成。
1. 废气涡轮增压器废气涡轮增压器是由由排气螺栓、废气机轮、增压机轮、机轴、壳体和变流器等部分组成。
废气流通过排气螺栓进入废气机轮,使机轮转动,机轴传动增压机轮旋转,从而通过压缩进气获得增压效果。
2. 涡轮增压器控制系统涡轮增压器控制系统主要由增压控制器、曲轴位置传感器、节气门位置传感器、压力传感器和电子控制单元等几部分组成。
通过这些元器件对废气涡轮增压系统进行精密控制,从而保证系统的工作效率。
二、工作原理废气涡轮增压器系统的原理是利用内燃机排气废气的能量,经过废气涡轮增压器的加工转化为压缩空气送入内燃机,提高发动机的进气压力和空气密度,从而提高发动机的功率和扭矩输出。
在发动机运转过程中,废气流进入废气涡轮增压器,使其机轮转动,带动增压机轮旋转,增压机轮通过压缩大气将压缩后的空气送入进气道,进入到发动机内,从而实现对发动机的增压效果。
涡轮增压器控制系统则对这个过程进行精密的控制,通过节气门位置传感器、增压控制器、曲轴位置传感器和电子控制单元等几部分组成,对空气处理质量、空气的流量和增压器的运作轮回进行管理。
三、优缺点优点:1. 提高发动机输出功率和扭矩,减少发动机的油耗和排放量。
2. 可以替代大排量的发动机,保持较高的性能水平,从而实现节约油耗的目的。
3. 可以使发动机在低转速下获得强大的输出能力,提高发动机的动态响应。
4. 增压迅速,响应灵敏,提供更大的动力输出,特别适用于赛车等动力需求较大的场合。
缺点:1. 安装成本较高,使用寿命也较短。
2. 需要精密的控制系统进行管理,因此需要对发动机进行改装和维护的人力和物力成本较高。
3. 系统准备时间较长,与发动机的启动和关闭流程结合不好,容易出现额外的痛点。
简述废气涡轮增压系统的组成与工作原理

简述废气涡轮增压系统的组成与工作原理废气涡轮增压系统是一种常见的汽车动力系统,其主要作用是通过增加进气气流的压力,提高发动机的进气效率,从而提升发动机的输出功率和扭矩。
本文将对废气涡轮增压系统的组成和工作原理进行简述。
一、组成废气涡轮增压系统主要由废气涡轮、增压器、废气管道和冷却系统组成。
1. 废气涡轮:废气涡轮是废气涡轮增压系统的核心部件,它由涡轮轮盘、涡轮轴和涡轮壳体组成。
废气涡轮通过利用发动机排气中的废气能量,将废气的动能转化为涡轮轮盘的旋转动能。
2. 增压器:增压器是废气涡轮增压系统的另一个重要组成部分,它由压气机和涡轮轴连接在一起,通过涡轮轮盘的旋转驱动压气机工作。
增压器的作用是将进气气流压缩,提高进气气流的密度,并将压缩后的气流送入发动机。
3. 废气管道:废气管道用于将发动机排出的废气引导到废气涡轮,使废气涡轮能够转动并驱动增压器工作。
4. 冷却系统:废气涡轮增压系统还配备了冷却系统,用于降低废气涡轮和增压器的工作温度,提高其工作效率和寿命。
冷却系统通常由冷却液循环系统和涡轮壳体上的冷却片组成。
二、工作原理废气涡轮增压系统的工作原理可以简述为以下几个步骤:1. 排气过程:在发动机的排气过程中,废气被排出并经过废气管道进入废气涡轮。
废气的动能使得涡轮轮盘开始旋转。
2. 涡轮传动:废气涡轮的旋转驱动涡轮轴转动,涡轮轴与增压器上的压气机连接在一起。
涡轮轴的转动使压气机开始工作,将进气气流进行压缩。
3. 压缩过程:压气机将进气气流进行压缩,提高气流的密度和压力。
压缩后的气流通过增压器的出口进入发动机的进气道。
4. 燃烧过程:进入发动机的压缩空气与燃油混合后,进行燃烧,释放出能量驱动发动机工作。
由于增压器的作用,进入发动机的气流密度增加,使得燃烧效率提高,从而提高了发动机的输出功率和扭矩。
