六年级数学总复习数的整除知识分享

合集下载

六年级数学总复习数的整除知识分享

六年级数学总复习数的整除知识分享

偶数×奇数 =(偶数 )
第五页,共21页。
5. 质数(zhìshù)和合数
质数(:zhìsh只ù)有1和它本身两个约数
(素数()sù shù)
合数 : 除了1和它本身还有别的约数
1: 不是质数也不是合数
最小的质数是 : 2
最小的合数是 : 4
第六页,共21页。
ቤተ መጻሕፍቲ ባይዱ 6. 质因数和分解(fēnjiě)质因数
第四页,共21页。
4. 偶数(ǒu shù)和奇数
一个(yī ɡè)自,不然是数(bù shi)奇数就是偶数
偶数: 能被2整除的数叫做偶数 奇数 : 不能被2整除的数叫做奇数
最小的偶数是 :0 最小的奇数是 :1
偶数±偶数 =(偶数) 奇数±奇数 =( 偶数)
偶数±奇数 =(奇数)
偶数×偶数 =(偶数 ) 奇数×奇数 =( 奇数 )
1 不是质数
A.30=1 × 2 ×3 ×5
B.2 ×3 ×5=30
书写格式不符
C.30=2 ×3×5
第七页,共21页。
7. 最大公因数和最小公倍数
公因数,最大公因数 : 几个(jǐ ɡè)数公有的,叫因做数(jiàozuò)这几个数的;公因数 其中最大的一个(yī ɡè)叫做这几个数的最大公.因数
)。
5、相邻两个质数的和最小是(
)。
6 、在 0~ 20 中,奇数有(
),偶数有( ),
质数有( ),合数有(
), 2的倍数有(
),3的倍数有(
), 5的倍数有(


第十二页,共21页。
7、A 和B 都是自然数,且 A÷ B=7 ,那么(An与à mBe的) 最大
公因数是( ),最小公倍数是(

小学整除知识点总结

小学整除知识点总结

小学整除知识点总结一、整除的概念整除就是某个数,除尽了另一个数,即余数为0。

例如8 ÷ 4 = 2,9 ÷ 3 = 3,都是整除的情况。

其中8被4整除,9被3整除。

二、整除的特点1. 被除数是整除数的整倍数;2. 如果一个数能被2整除,那么它一定是偶数;3. 如果一个数能被3整除,那它的各位数字之和也是3的倍数;4. 如果一个数能被5整除,那么它的末尾数字必须是0或5;5. 如果一个数能被6整除,那么它既能被2整除,也能被3整除;6. 如果一个数能被9整除,那么它的各位数字之和也是9的倍数。

三、整除的判断方法整除的判断方法有多种,根据题目要求选择不同的方法来进行计算。

下面列举一些常见的整除判断方法:1. 除数能否整除的判断方法:可以直接将被除数÷除数得到商,如果商为整数,则被除数能被除数整除;2. 末尾数字的规律判断:对于末尾为0、2、4、6、8的数,能被2整除;对于末尾为0、5的数,能被5整除;3. 各位数字之和判断:对于各位数字之和能被3、6、9整除的数,能被3、6、9整除。