5. 冷却过程:废气涡轮和增压器在工作过程中会产生大量热量,为了保持其工作效率和寿命,冷却系统通过循环冷却液和冷却片的方式,将热量带走,保持涡轮和增压器的工作温度在合适范围内。
发动机废气涡轮增压ppt课件

复合式增压系统
将废气涡轮增压和机械增压 组合使用。
在大功率柴油机上 采用比较多,其发 动机输出功率大、 燃油消耗率低、噪 声小,只是结构太 复杂,技术含量高, 维修保养不容易。
只有提高发动机的平均有效压力才是最经济有效的方法,它可通过 减小过量空气系数øa,提高充气效率ŋv和增加进入气缸的充量密度ρk来 实现。
因此,增大进气密度 k ,即提高进入气缸空气的压力 k , 降低进入气缸空气的温度Tk是提高平均有效压力pme最有效的 方法。提高进入气缸空气的压力和降低进入气缸空气的温度的 办法是采用增压和中冷技术。
油机的增压度受到爆燃燃烧的限制。柴油机的增压度受到燃烧最高爆 发压力的限制,通常以降低压缩比来补偿。
增压度小于1.9时,为低增压;在1.9~2.5范围内,为中增压;在 2.5~3.5范围内,为高增压;大于3.5时为超高增压。
目前,车用发动机的增压度不高,在0.1~0.6的范围内,大 部分为0.2~0.3,而船用大型低速四冲程柴油机的增压度可达 到3.0以上。这是因为车用发动机增压不仅要求功率增加,而 且还要在较大的转速和负荷范围内满足动力性、经济性、排放 与成本等多方面的要求,因此增压度一般不宜过高。
作业
1.发动机的增压方式有哪几种,与其他方式相比 涡轮增压的优点有哪些?
2.增压为什么能够提高发动机的功率? 3.发动机废气能量是如何利用的? 4.汽油机涡轮增压的主要技术措施有哪些?
增压:利用增压器将空气或可燃混合气进行压缩,再送入发动机气 缸的过程。
增压后,每循环进入气缸内的新鲜充量密度增大,使实际充气量增 加, 提高发动机功率和改善经济性。
宝马发动机电脑控制系统1

第二章宝马发动机电脑控制系统第一节控制系统概述和保养规范一、系统概述1.宝马汽车命名图2-1表示宝马“325iS”各代码的含义。
图2-1 宝马汽车命名1)车身系列:宝马汽车以3、5、7、8、M、X、Z等不同车身系列。
2)发动机排量:宝马车有采用1.6、1.8、2.0、2.5、2.8、3.0、3.5、4.0、4.4、5.0等排量。
特例:97年以后BMW 540、740发动机排量为4.4L BMW 745 发动机排量为4.4L 3)E:喷射发动机D:柴油机4)S:运动型(跑车)C:双门单排跑车L:轴距加长2.17位编码(VIN)含义1)美规美规车种17位编码含义如下(见表2-1):美规车种17位编码表2-1注释:①生产厂:4ns 、WBA 、WBS等②4-7位:车型型式③安全系统防护:1、手动安全带;2、手动安全带加单安全气囊;3、手动安全带加双安全气囊。
④第9位:电脑数据检查(未使用)⑤年份:Y 2000年⑥装配厂⑦出厂编号2)欧规17位编码需用后7位代码通过宝马公司或指定机构查阅车型、年份及发动机变速箱型式。
3.发动机号码1)发动机型号M 6 0 — B 30型号德国汽油机排量2)发动机号码(如图2-2)图2-2 发动机号码4.发动机与控制系统型式1)发动机与控制系统型式如表2-2。
宝马的车型、底盘与发动机型号对照表表2-22)发动机控制系统版本说明(1)95-00年316i(E36),95-99年318i(E36)采用BOSCH M1.7.3控制系统。
(2)99-02年316i(E46),98-02年316i compact(E36),98-02年318i(E46)采用BOSCH BMS46控制系统。