四、整除的应用整除运用非常广泛,不仅在数学中应用广泛,也涉及到日常生活中的计算。

下面列举一些整除在日常生活中的应用:1. 购物找零:购物时,有时需要进行找零,这就需要进行整除的运算。

2. 时间计算:小时和分钟的计算也需要进行整除运算,如几点钟开始上课,几点钟下课等。

3. 数学题中的应用:解决数学题中的知识点,有时需要用到整除的运算方式。

总结:小学整除作为数学学习的重要知识点之一,在日常生活中也有着广泛的应用。

掌握整除的相关知识和技巧,除了能够帮助孩子们更好地学习数学知识外,也能够帮助他们在日常生活中更好地解决实际问题。

因此,家长和老师应该引导孩子们认真学习整除知识,并能够帮助他们将整除知识与日常生活相结合,更好地掌握和应用整除的相关知识。

整除知识点总结与练习

整除知识点总结与练习

整除知识点总结与练习一、整除的定义整除是指对于两个整数a和b,如果a能够被b整除,即a除以b的结果是一个整数,则称a能够被b整除,记作b|a。

其中a称为被除数,b称为除数,整数的除法结果称为商。

例如,6÷3=2,6除以3的结果是2,因此6能够被3整除,即3|6。

整除的定义表明了整除的两个基本特点:1. 整数a能够被整数b整除的定义是a÷b的结果是一个整数。

2. 整除的概念是具有传递性的,即如果a能够被b整除,b能够被c整除,则a能够被c整除。

二、整除的判定在计算整除时,通常需要用到整除的判定方法。

整除的判定方法主要有以下几种:1. 除法判定法:即直接计算被除数除以除数的结果是否为整数。

2. 因数判定法:利用被除数和除数的因数来判断整除关系。

3. 余数判定法:如果a能够被b整除,那么a÷b的余数为0。

4. 分解质因数判定法:将被除数和除数分解质因数,如果被除数分解后能够完全包含除数分解质因数的情况,那么a能够被b整除。

下面通过一些实例来说明整除的判定方法:例1:判断24能否被6整除?方法一:除法判定法,直接计算24÷6=4,结果为整数,因此24能够被6整除。

方法二:因数判定法,24的因数包括1、2、3、4、6、8、12,其中6是24的因数,因此24能够被6整除。

方法三:余数判定法,24÷6=4余0,余数为0,因此24能够被6整除。

方法四:分解质因数判定法,24=2³×3,6=2×3,24的分解质因数包含6的分解质因数,因此24能够被6整除。

综上所述,24能够被6整除。

例2:判断35能否被5整除?方法一:除法判定法,35÷5=7,结果为整数,因此35能够被5整除。

方法二:因数判定法,35的因数包括1、5、7、35,其中5是35的因数,因此35能够被5整除。

方法三:余数判定法,35÷5=7余0,余数为0,因此35能够被5整除。

小学数学整除知识点总结

小学数学整除知识点总结

小学数学整除知识点总结整除是小学数学中非常重要的一个概念,它是学习数学的基础,对于理解数学概念和解决数学问题都有很大的帮助。

在小学阶段,学生需要掌握整除的概念和相关知识,以便能够进行数学运算和解决实际问题。

1. 整除的概念整除是指一个数能够被另一个数整除,即这个数能够被另一个数整除而没有余数。

例如,6能够被3整除,因为6÷3=2,没有余数。

而8不能被3整除,因为8÷3=2余2。

因此,能够整除的数叫做倍数,被整除的数叫做约数。

2. 整数的奇偶性在整除的概念中,奇数和偶数是一个重要的概念。

奇数是指除以2有余数的整数,而偶数是指能够被2整除的整数。

奇数的特点是个位数字为1、3、5、7、9,而偶数的特点是个位数字为0、2、4、6、8。

例如,3是奇数,因为3÷2=1余1;而4是偶数,因为4÷2=2没有余数。

3. 分解质因数分解质因数是指将一个数分解为几个质数的乘积。

质数是指只能被1和自身整除的数,如2、3、5、7、11等。

分解质因数的方法是先找到能够整除这个数的最小质数,然后继续分解,直到无法分解为止。

例如,24=2×2×2×3。

4. 最大公约数最大公约数是指两个或多个数最大的共同约数。

求最大公约数的方法有两种,一种是列出这些数的所有约数,然后找出其中的最大数;另一种是利用质因数分解的方法求最大公约数。

例如,求12和18的最大公约数,可以先分解质因数,得到12=2×2×3,18=2×3×3,然后找出它们的公共质因数,即3,所以最大公约数是3。

5. 最小公倍数最小公倍数是指两个或多个数最小的公倍数。

和最大公约数类似,求最小公倍数的方法也有两种,一种是列出这些数的所有倍数,然后找出其中的最小数;另一种是利用质因数分解的方法求最小公倍数。

例如,求12和18的最小公倍数,可以先分解质因数,得到12=2×2×3,18=2×3×3,然后找出它们的公共质因数和非公共质因数,即2、3和2,所以最小公倍数是2×2×3×3=36。

数的整除知识点总结

数的整除知识点总结

数的整除知识点总结数的整除是数论中的一个基本概念,也是初等数学中的重要内容。

它与因数、倍数和约数等概念密切相关,对于解题和推理都有着重要的作用。

下面将对数的整除进行详细总结。

一、定义:如果整数a能够被整数b整除,即a/b是整数,那么称a是b的倍数,b是a的因数。

可以用数学表达式a=b*k来表示,其中k是整数。

二、性质:1.任何一个整数都是它自身的倍数,也是它自身的因数,即a是a的倍数,a是a的因数。

2.任何一个正整数都是1的倍数,即对于任何整数a,都有a是1的倍数。

3.任何一个整数都是它自身的因数,即对于任何整数a,都有a是a的因数。

4.如果a是b的倍数,b是c的倍数,那么a也是c的倍数,即若a是b的倍数且b是c的倍数,则a是c的倍数。

5.如果a是b的倍数,b是a的倍数,那么a和b是互为倍数,即a是b的倍数且b是a的倍数,则a和b互为倍数。

6.如果a是b的因数,b是c的因数,那么a也是c的因数,即若a是b的因数且b是c的因数,则a是c的因数。

三、判断一个数能否整除另一个数的方法:1.因式分解法:将被除数和除数都分解成质因数的乘积形式,然后进行比较。

如果被除数的质因数包含除数的质因数,并且对应质因数的指数均大于等于相应的质因数的指数,则被除数能够整除除数。

2.试商法:用除数去除被除数,如果商是整数且余数为0,则被除数能够整除除数,否则不能整除。

四、整除的性质:1.整除关系具有传递性,即如果a能够整除b,b能够整除c,则a 能够整除c。

2.整除关系具有反对称性,即如果a能够整除b,b能够整除a,则a 和b相等或互为相反数。

3.整除关系具有自反性,即任何一个数都能整除它本身。

4.整除关系具有非传递性,即如果a能够整除b,b能够整除c,但a 不能整除c。

例如:2能整除4,4能整除8,但2不能整除8五、整数的混合运算与整除的关系:1.若a整除b,b整除c,则a整除c。

2. 若a整除b,b整除c,则a整除bc。

六年级数学数的整除分解质因数的特征及性质

六年级数学数的整除分解质因数的特征及性质

六年级数学数的整除、分解质因数的特征及性质班级姓名座号成绩1、整除的概念:对于某个整数a和一个不为0的整数b,如果a除以b的商是整数且没有余数(即余数为0),我们就说a能被b整除,或者说b能整除a,记作b / a,显然,0是任何自然数的倍数,但不是任何自然数的约数,而1是任何整数的约数,即任何整数都是1的倍数。

2、整除的性质数的整除性有许多,常用的有以下四种:(1)如果数a和数b都能被数c整除,那么它们的和(a+b)及差(a-b)也能被c整除。

如:18能被3整除,12能被3整除,那么它们的和18+12=30及18-12=6也能被3整除。

(2)如果数a能被数b整除,数b又能被数c整除,则数a能被数c整除。

如果32能被8整除,8能被4整除,则32能被4整除。

(3)若干个数相乘,其中有一个因数a能被数b整除,则它们的积也能被数b整除。

如式子:11×12×13×14×15×16×17中的15能被5整除,则11×12×13×14×15×16×17的积也能被5整除。

(4)若一个数被两个互质数中的每一个数整除,则这个数能被这两个互质数的积整除。

如36能分别被互质数3和4整除,则36能被3和4的积12整除。

推论:若一个数能被两个互质数的积整除,则这个数能被这两个互质数整除。

如72能被互质数4和9的积36整除。

例1:六位数3ABABA是6的倍数,这们的六位数有多少个?解:因为六位数3ABABA是6的倍数,即能被6整除,而6=2×3,且2和3互质,所以六位数3ABABA能同时被2和3整除。

六位数3ABABA能被2整除,则可取A为0、2、4、6、8五个数。

又因六位数3ABABA能被3整除,而3+A+B+A+B+A=3A+3+2B,则B可取0、3、6、9四个数。

所以,符合条件的有4×5=20个。

六上 第一章 数的整除知识点总结及相应练习

第一章:数的整除1. 零和正整数统称为自然数。

正整数、零、负整数统称为整数。

重点题型:1. 在8,-10,0,0.25,-50,73,100,-8.5中,正整数有 , 自然数有 ,整数有 2.最小的自然数是提高:非负整数,如小于3的非负整数有2. 整数a 除以整数b ,如果除得的商是整数而余数为零,我们就说a 能被b 整除,或者说b 能整除a 。

用式子表示:如果 a ÷b=c(其中a 、b ,c 都为整数)称a 能被b 整除或b 能整除a 。

(区分两种表述) 重点题型:1. 下列各组数中,第一个数能被第二个数整除的是 ,第二个数能整除第一个数的是 12和24;39和13;54和27;46和4;17和51;84和72. 12÷3=4,那么 能被 整除; 能整除3. 整除的条件:1)除数,被除数都为整数2)被除数除以除数,商是整数而且余数为零。