(3)96-99年318is(E36),96-00年318Ti(E36)采用BOSCH M5.2控制系统(4)94-99年320i(E36),95-00年323i(E36),95-99年328(E36),96-00年520i (E39),523i(E39),528i(E39)采用西门子MS41控制系统。
简述废气涡轮增压系统的组成与工作原理

简述废气涡轮增压系统的组成与工作原理
废气涡轮增压系统是一种通过废气能量驱动涡轮,并将空气压缩送入汽车发动机的系统,从而提高发动机的动力输出。
废气涡轮增压系统主要由以下几个组成部分构成:
1. 涡轮:涡轮是废气涡轮增压系统的核心部件,它由涡轮叶轮和涡轮轴组成。
废气从汽车发动机的排气管进入涡轮,使涡轮叶轮高速旋转,通过轴将旋转动力传递给压气机。
2. 压气机:压气机也称为压缩机,位于涡轮的另一端。
它由多个压缩机叶轮组成,压缩机叶轮旋转时会将空气压缩,提高其密度和压力。
3. 中冷器:中冷器位于涡轮和压气机之间,其主要作用是冷却压缩后的空气,提高空气密度,以增加进入汽缸的燃料气体的供给量。
4. 增压控制系统:增压控制系统通过电子控制单元(ECU)监测和调节涡轮增压系统的工作状态。
它根据发动机负载、转速和其他传感器信号来控制涡轮和压气机的工作,以确保最佳的增压效果和发动机性能。
废气涡轮增压系统的工作原理如下:
1. 发动机运转时,废气通过排气管排出。
2. 一部分废气通过排气管进入涡轮,使涡轮叶轮旋转。
3. 涡轮轴将旋转动力传递给压气机,使其旋转。
4. 压气机压缩进入的空气,提高其密度和压力。
5. 压缩后的空气流经中冷器冷却,提高其密度。
6. 冷却后的空气进入汽缸,与燃料混合后进行燃烧,产生更大的爆炸力,从而提高发动机的动力输出。
废气涡轮增压系统可以有效地提高发动机的功率和扭矩输出,提高燃烧效率,降低燃料消耗。
然而,由于涡轮增压系统对发动机的负荷和压力较大,所以需要进行维护和保养,以确保其正常工作。
《废气涡轮增压系统检修》学习手册

《废气涡轮增压系统的检修》学习手册知识要求4.4.1 增压系统的作用及类型内燃机增压装置可在发动机工作容积和转速不变的条件下,通过压缩供燃料燃烧所需的空气,提高进入气缸内的空气质量,进而提高发动机功率。
内燃机增压装置一般称为“增压器”,增压器可分为机械增压器、废气涡轮增压器和气波增压器三种类型。
机械增压器所需的压缩功率取自发动机曲轴(发动机与增压器机械耦合)。
废气涡轮增压器所需的压缩功率取自废气中的能量(发动机与增压器流体耦合)。
气波增压器所需的压缩功率同样取自废气能量,但需要一个机械驱动装置(机械与流体耦合)。
下面主要讲述废气涡轮增压系统。
废气涡轮增压器由两个流体机械组成,即涡轮和压气机,它们装置一个共同的轴上,利用发动机排出的废气惯性冲力来推动涡轮室内的涡轮,带动同轴的叶轮压送由空气滤清器管道送来的空气,使之增压进入气缸。
在废气涡轮增压系统中,涡轮增压器的涡轮位于发动机的排气管路上,被发动机排出的废气推动旋转,并带动与其同轴的压气机泵轮工作。
泵轮位于发动机的进气管路上,它转动时使进气管内的空气压力升高。
新鲜空气经压气机增压后进入气缸,因此气缸的进气量提高,如图4-4-1所示。
图4-4-1 废气涡轮增压系统的模型1-排气管;2-涡轮机及涡轮;3-压气机及泵轮;4-进气管4.4.2 废气涡轮增压系统的组成和工作原理一个整体的涡轮增压器是由涡轮室和增压器组成,涡轮室进气口与排气歧管相连,排气口接在排气管上;增压器进气口与空气滤清器管道相连,排气口接在进气歧管上,涡轮和叶轮分别装在涡轮室和增压器内,二者同轴刚性联接,涡轮增压结构联接如图4-4-2所示,图4-4-3是涡轮增压的实物图。
图4-4-2 涡轮增压器的结构图图4-4-3 涡轮增压器的实物图涡轮增压器利用发动机排出的废气惯性冲力来推动涡轮室内的涡轮,涡轮又带动同轴的叶轮,叶轮压送由空气滤清器管道送来的空气,使之增压进入气缸。