重点题型:小明认为2.5能被5整除。

这种说法对吗?4. 整数a 被整数b 整除,a 叫b 的倍数(mutiple),b 叫a 的因数(factor)(也称为约数) 因数和倍数是相互依存的。

重要结论:一个整数的因数的个数是 的(填:无限或有限),其中最小的因数是 ,最大的因数是 。

一个整数的倍数的个数是 的(填:有限或无限),其中最小的倍数是 , 一个整数 最大的倍数。

重点题型:1. 因为4÷2=2,所以4是倍数,2是因数,这种说法对吗?2. 一个整数的最大因数减去这个正整数的最小倍数,所得的差一定( ) A <0 B =0 C >0 D 不等于03. 会求一个数的因数:如求105的因数4. 会求一个数的倍数:如求7的倍数(写出5个)5. 任何一个正整数至少有两个因数。

( )6. 如果一个数既是12的因数,又是12的倍数,那么这个数一定是 。

7. 18的因数 24的因数18和24的最大公因数是5.能被2整除的数的特征:个位上的数是0,2,4,6,8能被5整除的数的特征:个位上的数是0,5能被10整除(既能被2整除又能被5整除)的数的特征:个位上的数是0能被3整除的数的特征:各位上的数字的和能被3整除能被9整除的数的特征:各位上的数字的和能被9整除重点题型:1. 在15,27,38,62,90,135,420这七个数中:1)能被2整除的数是。

数的整除知识点总结数的整除知识整理

数的整除知识点总结数的整除知识整理数的整除知识点总结如下:1. 除数和被除数:一个数被另一个数整除时,被除数称为整数,除数称为除数。

2. 整除关系:如果一个数a能被另一个数b整除,即a ÷ b = c,则称a能被b整除,或者说b能整除a,记作b|a。

3. 余数:当一个数a被另一个数b整除时,如果除完后还有剩余部分,即a ÷ b = c 余 r(0 ≤ r < |b|),则r称为数a除以b的余数。

4. 因数:对于一个数a,如果存在一个数b,使得b能整除a,即a = b × c,则称b 是a的因数,c是a的倍数。

a的因数包括1和a本身。

5.倍数:对于一个数a,如果存在一个数b,使得a能整除b,即b = a × c,则称b 是a的倍数,c是a的因数。

a的倍数包括0和任意正负整数。

6.公约数:对于两个数a和b,如果存在一个数c,既能整除a又能整除b,即c|a 且c|b,则称c是a和b的公约数。

7.最大公约数:对于两个数a和b的公约数中,最大的一个公约数称为a和b的最大公约数,记作gcd(a, b)。

8.最小公倍数:对于两个数a和b的公倍数中,最小的一个公倍数称为a和b的最小公倍数,记作lcm(a, b)。

9.质数:一个大于1的自然数,除了1和它本身外,无法被其他自然数整除的数称为质数。

质数只有两个因数,即1和该数本身。

10.合数:一个自然数,除了1和它本身外,还有其他因数的数称为合数。

合数有多个因数。

11.互质:两个数的最大公约数为1时,称这两个数互质。

12.互质数性质:互质数的乘积等于它们的最小公倍数。

13.素数分解:将一个合数分解成质数的乘积的过程,这个过程叫做素数分解。

这些是数的整除的基本知识点。

小学六年级数学必须掌握的知识点数的整除与分解质因数

小学六年级数学必须掌握的知识点数的整除与分解质因数数学是小学生们学习的一门基础学科,培养学生的逻辑思维和分析问题的能力。

尤其是在小学六年级,数学的难度和复杂性逐渐增加,需要学生掌握更多的知识点。

其中,数的整除和分解质因数是数学学习的重要内容。

本文将详细介绍小学六年级数学必须掌握的数的整除与分解质因数的知识点。

一、数的整除1. 定义与性质在数学中,如果一个数能够被另一个数整除,我们称前者为后者的倍数,后者为前者的约数。

例如,6能够被2整除,所以6是2的倍数,而2是6的约数。

任何一个数都是其本身的约数和倍数。

一个数的约数不会超过它自身的一半,即一个数的最大约数不会超过其本身的一半。

如果一个数同时是两个数的约数,则它也是这两个数的公约数。

2. 判断一个数是否能够被另一个数整除的方法如果一个数能够被2整除,那么这个数的个位数必定是偶数。

如果一个数能够被10整除,那么这个数的个位数是0。

3. 最大公约数与最小公倍数最大公约数是指两个或多个数共有的约数中最大的一个数。

最小公倍数是指两个或多个数的公倍数中最小的一个数。

二、分解质因数1. 定义与性质素数是只能被1和自身整除的数,大于1的素数只有2、3、5、7、11、13等。

合数是能够被除了1和自身之外的其他数整除的数。

例如,6是合数,因为它能够被2和3整除。

2. 求一个数的质因数将一个数分解成几个质数的乘积,称为分解质因数。

例如,分解质因数的步骤如下:(1)从最小的素数2开始,如果这个数能够被2整除,则将其除以2,得到一个商和一个余数。

(2)如果商不为1,则继续将商进行分解,直到商为1为止。

最终得到的全部因数即为这个数的质因数。

3. 使用分解质因数的方法求最大公约数和最小公倍数通过分解质因数的方法,可以方便地求两个或多个数的最大公约数和最小公倍数。

例如,求最大公约数的步骤如下:(1)将两个数分别分解质因数。

(2)找出这两个数分解质因数中相同的质因数,并将这些质因数相乘,得到的积即为最大公约数。

数的整除知识点总结