当发动机转速增快(当加速的时候),废气排出速度与涡轮转速也同步增快,叶轮就压缩更多的空气进入气缸,空气的压力和密度增大可以燃烧更多的燃料,相应增加燃料量和调整一下发动机的转速,这样就可以增加发动机的输出功率了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
技术培训产品信息废气涡轮增压器系统结构原理BMW经销商内训产品信息废气涡轮增压器系统结构原理发动机废气涡轮增压器系统✧涡轮增压器✧增压压力调节系统✧循环空气减压系统✧增压空气冷却系统N54发动机废气涡轮增压系统N55发动机废气涡轮增压系统N63发动机废气涡轮增压系统N74发动机废气涡轮增压系统概述废气涡轮增压系统涡轮增压发动机是依靠涡轮增压器来提高进气密度和增大发动机进气量的一种发动机,涡轮增压器实际上就是一个空气压缩机。
它是利用发动机排出的废气作为动力来推动涡轮室内的涡轮(位于排气道内),涡轮又带动同轴的叶轮位于进气道内,叶轮就压缩由空气滤清器管道送来的新鲜空气,经过中冷器降低进气温度,从而提高进气密度再送入气缸。
当发动机转速加快废气排出速度与涡轮转速也同步加快,空气压缩程度就得以加大,发动机的进气量就相应地得到增加,就可以增加发动机的输出功率了。
废气涡轮增压系统组成⏹涡轮增压器⏹增压压力调节装置⏹循环空气减压控制⏹增压空气冷却系统涡轮增压器涡轮增压器是由涡轮室和增压器组成的机器。
⏹涡轮室进气口与排气歧管相连,排气口接在排气管上;⏹增压器进气口与空气滤清器管道相连,排气口接在进气歧管上;⏹涡轮与叶轮分别装在涡轮室和增压器内,两者同轴工作原理:涡轮增压器是利用发动机排出的废气作为动力来推动涡轮室内的涡轮(位于排气道内),涡轮又带动同轴的叶轮位于进气道内,叶轮就压缩由空气滤清器管道送来的新鲜空气再送入气缸。
涡轮增压器的润滑:由于涡轮增压器连接在排气侧,所以温度相对较高,涡轮轴采用全浮式轴承结构,所以涡轮轴的润滑完全由发动机润滑系统提供润滑。
涡轮增压器的冷却:◆涡轮增压器的转速最高可达200000rpm,废气入口温度最高可达1050℃,致使涡轮增压器的温度很高,所以涡轮增压器的冷却是靠发动机的冷却系统进行冷却。
◆当发动机熄火后,由于涡轮增压器的温度还很高,此时停止冷却会导致轴承壳内的润滑油过热,形成结焦,久而久之导致涡轮增压器轴承处消耗机油,所以在发动机停转后水泵会继续控制冷却液进行一段时间冷却。
增压压力调节装置废气涡轮增压器的增压压力与到达废气涡轮增压器涡轮处的废气气流有直接关系。
无论是废气气流的速度还是质量都直接取决于发动机转速和发动机负荷。
发动机管理系统通过废气旁通阀调节增压压力。
废气旁通阀由真空执行机构操纵,这些执行机构由发动机管理系统通过电子气动压力转换器(EPDW)来控制。
持续运行的发动机真空泵产生真空并将其存储在一个蓄压器内。
这样可以确保这些用电器不会对制动助力功能产生不利影响。
通过废气旁通阀可将全部或部分废气气流输送至涡轮处。
达到所需增压压力时,废气旁通阀开始打开,部分废气气流通过旁通通道排出。
这样可防止通过涡轮继续提高压缩机转速。
通过这种控制方法可处理各种运行状况。
处于怠速阶段时,两个涡轮增压器的废气旁通阀均关闭。
其结果是,全部废气气流在这些低发动机转速阶段都用于压缩机加速。
需要提高发动机功率时,压缩机可立即提供所需增压压力(不会感觉到延时)。
在满负荷情况下,达到最大允许扭矩时通过部分开启废气旁通阀保持一个较高的恒定增压压力值。
压缩机始终根据运行情况保持相应的转速。
通过开启废气旁通阀可降低涡轮的驱动能量,因此不会进一步提高增压压力,不会增加耗油量。