一. 数的分类第一种分法 : 树状图 韦恩图整数第二种分法 整数第三种分法: 正整数一些关于数的结论:是最小的自然数,-1是最大的负整数,1是最小的正整数2.没有最大的整数,没有最小的负整数,没有最大的正整数3.正整数、负整数、整数的个数都是无限的二.整除1.整除定义概念:整数a 除以整数b,如果除得的商是整数而余数为零,我们就说a 能被b 整除;或者说b 能整除a注意点:一定要看清楚谁被谁整除或谁整除谁,这里的a相当于被除数,b 相当于除数2.整除的条件:1.除数、被除数都是整数2.被除数除以除数,商是整数而且余数为零注意点:区分整除与除尽:整除是特殊的除尽如正方形是特殊的长方形一样,即a 能被b 整除,则a 一定能被b 除尽,反之则不一定即a 能被b 除尽,则a 不一定能被b 整除;如4÷2=2, 4既能被2除尽,也能被2整除;4÷5=, 4能被5除尽,却不能说4能被5整除三.因数与倍数1.因数与倍数的定义:整数a能被整数b整除,a 就叫做b的倍数,b就叫做a的因数约数;注意点:1.因数和倍数是相互依存的,不能简单的说某个数是因数,某个数是倍数;如:6÷3=2,不能说6是倍数,3是因数;要说6是3的倍数,3是6的因数;2.因数与倍数是建立在整除的基础上的,所以如4÷=20,一般是不说4是的倍数,是4的因数;2.因数与倍数的特点:一个整数的因数中最小的因数是1,最大的因数是它本身;一个数的倍数中最小的倍数是这个数本身,没有最大的倍数;因数的个数是有限的,都能一一列举出来,倍数的个数是无限的;3.求一个数因数的方法:利用积与因数的关系一对一对找,找出哪两个数的乘积等于这个数,那么这两个数就是这个数的因数;如16=1×16=2×8=4×4,那么16的因数就有1、2、4、8、16,计算时一定不要忘了1和这个数本身都是它的因数,注意按照一定的顺序以防遗漏;4.求一个数倍数的方法:这个数本身分别乘以1、2、3、4、5……即正整数得到的积就是这个数的倍数;若用n表示所有的正整数,则2的倍数可表示为2n, 5的倍数可表示为5n四.能被2、5、3整除的数的特点1.能被2整除的数即2的倍数个位上的数字是0、2、4、6、8,反之,个位上的数字是0、2、4、6、8的数也能被2整除2.能被5整除的数即5的倍数个位上的数字是0、5,反之,个位上的数字是0、5的数都能被5整除3.能被3整除的数即3的倍数各个位数上的数字之和是3的倍数,反之,各个位数上的数字之和是3的倍数的数都能被3整除4.能被2、5同时整除的数的个位数字都是0,个位数字为0的数也能被10整除,能被10整除的数一定能被2或5其中的一个或两个同时整除;五.奇数、偶数1.奇数与偶数的定义:能被2整除的整数叫做偶数,不能被2整除的整数叫做奇数;按照能否被2整除来划分奇数与偶数2.奇数个位数上的数的特点:1、3、5、7、9偶数个位数上的数的特点:0、2、4、6、83.在连续的正整数中除1外,与奇数相邻的两个数是偶数,与偶数相邻的两个数是奇数4.相邻的奇数或偶数数字相差2,奇数可用2n-1或2n+1表示,偶数可用2n表示;5.奇数与偶数加法和乘法的运算特点奇数+奇数=偶数偶数+偶数=偶数奇数+偶数=奇数奇数×奇数=奇数偶数×偶数=偶数奇数×偶数=偶数利用此结论可检验一些运算是否正确,同时也要注意结论的逆向运用,如偶数奇数可拆成哪些奇数或偶数的和、积六.素数、合数1.素数与合数定义:一个正整数如果只有1和它本身两个因数,这样的数叫做素数质数,如果除了1和它本身以外还有别的因数,这样的数叫做合数;注意点:1.素数与合数的分类方法是根据它们因数的个数来分的,素数只有2个因数1和本身,合数至少有三个因数;任何一个数除1外都有1和它本身两个因数;2. 1既不是素数也不是合数;3.最小的素数是2,最小的合数是42.素数与奇数的联系和区别奇数不一定都是素数;√1既不是素数也不是合数,9、15等是奇数但是合数所有素数都是奇数; ×2是素数,但2是偶数3.合数与偶数的联系与区别合数不一定都是偶数;√9、15等都是合数,但它们是奇数偶数都是合数; ×2是偶数但2是素数注意:判断题对的要说明原因,错的要举出反例;七.素因数与分解素因数1.素因数与分解素因数的定义:每个合数都可以写成几个素数相乘的形式,其中每个素数都是这个合数的因数,叫做这个合数的素因数;把一个合数用素因数相乘的形式表示出来,叫做分解素因数;注意:1.求一个数的素因数时,先把这个数分解素因数,有几个素因数就写几个;如24=2×2×2×3,则素因数是2、2、2、3,而不是2、32.因数与素因数的区别:因数可以是素数或合数,素因数一定是素数;一个数的素因数一定是这个数的因数,因数的个数一定比素因数的个数多;2.分解素因数的方法树枝分解法:过程中注意不要漏写乘号,分解要彻底,直到没有合数出现,也不能出现1.要分解的合数写在等号左边,把它的素因数用相乘的形式写在等号右边,再把这几个素因数按从小到大的顺序排列;短除法:1.先用一个能整除这个合数的素数去除通常从最小的开始,偶数肯定先用2除,奇数一般从3开始一个个带入验算2.得出的商如果是合数,再按照上面的方法继续除下去,直到得出的商是素数为止;3.然后把各个除数和最后的商按从小到大的顺序写成连乘的形式;3.由一个数分解素因数求这个数的因数12=2×2×3,素因数是2、2、3,除1外由单个的素因数组成因数有2、3,由两个素因数组成的因数有2×2=4,2×3=6,由三个素因数组成的因数有2×2×3=12,所以12的因数有1、2、3、4、6、12.4. 由一个数分解素因数求这个数因数的个数1所有素因数都相同时,因数的个数是它素因数的个数+1,如8=2×2×2,素因数是2、2、2,则8的因数的个数是它素因数的个数+1,即4个2素因数不完全相同时,因数的个数是每个素因数个数+1后相乘的积,如12=2×2×3,素因数2的个数是2,素因数3的个数是1,则12的因数的个数是2+1×1+1=6八.公因数与最大公因数1.公因数与最大公因数定义:几个数公有的因数,叫做这几个数的公因数,其中最大的一个叫做这几个数的最大公因数.2.互素定义:如果两个整数只有公因数1,那么称这两个数互素;如8和9注意:互素是两个数之间,素数是指一个数,互素的两个数的最大公因数就是1.两个互素的数未必都是素数; √8和9互素,但8和9都是合数两个不同的素数一定互素. √若缺少“不同的”,则错,因为3和3都是素数但不互素3. 求两个数最大公因数的方法:1 一般方法:写出两个数所有的因数,再找出它们共同的最大的因数2 分解素因数的方法:把这两个数分解素因数,再找出相同的素因数,把它们所有的公有的素因数相乘,所得的积就是它们的最大公因数;3 短除法:先用这两个数公有的素因数去除一般从最小的素因数开始,得出的商如果是合数,再按照上面的方法继续除下去,直到两个数互素为止,这两个数的最大公因数就是左侧的除数的乘积. 类比用短除法分解素因数的方法4. 两个整数中,如果某个数是另一个数的因数,那么这个数就是这两个数的最大公因数;如果这两个数互素,那么它们的最大公因数就是1.九.公倍数和最小公倍数1.公倍数与最小公倍数定义:几个整数公有的倍数叫做它们的公倍数,其中最小的一个叫做它们的最小公倍数.2.求两个数最小公倍数的方法:1一般方法:从小到大分别依次写出几个这两个数的倍数,再找出它们共同的最小的倍数2分解素因数的方法: 把这两个数分解素因数,再找出相同的素因数,再取各自剩余的素因数,将这些数连乘所得的积,就是这两个数的最小公倍数.3短除法: 先用这两个数公有的素因数去除一般从最小的素因数开始,得出的商如果是合数,再按照上面的方法继续除下去,直到两个数互素为止,这两个数的最小公倍数就是左侧的除数与底部商的乘积.注意点:1.用短除法求两个数的最大公因数和最小公倍数时,过程都相同,只是最后写结论时注意需要乘哪些数.2.求两个数的最大公因数和最小公倍数,先判断这两个数是否存在因数倍数关系或互素关系,存在因数倍数关系时,最大公因数就是较小的那个数,最小公倍数就是较大的那个数;两数互素时,最大公因数就是1,最小公倍数就是它们的乘积.3.两个整数的公倍数一定能被这两个数整除.十.求三个整数的最大公因数和最小公倍数拓展1求三个整数的最大公因数:同样也是三种方法,只需找出三个数共同的因数,最大的因数就是最大公因数.注意与三个数的最小公倍数区分2求三个整数的最小公倍数:一般方法:写出三个数的倍数,再找出最小公倍数.分解素因数法:分别分解素因数,先找出三个数共同的素因数,再找出每两个数公有的素因数,再取各自剩余的素因数,把这些素因数连乘所得的积就是这三个数的最小公倍数.短除法:先用三个数公有的素因数去除直到三个数没有公有的素因数,再用其中两个数公有的素因数去除,直到除得的三个商两两互素为止即三对互素数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4、若a=8b,(a、b都不为0),则a、b的最大公因数 是( ),最小公倍数是( )。
5、相邻两个质数的和最小是(
)。
6、在0~20中,奇数有(
),偶数有( ),
质数有( ),合数有(
),2的倍数有(
),3的倍数有(
),5的倍数有(