在满负荷运行模式下,发动机进气管内的最高表压力为 0.8 bar。
增压压力调节原理图循环空气减压控制循环空气减压阀用于降低节气门快速关闭时不希望出现的增压压力峰值。
因此这些阀门对降低发动机噪音起到了重要作用并且有助于保护涡轮增压器部件。
如果发动机转速较高时关闭节气门,进气管内就会产生真空压力。
由于至进气管的通道已阻断,因此会在压缩机后形成无法消除的较大背压。
这会造成增压器“泵气”。
这意味着● 出现明显感觉到的干扰性泵噪音,● 出现这种泵噪音的同时,废气涡轮增压器还承受可造成部件损坏的负荷,因为高频压力波向废气涡轮增压器轴承施加轴向方向的负荷。
真空控制式循环空气减压阀循环空气减压阀是机械操纵式弹簧膜片阀;在此按如下方式通过进气管压力控制这些阀门:如果节气门前后存在压力差,进气管压力就会使循环空气减压阀打开,并将增压压力转至压缩机的进气侧。
压力差一旦超过0.3 bar,循环空气减压阀就会开启。
这个过程可防止出现造成部件损坏的干扰性泵动作用。
即使发动机以接近怠速转速运行(P增压/ P进气压力差= 0.3 bar),循环空气减压阀也会根据系统要求开启。
但不会对增压系统进一步产生影响。
废气涡轮增压器在这些低转速范围内承受全部废气气流的压力,并在接近怠速转速运行时便对进气预先施加一定压力。
如果此时节气门开启,就会迅速为发动机提供所需要的全部增压压力。
真空控制式废气旁通阀的一个主要优点是,在中等负荷范围时这些阀门可以部分开启,以免进气预先加压过度而增大耗油量。
负荷较高时,这些阀门根据所需增压压力开启到相应的控制位置。
电动控制式循环空气减压阀电动控制循环空气减压阀与真空控制式循环空气减压阀不同,安装在涡轮增压器增压侧,由发动机控制单元直接控制。
节气门关闭时,系统将增压压力(节气门前)及其提高值与存储的规定值进行比较。
如果实际值超出规定值达到一定程度,循环空气减压阀就会打开。
从而使增压压力转至压缩机的进气侧。
这样可防止出现造成部件损坏的干扰性泵动作用。
如下图所示:增压空气冷却系统发动机的增压空气冷却系统用于提高功率和降低耗油量。
废气涡轮增压器内因其部件温度和压缩作用而受热的增压空气,在增压空气冷却器内最多可降低80 °C。
这样可提高增压空气的密度,从而达到更好的燃烧室充气效果。
由此可降低所需要的增压压力。
此外还能降低爆震危险并提高发动机效率。
下图为风冷式增压空气冷却系统:下图为水冷式增压空气冷却系统:N54发动机废气涡轮增压器系统N54发动机是第一款采用双涡轮增压器、高精度喷射装置和全铝合金曲轴箱的6 缸直列发动机,该发动机具有涡轮增压发动机以前无法达到的响应速度以及延伸至高转速范围内的高输出动力。
此外,这款新型涡轮增压发动机还具有BMW6 缸直列发动机特有的运行平稳性。
发动机功率的显著提高要归功于BMW 的高精度喷射装置。
第二代汽油直接喷射装置为确保双涡轮发动机的经济性做出了很大贡献。
在涡轮增压发动机发明100 年后,BMW 工程师以这种组合方式在涡轮增压发动机的历史上书写了全新的光辉篇章。
由于N54 发动机是涡轮增压发动机,因此进气导管非常重要。
利用排出废气的能量事先压缩吸入的新鲜空气,从而使更多的空气进入燃烧室内。
只有在系统无泄漏的情况下该系统才能正常工作。
废气涡轮增压器进行进气导管方面的安装工作时,必须确保部件的安装位置准确无误且管路连接接口密封严密。
在某些情况下,系统泄漏会导致增压压力不正确。
发动机管理系统会识别出这种情况且发动机将处于应急运行模式(停用增压压力调节装置)。
在这种情况下会感觉到发动机功率不足。
.新鲜空气经过空气滤清器(10)和增压空气进气管路(6 + 18)由废气涡轮增压器(23 + 24)的压缩机吸入并压缩。