7、A和B都是自然数,且A÷B=7,那么A与B的最大 公因数是( ),最小公倍数是( )。
分解质因数: 把一个合数用几个质因数相乘的形式表示出来. 叫做分解质因数.
分解质因数的方法:短除法
把30分解质因数
2 30 3 15 5
30=2×3×5
把30分解质因数正确的做法是( C ) A.30=1×2 ×3 ×5 1不是质数 B.2 ×3 ×5=30 书写格式不符
C.30=2×3×5
7. 最大公因数和最小公倍数
注意:有一些数能被7,9,11,13整除,但是不容易看出来, 这是大家在约分中容易忽略的.
4. 偶数和奇数
一个自然数,不是奇数就是偶数
偶数: 能被2整除的数叫做偶数 奇数: 不能被2整除的数叫做奇数 最小的偶数是:0 最小的奇数是:1
偶数±偶数=(偶数) 奇数±奇数=( 偶数)
偶数±奇数=(奇数 )
互质数: 公约数只有1的两个数叫做互质数.
互质数的几种特殊情况
⑴、两个数都是质数,这两个数一定互质. ⑵、相邻的两个数互质. ⑶、1和任何数都互质.
求最大公因数和最小公倍数
4和28 最大公因数是( 4 ); 最小公倍数是( 28 )
⑴.如果较小数是较大数的因数,那么较小数 就是这两个数的最大公因数;较大数就是这两 个数的最小公倍数.
如果a、b、c均为整数,且a×b=c,那么c就是a 和b的倍数, a和b就是c的因数。
因数 倍数
一个数的因数的个数是有 限的,其中最小的因数是1, 最大的因数是它本身.
一个数的倍数的个数是无 限的,其中最小的倍数是它 本身,没有最大的倍数.
因数和 倍数是 相互依 存的
如:4×5=20,20是5和4的倍数,4和5都是20的因数。
(75÷15)×(60÷15)=20(个)
变一变:将一张长1.36米,宽0.8米的长方形纸片,裁成一样 大小的正方形纸片,并使它们的面积尽可能的大表没有剩余,则一 共可裁出多少张?
(136,80)=8
(136÷8)×(80÷8)=170(个)
二、用公倍数知识解决生活问题。
1、暑假期间,小明和小兰都去参加游泳训练,8月1日 两人同时参加游泳训练后,小明每6天去一次,小兰每8 天去一次,那么几月几日两人再次相遇?
1、用96朵红玫瑰和72朵白玫瑰做成花束。如果每个花 束里的红玫瑰和白玫瑰的朵数相同且没有剩余,最多可 以做多少个花束?每个花束里至少要有几朵束?
每个花束里的红玫瑰和白玫瑰的朵数相同,又要求花束的个数 最多,所以花束的个数应该是96和72的最大公因数。
(96,72)=24 96÷24+72÷24=7(朵)
一、用公因数知识解决生活问题。
2、将一张长75厘米,宽60厘米的硬纸板剪成多个同样 大小的正方形,使得硬纸板没有剩余,并且剪成的正方 形的面积尽可能大,一共可以剪几个相同的正方形?
剪同样大小的正方形且没有剩余,则正方形的边长是长和宽的 公因数,为使面积最大,正方形的边长应是长和宽的最大公因数。
(75,60)=15
8、A、B两个数分解质因数分别是A=2×3×7, B=2×5×7。A、B的最大公因数是( ),最小公 倍数是( )。
9、8个连续自然数的和是284,这8个自然数分别是( )。
10、9个连续偶数的和是90,这9个连续偶数分别是( )。
11、7个连续自然数的和为35,这7个自然数分别是( )。
一、用公因数知识解决生活问题。
1. 整除与除尽
整除: 整数a除以整数b(b≠0),除得的商是整数而没有余数, 我们就说数a能被数b整除,或数b能整除a.
除尽: 数a除以数b(b≠0),除得的商是整数或是有限小数, 这就叫做除尽.
区别: 整除是除尽的一种特殊情况,整除也可以说是除尽, 但除尽不一定是整除.
除尽
整除
2. 因数和倍数
3. 能被2.3.5整除的数的特征
能被2整除的数的特征: 个位上是0,2,4,6,8, 能被5整除的数的特征: 个位上是0或5
你能举些例 子吗?
能被3整除的数的特征:各个位上的数字的和能被3整除
能同时被2,5整除的数的特征: 个位是0
能同时被2,3,5整除的数的特征: 个位是0,而且各个位上的 数字的和能被3整除.
公因数,最大公因数: 几个数公有的因数,叫做这几个数的公因数; 其中最大的一个叫做这几个数的最大公因数.
例:(1,2,4)是8和12的公因数,( 4 )是8和12的最大公因数.
公倍数,最小公倍数: 几个数公有的倍数,叫做这几个数的公倍数, 其中最小的一个叫做这几个数的最小公倍 数.
例:(12,24,36 …)都是4和6的公倍数,(12 )是4和6的最小公倍数.
4和15 最大公因数是( );最1 小公倍数是( ) 60
⑵.如果两个数互质,它们的最大公因数就是1; 最小公倍数就是它们的积.
⑶.短除法 求24和36的最大公因数和最小公倍数
2 24 36
2 12 18
36 9
2
3
商互质

24和36的最大公因数是:2×2×3=12 除数相乘
24和36的最小公倍数是: 2×2×3×2×3=72 所有的除数和商相乘
偶数×偶数=(偶数) 奇数×奇数=( 奇数)
偶数×奇数=(偶数 )
5. 质数和合数
质数:
(素数)
合数:
只有1和它本身两个约数 除了1和它本身还有别的约数
1: 不是质数也不是合数
最小的质数是: 2 最小的合数是: 4
6. 质因数和分解质因数
质因数: 每一个合数都可以写成几个质数相乘的形式, 这几个质数叫做这个合数的质因数.
判断: 1、互质的两个数,没有公因数。( ) 2、所有自然数,不是奇数就是偶数。( 3、36÷9=4,所以36是倍数,9是因数。( 4、一个数的倍数总比这个数的因数大。(
) )

1、7□6□既有因数3,同时又是2和5的倍数,这个四位
数是(
)。
2、两个质数的积,一定是( )。
3、12的因数有(
)。
由题意可知,两个人要再次相遇,相隔的天数应分别是6的倍 数,也是8的倍数,那么相隔的天数应是6和8的最小公倍数。
相关文档
最新文档