由于废气涡轮增压器的运行温度很高,因此将其与冷却液循环回路和发动机油循环回路连接在一起。
增压空气在废气涡轮增压器内压缩时产生很高的温度,因此需要通过一个增压空气冷却器(16)对其再次冷却。
经过压缩和冷却的增压空气从增压空气冷却器处通过节气门(12)进入进气管。
为了确保新鲜空气进气量始终与相应的发动机运行条件相符,该系统装有一些传感器和执行机构。
在下文中将介绍如何协调这些复杂关系。
工作原理废气涡轮增压器通过发动机废气驱动。
就是说带有压力的废气通过废气涡轮增压器的涡轮,并以这种方式为同一个轴上的压缩机提供驱动力。
在此事先压缩进气,从而提高发动机燃烧室的进气量。
这样可提高喷射和燃烧的燃油量,从而提高发动机的功率和扭矩。
涡轮和压缩机的最高转速可达200,000 rpm。
废气入口温度最高可达1050 °C。
由于温度很高,因此N54 发动机的废气涡轮增压器不仅与发动机油系统相连,而且还集成在发动机的冷却液循环回路内。
N54 发动机装有电动冷却液泵时,还可以在关闭发动机后排出废气涡轮增压器内的余热,从而防止轴承壳体内的润滑油过热。
利用冷却液泵的继续运行功能可排出废气涡轮增压器内的积热,从而防止轴颈处机油焦化。
这是一项重要的部件保护功能。
双涡轮增压系统涡轮增压器的响应速度对于N54 发动机来说最为重要。
不允许对驾驶员的要求(即加速踏板位置)做出延迟反应。
即不能让驾驶员感觉到所谓的“涡轮效应滞后”。
在N54 发动机上用两个相互并联的小型涡轮增压器解决了这个问题。
气缸1、2 和3(气缸列1)驱动废气涡轮增压器(5),气缸4、5 和6(气缸列2)驱动另一个废气涡轮增压器(2)。
小型废气涡轮增压器的优点在于,在涡轮增压器加速过程中由于涡轮转动惯量较小因此加速质量较小,因而压缩机可以更快达到较高增压压力。
增压压力调节装置废气涡轮增压器的增压压力与到达废气涡轮增压器涡轮处的废气气流有直接关系。
无论是废气气流的速度还是质量都直接取决于发动机转速和发动机负荷。
发动机管理系统通过废气旁通阀调节增压压力。
废气旁通阀由真空执行机构操纵,这些执行机构由发动机管理系统通过电子气动压力转换器(EPDW)来控制。
持续运行的发动机真空泵产生真空并将其存储在一个蓄压器内。
这样可以确保这些用电器不会对制动助力功能产生不利影响。
通过废气旁通阀可将全部或部分废气气流输送至涡轮处。
达到所需增压压力时,废气旁通阀开始打开,部分废气气流通过旁通通道排出。
这样可防止通过涡轮继续提高压缩机转速。
通过这种控制方法可处理各种运行状况。
处于怠速阶段时,两个涡轮增压器的废气旁通阀均关闭。
其结果是,全部废气气流在这些低发动机转速阶段都用于压缩机加速。
需要提高发动机功率时,压缩机可立即提供所需增压压力(不会感觉到延时)。
在满负荷情况下,达到最大允许扭矩时通过部分开启废气旁通阀保持一个较高的恒定增压压力值。
压缩机始终根据运行情况保持相应的转速。
通过开启废气旁通阀可降低涡轮的驱动能量,因此不会进一步提高增压压力,不会增加耗油量。
在满负荷运行模式下,N54 发动机进气管内的最高表压力为0.8 bar。
循环空气减压控制N54 发动机的循环空气减压阀用于降低节气门快速关闭时不希望出现的增压压力峰值。
因此这些阀门对降低发动机噪音起到了重要作用并且有助于保护涡轮增压器部件。
如果发动机转速较高时关闭节气门,进气管内就会产生真空压力。
由于至进气管的通道已阻断,因此会在压缩机后形成无法消除的较大背压。
这会造成增压器“泵气”。
这意味着● 出现明显感觉到的干扰性泵噪音,● 出现这种泵噪音的同时,废气涡轮增压器还承受可造成部件损坏的负荷,因为高频压力波向废气涡轮增压器轴承施加轴向方向的负荷。